ON FINITE GROUPS WITH TWO IRREDUCIBLE CHARACTER DEGREES

A. HEYDARI AND B. TAERI*

Communicated by Jamshid Moori

Abstract

We characterize non-abelian finite groups with only two irreducible character degree and prime number of non-linear irreducible characters.

1. Introduction

Let $\operatorname{Irr}(G)$ be the set of irreducible complex characters of a finite group G and $\operatorname{cd}(G)=\{\chi(1) \mid \chi \in \operatorname{Irr}(G)\}$ be the set of irreducible character degrees of G. The question:

Given the set $\operatorname{cd}(G)$, what can be said about the structure of G ? have been studied by several people. In case $\operatorname{cd}(G)=\{1, m\}$, for some integer m, the basic tools for studying the question can be found in Chapter 12 of the well known book of Isaacs [8]. Isaacs proved in Theorem 12.5 and Corollary 12.6 the following results.

Theorem A. Let G be a finite group and $\operatorname{cd}(G)=\{1, m\}$. Then, at least one of the followings occurs:
(a) G has an abelian normal subgroup of index m.

[^0](b) $m=p^{e}$ for some prime p and G is a direct product of a p-group and an abelian group.

Theorem B. Let G be a finite group and $\operatorname{cd}(G)=\{1, m\}$. Then, G^{\prime} is an abelian group, where G^{\prime} is the derived subgroup of G.

If G is non-nilpotent and $\operatorname{cd}(G)=\{1, m\}$, then clearly (a) of Theorem A holds. Recently, Bianchi et.al. [4], characterized non-nilpