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ON SOLVING LINEAR DIOPHANTINE SYSTEMS
USING GENERALIZED ROSSER’S ALGORITHM

M. KHORRAMIZADEH AND N. MAHDAVI-AMIRI*

Communicated by Mohammad Asadzadeh

Abstract. A difficulty in solving linear Diophantine systems is the
rapid growth of intermediate results. Rosser’s algorithm for solving
a single linear Diophatine equation is an efficient algorithm that
effectively controls the growth of intermediate results. Here, we
propose an approach to generalize Rosser’s algorithm and present
two algorithms for solving systems of linear Diophantine equations.
Then, we show that the generalized approach provides us with a
new formulation of the LDSSBR of Chou and Collins and a more
efficient implementation of Rosser’s approach. The new formulation
also enables us to propose an efficient algorithm for solving rank
one perturbed linear Diophantine systems based on the LDSSBR,
and to improve and extend the class of integer ABS algorithms for
solving linear Diophantine systems.

1. Introduction

Systems of linear Diophantine equations arise from many disciplines
(e.g., integer programming [19], Frobenius problem [14], market split
problem [22], complex chemical reactions [20]), and computing effective
solutions of such systems is highly desired. Several algorithms exist
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for solving systems of linear Diophantine equations. Blankinship [6]
introduced a procedure for triangulation of a matrix with integer com-
ponents, and used the procedure for solving simultaneous linear Dio-
phantine equations [7]. Bradley [8] made some modifications to Blank-
inship’s algorithm and introduced a new algorithm for solving systems of
linear Diophantine equations. While algorithms introduced by Blank-
inship and Bradley were based on an explicit calculation of greatest
common divisor (gcd), Barnette and Pace [5] presented a new algo-
rithm based on an implicit calculation of gcd. Frumkin [15] showed that
none of these algorithms is polynomial. Kannan and Bachem [16] in-
troduced a polynomial algorithm for computing the Hermite and Smith
normal forms of an integer matrix, and later Chou and Collins [9] used
Kannan and Bachem’s ideas to present a polynomial algorithm named
LDSMKB for solving systems of linear Diophantine equations. They
also developed another algorithm based on Rosser’s idea [21], the so
called LDSSBR, and showed numerically that the LDSSBR is more suc-
cessful than LDSMKB in controlling the growth of intermediate results.
In 1994, Contejean and Devie [12] generalized Fortenbacher’s [11] algo-
rithm for solving systems of linear Diophantine equations. Then in 2000,
Aardal, Hurkens and Lenstra [3] gave an algorithm for solving systems
of linear Diophantine equations with lower and upper bounds on vari-
ables. In 2001, Esmaeili, Mahdavi-Amiri and Spedicato [13] presented a
class of algorithms for solving systems of linear Diophantine equations
based on the ABS algorithms [1, 2] (the so called EMAS algorithms).

The main difficulty in solving systems of linear Diophantine equa-
tions is the rapid growth of intermediate results, called intermediate
expression swell. One successful algorithm controlling this growth is the
LDSSBR. The generalized Rosser’s algorithm (GRA) to be described
later can be considered as a new formulation of the LDSSBR, that is,
it gives the same results as the LDSSBR does. Here, we also make
use of the new formulation to propose a more efficient implementation
of Rosser’s approach (called the modified GRA) as compared to the
LDSSBR. The generalized algorithm has this property that in the i–th
iteration a particular solution of the first i−1 equations, and a null space
generator of the first i − 1 rows of the coefficient matrix are at hand.
The general solution (if any) of the first i equations, or redundancy of
the i–th equation, or inconsistency of the first i equations is determined
in the i–th iteration.
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In the remainder of Section 1, we describe Rosser’s algorithm (RA)
and its generalization, the GRA. We will show in Section 2 the equiva-
lence of the LDSSBR of Chou and Collins with the GRA and show how
to make use of the GRA to provide a more efficient implementation of
Rosser’s approach, compared with the LDSSBR. In Section 3, we explain
that the new formulation can be used to propose a new class of algo-
rithms for solving linear Diophantine systems and to present an efficient
algorithm for solving rank one perturbed linear Diophantine systems,
based on the LDSSBR. Conclusions are given in Section 4.

1.1. Rosser’s algorithm (RA) [21]. Let A = (a1, · · · , am)T , aj ∈ Zn,
1 ≤ j ≤ m. Denote the range of A by R(A) and the null space of A by
N(A).

Consider the following system of linear Diophantine equations:

Ax = b, A ∈ Zm×n, x ∈ Zn, b ∈ Zm. (1.1.1)

System (1.1.1) can be written as:

aT
i x = bi, 1 ≤ i ≤ m,

where aT
i is the i–th row of the coefficient matrix A, and bi is the i–th

component of the right hand side vector b. By the integer null space of
A we mean the subspace containing integer vectors of the null space. By
the null space of the first i rows of A or the first i equations of (1.1.1) we
mean the null space of (a1, · · · , ai)T . We say that an integer matrix N
spans the integer null space of an integer matrix A, if the space generated
by integer combinations of the columns of N is the integer null space
of A. A vector xp ∈ Zn satisfying aT

i xp = bi, 1 ≤ i ≤ m, is called a
particular solution of (1.1.1). Let v ∈ Zn, N ∈ Zn×n1 , y ∈ Zn1 , n1 ∈ Z.
Note that if v is a particular solution of (1.1.1) and N spans the integer
null space of A then

x = v + Ny, (1.1.2)

is the general solution of (1.1.1). This means that xp is a particular
solution of (1.1.1) if and only if xp = v + Nyp, for some yp ∈ Zn1 . If the
columns of N are linearly independent then N is called a basis for the
integer null space of A. Let v = (v1, · · · , vn)T ∈ Zn. Throughout the
paper, by gcd(vT ) we mean the greatest common divisor of the elements
of v.
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Now consider the following single linear Diophantine equation:

aT
1 x = a11x1 + a12x2 + · · ·+ a1nxn = b1, a1, x ∈ Zn, b1 ∈ Z.

(1.1.3)

Using the same notations as in [9], let I denote the n×n identity matrix
and

C =
[

aT
1

I

]
=


a11 a12 · · · a1n

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 , B =
[
−b1

0

]
=


−b1

0
0
...
0

 .

Assume a1 6= 0. Let cij be the element in the i–th row and j–th column
of C, Cj be the j–th column of C and Bj be the j–th component of
B. Moreover, let a and b be two integer numbers. We say a divides
b, and write a | b if and only if b = aq for some q ∈ Z. Below, bxc is
the greatest integer number less than or equal to x. Rosser’s algorithm
(RA) for solving (1.1.3) follows next.

Algorithm 1. Rosser’s Algorithm (RA).
Step 1 :: For j = 1, · · · , n if the leading component of Cj is neg-

ative then replace Cj by −Cj. Sort C1, C2, · · · , Cn in nonin-
creasing order with respect to their first component.

Step 2 :: While c12 6= 0 do (B ← B−bB1
c11
cC1, C1 ← C1−b c11c12

cC2.
Sort the columns C1, C2, · · · , Cn in nonincreasing order with re-
spect to their first component.)

Step 3 :: Set B ← B − bB1
c11
cC1. At this point the matrix C and

the vector B have the forms:

C =
[

δ 0
p U

]
=
[

δ 0 · · · 0
p u1 · · · un−1

]
, B =

[
θ
v

]
,

where v, p and ui ∈ Zn, 1 ≤ i ≤ n − 1, and δ = gcd(aT
1 ).

If θ 6= 0 then (1.1.3) has no integer solution else the general
integer solution of (1.1.3) is:

x = v + y1u1 + y2u2 + · · ·+ yn−1un−1 = v + Uy, y ∈ Zn−1.
(1.1.4)



Generalized Rosser’s algorithm for linear Diophantine systems 5

Remark 1.1.1. It can be shown that θ = 0 if and only if δ | b1. The
matrix [p, U ] is a unimodular matrix (an integer matrix with determinant
equal to +1 or −1), θ = aT

1 v− b1, aT
1 p = δ and aT

1 U = 0. Thus, U is an
integer basis for the integer null space of aT

1 , and therefore the expression

x = (b1/δ)p + Uy, y ∈ Zn−1, (1.1.5)

can also be considered as the general integer solution of (1.1.3), but
the particular solution v in (1.1.4) usually contains components having
smaller numbers of digits.

Remark 1.1.2. If b1 = 0 then we will have B1 = 0 at the start. Since
upon the execution of RA, B remains unchanged, then in this case the
particular solution obtained by RA is the zero vector.

Lemma 1.1.3. Let N ∈ Zn×n and v ∈ Zn be arbitrary integer ma-
trix and vector, respectively. Let the matrix and vector obtained after
application of Rosser’s algorithm (RA) to

C̃ =
[

aT
1

I

]
, B̃ =

[
−b1

0

]
,

be

C̃fin =

[
δ1 0
p(1) U (1)

]
, B̃fin =

[
θ1

v(1)

]
.

Then the same application of RA to the matrix and vector

Ĉ =
[

A
N

]
, B̂ =

[
−b
v

]
, v ∈ Zn,

results in:

Ĉfin =
[

A
N

] [
p(1) U (1)

]
=


δ1 0

aT
2 p(1) aT

2 U (1)

...
...

aT
mp(1) aT

mU (1)

Np(1) NU (1)



B̂fin =
[

A
N

]
v(1) +

[
−b
v

]
=


θ1

aT
2 v(1) − b2

...
aT

mv(1) − bm

Nv(1) + v

 .
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Proof. Let C ∈ Zn1×n be any matrix with the first row aT
1 , and B ∈ Zn1

be any vector with the first component B1. For simplicity, assume that
C is so that Step 1 of RA does not change the columns of C. Let K
be the number of required iterations for performing Step 2 of RA. In
the first iteration of Step 2 of RA we replace B with B + α1Ce1 =
B +C(α1e1) = B +Cv1, where α1 = −bB1

c11
c, v1 = α1e1. Replacement of

the first column of C with C1+β1C2, where β1 = −b c11c12
c, and sorting the

columns of C with respect to the first components of columns of C are
equivalent to multiplying C by a matrix U1. Repeating this procedure
K times, after execution of iteration K we obtain,

Bfin = B + Cv1 + · · ·+ CU1U2 · · ·UK−1vK

as the vector B, and

Cfin = CU1U2 · · ·UK

as the matrix C. Let v = v1 + U1v2 + · · · + U1 · · ·UK−1vk and U =
U1U2 · · ·UK . Then, after an application of RA to the original C and B,
the final matrix and vector are:

Cfin = CU, Bfin = B + Cv.

Specifically, for C = C̃ and B = B̃ we have,

C̃fin = C̃U =
[

aT
1 U
U

]
=

[
aT

1 p(1) 0
p(1) U (1)

]
⇒ U = [p(1), U (1)]

B̃fin = B̃+Cv =
[
−b1 + aT

1 v
v

]
=

[
θ1

v(1)

]
⇒ v = v(1), θ1 = aT

1 v−b1.

We also have aT
1 p(1) = δ1 and aT

1 U (1) = 0. Thus, an application of RA
to Ĉ and B̂ yields:

Ĉfin = Ĉ[p(1), U (1)] =
[

A
N

] [
p(1) U (1)

]
=


δ1 0

aT
2 p(1) aT

2 U (1)

...
...

aT
mp(1) aT

mU (1)

Np(1) NU (1)

 ,
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B̂fin = B̂ + Ĉv =
[

A
N

]
v(1) +

[
−b
v

]
=


aT

1 v(1) − b1 = θ1

aT
2 v(1) − b2

...
aT

mv(1) − bm

Nv(1) + v

 .

This completes the proof. �

1.2. Generalized Rosser’s Algorithm (GRA). We present a gen-
eralization of Rosser’s algorithm for solving a single linear Diophantine
equation to an algorithm for solving (1.1.1). We will do this by induc-
tion. But before doing so, we need the following two lemmas to state the
main result characterizing the general solution of the linear Diophantine
system (1.1.1).

Lemma 1.2.1. Suppose that the general integer solution of the first i,
1 ≤ i < m, equations of (1.1.1) is:

x(i) = vi + Niy, vi ∈ Zn, Ni ∈ Zn×n1 , y ∈ Zn1 , n1 ∈ Z.

If the single linear Diophantine equation,

aT
i+1Niy = bi+1 − aT

i+1vi, (1.2.1)

has no integer solution, then the system (1.1.1) has no integer solution.

Proof. Suppose that (1.1.1) has an integer solution xp. Since xp is also
an integer solution of the first i equations, then there exists a vector
yp ∈ Zn1 such that

xp = vi + Niyp.

Since xp satisfies the (i+1)–th equation as well, then we must have,

aT
i+1xp = aT

i+1vi + aT
i+1Niyp = bi+1

⇒ aT
i+1Niyp = bi+1 − aT

i+1vi,

contradicting the inconsistency of (1.2.1). �

Lemma 1.2.2. Let the columns of Ni span the null space of a set of
vectors wT

1 , · · · , wT
i and w be any nonzero vector. Then wT Ni = 0 if

and only if w is linearly dependent on w1, · · · , wi.
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Proof. Let Wi = (w1, · · · , wi). By definition, w is linearly dependent
on w1, · · · , wi if and only if w ∈ R(Wi). Since R(Wi) is the orthogonal
complement of N(W T

i ) and by assumption we have N(W T
i ) = R(Ni),

then we conclude that w ∈ R(Wi) if and only if w is in the orthogonal
complement of R(Ni). So w ∈ R(Wi) if and only if wT Ni = 0. Hence w
is linearly dependent on w1, · · · , wi if and only if wT Ni = 0. �

The following corollary is now immediate.

Corollary 1.2.3. Let Wi = (w1, · · · , wi), the columns of Ni span the
null space of W T

i and w be any nonzero vector. Then wT Ni 6= 0 if and
only if w is linearly independent of w1, · · · , wi.

We can now proceed with generalization of Rosser’s algorithm. In
the beginning, we solve the first equation of the system (1.1.1), that is
aT

1 x = b1, using RA, and decide the general solution of the first equation
as follows:

x(1) = v(1) + U (1)y(1) , v(1) ∈ Zn, U (1) ∈ Zn×(n−1), y(1) ∈ Zn−1,
(1.2.2)

where aT
1 v(1) = b1, aT

1 U (1) = 0, and the columns of the matrix U (1) are
linearly independent. Note that if the first equation fails to have any
integer solution then we conclude that the system has no integer solution.
Now assume that the first equation has an integer solution. For x(2) to
be an integer solution for the first two equations of the system, x(2) needs
to be an integer solution of the first equation and hence there exists a
vector y(1) ∈ Zn−1, such that

x(2) = v(1) + U (1)y(1). (1.2.3)

For x(2) to be an integer solution of the second equation, we must have

aT
2 x(2) = aT

2 v(1) + aT
2 U (1)y(1) = b2

⇒ aT
2 U (1)y(1) = b2 − aT

2 v(1). (1.2.4)

If (1.2.4) does not have an integer solution, then by Lemma 1.2.1 we
conclude that the system (1.1.1) has no integer solution. If aT

2 U (1) = 0
and b2 − aT

2 v(1) 6= 0, then we conclude that (1.2.4) lacks an integer
solution and hence the system has no integer solution. If, however,
aT

2 U (1) = 0 and b2 − aT
2 v(1) = 0, then since every integer solution of the

first equation satisfies the second equation, then the second equation
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is redundant and (1.2.2) is the general integer solution of the first two
equations of (1.1.1). If aT

2 U (1) 6= 0 and (1.2.4) has an integer solution,
then the general solution of (1.2.4) can be obtained by use of RA giving,

y(1) = v(2) + U (2)y(2) , v(2) ∈ Zn−1, U (2) ∈ Z(n−1)×(n−2), y(2) ∈ Zn−2.
(1.2.5)

Substituting (1.2.5) in (1.2.3) we obtain,

x(2) = v(1) + U (1)v(2) + U (1)U (2)y(2), y(2) ∈ Zn−2.
(1.2.6)

Now, according to properties of RA we have,

aT
1 (v(1) + U (1)v(2)) = aT

1 v(1) = b1

aT
2 (v(1) + U (1)v(2)) = aT

2 v(1) + b2 − aT
2 v(1) = b2

aT
i U (1)U (2) = 0, i = 1, 2.

Therefore, if x(2) = v(1) + U (1)v(2) + U (1)U (2)y(2), for some y(2) ∈ Zn−2,
then we have,

aT
1 x(2) = aT

1 (v(1) + U (1)v(2) + U (1)U (2)y(2)) = aT
1 v(1) = b1,

aT
2 x(2) = aT

2 (v(1) + U (1)v(2) + U (1)U (2)y(2)) = aT
2 (v(1) + U (1)v(2))

= aT
2 v(1) + b2 − aT

2 v(1) = b2.

So x(2) is a particular solution of the first two equations if and only if
x(2) = v(1) +U (1)v(2) +U (1)U (2)y(2), for some y(2) ∈ Zn−2. Thus, (1.2.6)
is the general solution of the first two equations of the system (1.1.1).
Since the columns of matrices U (1) and U (2) are linearly independent,
we conclude that, rank of U (1)U (2) is equal to n− 2, the column rank of
U (2), and hence the columns of U (1)U (2) are also linearly independent.
Furthermore, the dimension of the integer null space of the first two
rows of A is n− 2 which is equal to the number of columns of U (1)U (2),
and so U (1)U (2) forms a basis for the integer null space of the first two
equations.

We can now proceed by induction. For notational simplicity, let

N (0) = I ,N (i) = U (1) · · ·U (i) = N (i−1)U (i), 1 ≤ i ≤ m (1.2.7)

s(0) = 0 , s(i) = s(i−1) + N (i−1)v(i), 1 ≤ i ≤ m, (1.2.8)

where U (1) is a basis for the integer null space of aT
1 and v(1) is particular

solution of aT
1 x = b1, both obtained by an application of RA to aT

1 x = b1,
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U (i+1) is the basis for the integer null space of aT
i+1N

(i), and v(i+1) is
the particular solution of the single Diophantine equation,

aT
i+1N

(i)y(i) = bi+1 − aT
i+1s

(i),

both obtained by an application of RA. We now state and prove the main
result, characterizing the general solution of the Diophantine system
(1.1.1).

Theorem 1.2.4. Let N (i) and s(i) be given by (1.2.7) and (1.2.8), re-
spectively, and suppose that A has full row rank and the Diophantine
system (1.1.1) has an integer solution. Then s(i) is a particular solution
and N (i) is a basis for the integer null space of the first i equations.

Proof. We will prove the theorem by induction. The theorem is trivially
true for i = 1, by properties of Rosser’s algorithm for a single equation.
Now suppose that the theorem is true for i = k, that is, s(k) is a partic-
ular solution and N (k) is a basis for the integer null space of the first k
equations. Then, for every j, 1 ≤ j ≤ k, we have,

aT
j s(k) = bj (1.2.9)

aT
j N (k) = 0. (1.2.10)

Consider the case i = k + 1. If x(k+1) is an integer solution of the first
k + 1 equations (and hence the first k equations as well), then there
exists y(k) ∈ Zn−k such that

x(k+1) = s(k) + N (k)y(k). (1.2.11)

Since x(k+1) satisfies the (k+1)–th equation of the system, then we must
have:

bk+1 = aT
k+1x

(k+1) = aT
k+1s

(k) + aT
k+1N

(k)y(k).

This implies:

aT
k+1N

(k)y(k) = bk+1 − aT
k+1s

(k). (1.2.12)

Note that (1.2.12) has integer solutions, because if (1.2.12) does not have
any integer solution then by Lemma 1.2.1 we conclude that (1.1.1) has
no integer solution, contradicting the hypothesis of the theorem. Since
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we assumed that A has full row rank, then by Corollary 1.2.3 we have
aT

k+1N
(k) 6= 0. So an application of RA to (1.2.12) gives

y(k) = v(k+1) + U (k+1)y(k+1) , y(k+1) ∈ Zn−k−1

(1.2.13)

as the general solution of (1.2.12). Indeed, we have,

aT
k+1N

(k)v(k+1) = bk+1 − aT
k+1s

(k)

aT
k+1N

(k)U (k+1) = 0,

and the columns of the matrix U (k+1) are linearly independent, as im-
plied by RA. Now, substituting (1.2.13) in (1.2.11) yields:

x(k+1) = s(k) + N (k)v(k+1) + N (k)U (k+1)y(k+1)

⇒ x(k+1) = s(k+1) + N (k+1)y(k+1). (1.2.14)

So every integer solution of the first k + 1 equations can be written in
the form (1.2.14) for some y(k+1) ∈ Zn−k−1. To complete the proof, we
need to show that s(k+1) is a particular solution and N (k+1) is a basis
for the integer null space of the first k + 1 equations. Note that from
(1.2.12), (1.2.8), (1.2.9) and (1.2.10) we can write:
aT

j s(k+1) = aT
j s(k) + aT

j N (k)vk+1 = bj + 0 = bj , 1 ≤ j ≤ k

aT
k+1s

(k+1) = aT
k+1s

(k) + aT
k+1N

(k)v(k+1) = aT
k+1s

(k) + bk+1 − aT
k+1s

(k)

= bk+1.
Moreover, from (1.2.7) and the induction hypothesis (1.2.10) we have,

aT
j N (k+1) = aT

j N (k)U (k+1) = 0, 1 ≤ j ≤ k,

and for j = k + 1, by properties of RA we also have,

aT
k+1N

(k+1) = aT
k+1N

(k)U (k+1) = 0.

So, we have,
aT

j s(k+1) = bj

aT
j N (k+1) = 0 (1.2.15)

for every j, 1 ≤ j ≤ k + 1. It remains to show that Nk+1) is a basis
for the integer null space of the first k + 1 rows of A. First, by (1.2.14),
every particular solution of the first k + 1 equations can be written as
an integer linear combinations of the columns of N (k+1). Using this fact
and considering (1.2.15), N (k+1) spans the integer null space of the first
k rows of A. Now, since by the induction hypothesis and properties
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of RA, the columns of N (k) and U (k+1) are linearly independent, and
N (k+1) = N (k)U (k+1), then the columns of the matrix N (k+1) are also
linearly independent. Moreover, the dimension of the integer null space
of the first k + 1 rows of A is n− k− 1, which is equal to the number of
columns of N (k+1). Hence, N (k+1) is a basis for the integer null space of
the first k + 1 rows of A. �

The following corollary characterizes the general solution of (1.1.1) and
it follows Theorem 1.2.4 immediately.

Corollary 1.2.5. The general solution of the first i equations of the
system (1.1.1) is s(i) +N (i)y(i), y(i) ∈ Zn−i. Indeed, the general solution
of (1.1.1) is s(m) + N (m)y(m), y(m) ∈ Zn−m.

Corollary 1.2.6. For every i, 1 ≤ i ≤ m, aT
i N (i−1) 6= 0 if and only if

ai is linearly independent of a1, a2, · · · , ai−1 (equivalently, aT
i N (i−1) = 0

if and only if ai is linearly dependent on a1, a2, · · · , ai−1).

Proof. Since by Theorem 1.2.4 the columns of N (i−1) form a basis for
the integer null space of the first i− 1 rows of A, the result follows from
Lemma 1.2.2. �

Remark 1.2.7. If A does not have full row rank and the (i+1)–th row
of A is redundant, then according to Lemma 1.2.2 we have aT

i+1N
(i) =

0. Now, if bi+1 − aT
i+1s

(i) 6= 0 then the linear Diophantine equation
aT

i+1N
(i)y = bi+1 − aT

i+1s
(i) and hence the linear system (1.1.1) has no

integer solution. Otherwise, if bi+1 − aT
i+1s

(i) = 0 then every solution of
the first i equations satisfies the (i+1)–th equation also, and we conclude
that the (i+1)–th equation is redundant.

Remark 1.2.8. If for every i, 1 ≤ i ≤ m, the linear Diophantine equa-
tion aT

i+1N
(i)y = bi+1 − aT

i+1s
(i) has an integer solution, then the Dio-

phantine system (1.1.1) has a solution. So, if the system (1.1.1) lacks
solution, then there exists an i such that aT

i+1N
(i)y = bi+1−aT

i+1s
(i) has

no integer solution.
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Remark 1.2.9. Assume that rank(A) = r and the linear system (1.1.1)
has an integer solution. Then, after m iterations of RA to (1.1.1), delet-
ing redundant equations, we will obtain,

x(m) = s(r) + N (r)y(r), y(r) ∈ Zn−r

as the general solution of the system.

Based on the above results, we now present a generalization of Rosser’s
algorithm for solving systems of linear Diophantine equations (1.1.1). In
the following algorithm if (1.1.1) has an integer solution, then r denotes
the rank of the coefficient matrix A.

Algorithm 2. Generalized Rosser’s Algorithm (GRA) for solving linear
Diophantine systems.

Step 1:: Set i = 1, v = 0, r = 0, U = In.

Step 2:: Compute si = UT ai and τi = bi − aT
i v.

(a): If si = 0 and τi 6= 0 then stop {the system has no
integer solution}

(b): If si = 0 and τi = 0 {the ith equation is redundant}
then go to Step 4.

(c): If si 6= 0 then apply RA to the linear Diophantine equa-
tion, sT

i y = bi−aT
i v. If the equation has no integer solution

then stop {the system (1.1.1) has no integer solution} else
let v(i) be the particular solution and U (i) be the basis for
the integer null space of sT

i both obtained by an application
of RA.

Step 3:: Set v = v + Uv(i), U = UU (i) and r = r + 1.

Step 4:: If i = m then stop {v is a particular solution for (1.1.1)
and U is a basis for the integer null space of A and r is the rank
of A} else set i = i + 1 and go to Step 2.

Next, we explain how we can use Lemma 1.1.3, to combine steps 2
and 3 of the GRA, making the algorithm more efficient for large scale
linear Diophantine systems. We observe that in part (c) of Step 2 of
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Algorithm 2, application of RA makes use of

C =
(

sT
i

In−i+1

)
, B =

(
−bi + aT

i v
0

)
,

where, In−i+1 is the identity matrix in Rn−i+1. By properties of RA,
the resulting integer matrix and integer vector have the following forms:

Cfin =

(
δi 0
p(i) U (i)

)
, Bfin =

(
θi

v(i)

)
.

If θi 6= 0 then we conclude that the system sT
i y = bi−aT

i v has no integer
solution. Otherwise, v(i) is a particular solution of sT

i y = bi − aT
i v, U (i)

is the basis for the integer null space of sT
i and δi = sT

i p(i) = gcd(sT
i ).

Now, we note that in the ith iteration of the GRA, if we instead apply
RA to

C =
(

sT
i

U

)
, B =

(
−bi + aT

i v
v

)
,

then, by Lemma 1.1.3, the resulting matrix and vector have the forms:

Cfin =

(
δi 0
p(i) UU (i)

)
, Bfin =

(
θi

v + Uv(i)

)
.

If θi 6= 0 then we conclude that the system sT
i y = bi−aT

i v has no integer
solution. By the above observation, in Algorithm 2 we may combine
steps 2 and 3 of the GRA. We will see that this change results in a
more efficient algorithm for large scale systems. We call the resulting
algorithm the modified GRA.

Algorithm 3. Modified Generalized Rosser’s Algorithm (MGRA) for
solving linear Diophantine systems.

Step 1:: Set i = 1, v = 0, r = 0, U = In.

Step 2:: Compute si = UT ai and τi = bi − aT
i v.

(a): If si = 0 and τi 6= 0 then stop {the system has no
integer solution}

(b): If si = 0 and τi = 0 {the ith equation is redundant}
then go to Step 4.

(c): If si 6= 0 then let

C =
(

sT
i

U

)
, B =

(
−bi + aT

i v
v

)
.



Generalized Rosser’s algorithm for linear Diophantine systems 15

Apply RA to the matrix C and the vector B above. The
resulting matrix Cfin and the resulting integer vector Bfin

have the forms,

Cfin =
(

δ 0
p N

)
, Bfin =

(
θ
s

)
.

If θ 6= 0 then stop {the linear Diophantine system Ax = b
has no integer solution} else set v = s, U = N and r = r+1.

Step 4:: If i = m then stop {v is a particular solution for (1.1.1)
and U is a basis for the integer null space of A and r is the rank
of A} else set i = i + 1 and go to Step 2.

In the next section, we show the equivalence of the GRA and the
LDSSBR of Chou and Collins [9] and compare the computational work
of the GRA, the modified GRA and the LDSSBR.

2. GRA and LDSSBR

2.1. The GRA as a formulation of the LDSSBR. The main dif-
ficulty in solving systems of linear Diophantine equations is the rapid
growth of intermediate results making some algorithms impractical even
for large computers. In 1982, Chou and Collins [9] presented two al-
gorithms for solving systems of linear Diophantine equations, named
LDSMKB and LDSSBR, to control the growth of intermediate results.
The basic ideas for the LDSMKB algorithm come from Kannan and
Bachem [16]. They used these ideas in computing the Smith and Hermite
normal forms for a nonsingular integer matrix A and showed that the
length of the digits of intermediate results are bounded by a polynomial
function of the components of A. The LDSSBR (Linear Diophantine
System Solver Based on Rosser’s idea) is based on Rosser’s idea [21], for
finding a general solution of a single linear Diophantine equation with
smaller norms of the particular solution and the columns of the basis of
the integer null space. The numerical experiments in [9] show that in
all cases the LDSSBR finds smaller solutions than the LDSMKB (the
norms of particular solutions obtained by LDSSBR are smaller than the
norms of those obtained by LDSMKB). In this section, we show that the
GRA can be considered as a formulation of the LDSSBR, in the sense
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that it generates the same particular solution and basis for the integer
null space of A as the LDSSBR does. We further show that the new
modified GRA algorithm is more efficient than the LDSSBR for large
scale problems. Assume that the system (1) has an integer solution and
rank(A) = m, so that the m rows of A are linearly independent. The
LDSSBR for solving (1.1.1), given in [9], can be written as follows.

Algorithm 4. The LDSSBR.

Step 1:: {Initialize} n = Number of Columns of A, m = Number
of Rows of A.

Step 2:: {Adjoin identity matrix to A and zero vector to −b}

C ←
[

A
I

]
, B ←

[
−b
0

]
.

Step 3:: {Make pivot row zero} If the first row of C is the zero
vector then go to Step 4 else apply RA to the first row of C,
computing the new C and B (see Lemma 1.1.3).

Step 4:: {Checking for inconsistency and elimination of the pivot
row} If B1 6= 0 then stop {the system is inconsistent} else
replace C with the matrix obtained by deleting the first row and
the first column of C and replace B by the vector obtained by
deleting the first component of B and set m← m− 1.

Step 5:: If m > 0 then go to Step 3 else let x∗ ← B, N ← C,
and stop.

Theorem 2.1.1. GRA generates the same particular solution and basis
for the integer null space of A, as the LDSSBR does.

Proof. We prove the theorem by induction. In the first iteration of the
LDSSBR, RA is applied to

C =
[

A
I

]
, B =

[
−b
0

]
,
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resulting into the new matrix and vector,

Ĉ =


δ1 0

aT
2 p(1) aT

2 U (1)

...
...

aT
mp(1) aT

mU (1)

p(1) U (1)

 , B̂ =


θ1

aT
2 v(1) − b2

...
aT

mv(1) − bm

v(1)

 ,

where δ1 = gcd(aT
1 ). If θ1 6= 0 then the system has no integer solution;

otherwise the algorithm does the replacement,

C ←


aT

2 U (1)

...
aT

mU (1)

U (1)

 , B ←


aT

2 v(1) − b2
...

aT
mv(1) − bm

v(1)


and then applies RA to the new C and B (we understand that C and
B are used symbolically here to be replaced by the smaller matrix and
vector, respectively).

We have shown that, for i = 1, the matrix C and the vector B of
LDSSBR have the forms,

C =


aT

i+1N
(i)

...
aT

mN (i)

N (i)

 , B =


aT

i+1s
(i) − bi+1
...

aT
ms(i) − bm

s(i)

 (2.1.1)

with N (i) and s(i) as defined by (1.2.7) and (1.2.8). Now, suppose that
for k ≥ 1, after execution of iteration i = k, the matrix C and the vector
B are given by (2.1.1) and consider the case i = k + 1. According to
Lemma 1.1.3, after step k + 1 of LDSSBR we have,

C =


δk+1 0

aT
k+2N

(k)p(k+1) aT
k+2N

(k)U (k+1)

...
...

aT
mN (k)p(k+1) aT

mN (k)U (k+1)

N (k)p(k+1) N (k)U (k+1)


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=


δk+1 0

aT
k+2N

(k)p(k+1) aT
k+2N

(k+1)

...
...

aT
mN (k)p(k+1) aT

mN (k+1)

N (k)p(k+1) N (k+1)

 ,

B =


θk+1

aT
k+2s

(k) + aT
k+2N

(k)v(k+1) − bk+2
...

aT
ms(k) + aT

mN (k)v(k+1) − bm

s(k) + N (k)v(k+1)

 =


θk+1

aT
k+2s

(k+1) − bk+2
...

aT
ms(k+1) − bm

s(k+1)

 ,

where δk+1 = gcd(aT
k+1N

(k)); that is, δk+1 is the greatest common divisor
of the components of the integer vector aT

k+1N
(k). If θk+1 6= 0 then the

system has no integer solution. Otherwise, by deleting the first row and
the first column of C and the first component of B we obtain:

C =


aT

k+2N
(k+1)

...
aT

mN (k+1)

N (k+1)

 , B =


aT

k+2s
(k+1) − bk+2

...
aT

ms(k+1) − bm

s(k+1)

 .

This proves the theorem for i = k + 1. Thus, for i = m we have,

C = N (m), B = s(m),

as the basis for the integer null space of A and a particular solution of
the system (1.1.1), respectively. Indeed, the general solution of (1.1.1)
is:

x = s(m) + N (m)y(m), y(m) ∈ Z(n−m),

completing the proof of the Theorem. �

2.2. Computational comparisons. In Theorem 2.1.1, we stated that
the GRA and the modified GRA and the LDSSBR give the same results.
We now compare these approaches with respect to their computational
work. We assume that rank(A) = m and the linear Diophantine system
(1.1.1) has integer solutions.
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In the (k+1)–th iteration, for the LDSSBR, as discussed in the proof
of Theorem 2.1.1, we apply RA to

C =


aT

k+1N
(k)

...
aT

mN (k)

N (k)

 , B =


aT

k+1s
(k) − bk+1

...
aT

ms(k) − bm

s(k)

 ,

and for the GRA, in part (c) of Step 2, we need to solve (1.2.12) and
thus apply RA to

C =

(
aT

k+1N
(k)

In−i+1

)
, B =

(
aT

k+1s
(k) − bk+1

0

)
,

and for the modified GRA, knowing that U = N (k) and v = s(k), we
apply RA to

C =

[
aT

k+1N
(k)

N (k)

]
, B =

[
aT

k+1s
(k) − bk+1

s(k)

]
.

Therefore, in the (k+1)–th iteration of GRA and modified GRA we
save by not needing the application of RA on aT

j N (k) and aT
j s(k) − bj ,

k + 2 ≤ j ≤ m. In return, in the (k+1)–th iteration of the GRA we
compute N (k+1) = N (k)U (k+1), s(k+1) = s(k) + N (k)v(k+1), aT

k+1N
(k),

bk+1 − aT
k+1s

(k) and in the (k+1)–th iteration of the modified GRA we
compute aT

k+1N
(k) and bk+1−aT

k+1s
(k). The difference between the GRA

and the modified GRA is that, in the (k+1)–th iteration of the GRA,
the computations of RA are done on vectors in Zn−k+1, while, in the
(k+1)–th iteration of the modified GRA, the computations of RA are
done on vectors in Zn+1. In return, in the (k+1)–th iteration of the
modified GRA, we do not need to compute N (k+1) = N (k)U (k+1) and
s(k+1) = s(k) + N (k)v(k+1).

So, if for a linear Diophantine system the total number of required
computations for computing N (k+1) = N (k)U (k+1), s(k+1) = s(k) +
N (k)v(k+1), aT

k+1N
(k) and bk+1 − aT

k+1s
(k), 0 ≤ k ≤ m − 1, is less than

the saved amount of computations of RA on aT
j N (k) and aT

j s(k) − bj ,
k+2 ≤ j ≤ m, 0 ≤ k ≤ m−1, then the GRA provides us with a more effi-
cient implementation of Rosser’s approach than the LDSSBR. Similarly,
if for a linear Diophantine system the total number of required compu-
tations for computing aT

k+1N
(k) and bk+1 − aT

k+1s
(k), 0 ≤ k ≤ m − 1,

is less than the saved amount of computations of RA on aT
j N (k) and
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aT
j s(k) − bj , k + 2 ≤ j ≤ m, 0 ≤ k ≤ m − 1, then the modified GRA

provides us with a more efficient implementation of Rosser’s approach
than the LDSSBR. In the following, we consider the number of mul-
tiplications (since this comprises most of the work) for comparing the
computational work of the GRA, the modified GRA and the LDSSBR.

Let tk+1 be the number of required iterations for performing Step 2
of RA, including one additional iteration at the beginning of Step 3.
Note that, since the number of iterations of Step 2 of RA only depends
on the first row of C and the first element of B, then in the GRA and
in the modified GRA, the values of t1, · · · , tm are the same as those
of the LDSSBR. For the LDSSBR, in every iteration of Step 2 of RA
we multiply a vector in Zn+m−k by a scalar and subtract the resulting
vector from another vector in Zn+m−k. By the above observation, in the
(k+1)–th iteration of the LDSSBR we need to perform (n + m− k)tk+1

multiplications. Therefore, solving the linear Diophantine system (1.1.1)
by the LDSSBR needs

m−1∑
k=0

(n + m− k)tk+1 =
m−1∑
k=0

(n− k + 1)tk+1 + (m− 1)
m−1∑
k=0

tk+1

= (n + 1)
m−1∑
k=0

tk+1 +
m−1∑
k=0

(m− k − 1)tk+1

(2.2.1)

multiplications.
On the other hand, in the (k+1)–th iteration of GRA, as discussed

in the proof of Theorem 1.2.4, we first compute aT
k+1N

(k) and bk+1 −
aT

k+1s
(k) and then apply RA to

C =

(
aT

k+1N
(k)

In−i+1

)
, B =

(
aT

k+1s
(k) − bk+1

0

)
.

Computing aT
k+1N

(k) and bk+1−aT
k+1s

(k) needs n(n−k) and n multipli-
cations, respectively, and since in every iteration of Step 2 we multiply
a vector in Zn−k+1 by a scalar and subtract the resulting vector from
another vector in Zn−k+1, then, applying RA needs (n−k+1)tk+1 mul-
tiplications. After the application of RA, we obtain U (k+1) and v(k+1).
Then, in Step 3 of the GRA we compute N (k+1) = N (k)U (k+1) and
s(k+1) = s(k)+N (k)v(k+1), by performing n(n−k)(n−k−1) and n(n−k)
multiplications, respectively. Therefore, solving the linear Diophantine
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system (1.1.1) by the GRA needs
m−1∑
k=0

(n− k + 1)tk+1 +
m−1∑
k=0

{n + n(n− k)(n− k + 1)}
(2.2.2)

multiplications.
In the (k+1)–th iteration of the modified GRA, we first compute

aT
k+1N

(k) and bk+1 − aT
k+1s

(k) and then apply RA to

C =

[
aT

k+1N
(k)

N (k)

]
, B =

[
aT

k+1s
(k) − bk+1

s(k)

]
.

Computing aT
k+1N

(k) and bk+1−aT
k+1s

(k) needs n(n−k) and n multipli-
cations, respectively, and applying RA to the integer matrix C and the
integer vector B, needs (n + 1)tk+1 multiplications. Hence, solving the
system (1.1.1) by use of the modified GRA needs

(n + 1)
m−1∑
k=0

tk+1 +
m−1∑
k=0

{n + n(n− k)} (2.2.3)

multiplications.
From (2.2.1), (2.2.2) and (2.2.3) we conclude that if for a linear Dio-

phantine system we have,

(m− 1)
m−1∑
k=0

tk+1 >
m−1∑
k=0

{n + n(n− k)(n− k + 1)},
(2.2.4)

then, the required number of multiplications by the GRA is less than
that of the LDSSBR. Likewise, if for a linear Diophantine system we
have,

m−1∑
k=0

(m− k − 1)tk+1 >
m−1∑
k=0

{n + n(n− k)}, (2.2.5)

then, the required number of multiplications of the modified GRA is less
than that of the LDSSBR. To see whether the inequalities (2.2.4) and
(2.2.5) hold, we need to know about the values of tk, 1 ≤ k ≤ m, that is,
the number of iterations of RA for solving a linear Diophantine equation.
Although Rosser’s algorithm is shown to be efficient in practice [9], no
analysis of Rosser’s algorithm for n > 2 have been given to date. Not
having any analytical result about the values of tk, 1 ≤ k ≤ m, we
considered numerical experiments to see if the inequalities (2.2.4) and
(2.2.5) hold for linear Diophantine systems, in practice. We generated
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linear Diophantine systems with random coefficient matrices and right
hand sides and computed the values of tk, 1 ≤ k ≤ m, for each consistent
system and then checked to see wether the inequalities (2.2.4) and (2.2.5)
hold. As the numerical results of tables 1 and 2 show, in all cases, the
inequality (2.2.4) does not hold and hence the LDSSBR is more efficient
than the GRA. The inequality (2.2.5) does not hold for a few small values
of m and n either, but for larger values of m and n the inequality (2.2.5)
always hold and hence for large scale linear Diophantine systems, the
modified GRA is more efficient than the LDSSBR. In tables 1 and 2, f1

L

denotes (m− 1)
∑m−1

k=0 tk+1, f1
G denotes

∑m−1
k=0 {n+n(n− k)(n− k +1)},

f2
L denotes

∑m−1
k=0 (m−k−1)tk+1 and f2

mG denotes
∑m−1

k=0 {n+n(n−k)}.

Table 1 : LDSSBR and GRA
m n f1

L f1
G

4 5 168 360
10 15 4392 19500
16 21 19380 73248
30 37 156861 671180
33 42 223968 1100022
45 50 488972 2208750
60 75 1462020 10875000
70 85 2229873 17909500

Table 2 : LDSSBR and MGRA
m n f2

L f2
mG

4 5 85 90
10 15 1973 1725
16 21 8233 4872
30 37 69504 26085
33 42 98792 37422
45 50 238224 65250
60 75 715887 209250
70 85 1129059 306425

3. Some applications

Here, we discuss some applications of the GRA.

3.1. Integer extended ABS algorithms. The new formulation can
be used to show how to modify the class of integer ABS algorithms, the
so called EMAS algorithms given in [13], so that the parameters of the
new algorithms can be chosen to generate the same solution iterates as
the GRA, while having different null space generators. This leads to
presenting a new class of integer extended ABS (IEABS) algorithms,
based on extended ABS algorithms (EABS) of the real case [10], to
solve systems of linear Diophantine equations, improving upon both the
efficiency and the effectiveness of the EMAS algorithms by generating
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Abaffians with independent rows and controlling the growth of interme-
diate results. It can also be shown that both the EMAS algorithms and
the GRA (and hence the LDSSBR) belong to the new class of IEABS al-
gorithms by specifying the parameters of the IEABS algorithms so that
both the same solution iterates and the same null space generators for
the EMAS algorithms and GRA are produced. The new IEABS class of
algorithms, with its new parameters of choice, includes reliable and com-
petitive algorithms for solving systems of linear Diophantine equations;
see [18] for details.

3.2. Rank one perturbed linear Diophantine systems. After solv-
ing a linear Diophantine system by the LDSSBR, suppose that it is de-
sired to delete a variable or a constraint. If we know how to make use
of the information obtained during the application of the LDSSBR to
the original system effectively, then we can avoid solving a new linear
Diophantine system from scratch that may be so time consuming and
costly. In 2006, Amini and Mahdavi-Amiri [4] showed how one could
obtain the general solution of a rank one perturbed linear Diophantine
system using the information obtained after an application of a member
of the EMAS class of algorithms. But, EMAS algorithms are not shown
to be effective in practice. The new formulation can be successively used
to propose an efficient algorithm for solving rank one perturbed linear
Diophantine systems based on the LDSSBR of Chou and Collins. The
new algorithm is shown to be efficient in practice; see [17] for details.

4. Conclusions

We presented a generalization of Rosser’s algorithm for solving a sin-
gle linear Diophantine equation to an algorithm for solving systems of
linear Diophantine equations. Then, we proved that the generalized al-
gorithm presented a formulation of the LDSSBR of Chou and Collins,
and showed how we could use the formulation to provide a more efficient
implementation, the modified GRA of Rosser’s approach. Comparative
computational results showed that the modified GRA provided a more
efficient implementation, specially for large scale problems. Finally, we
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pointed out some applications of the new formulation, developed to im-
prove upon the recently proposed integer ABS (the EMAS) algorithms
for Diophantine systems and their rank one perturbations.
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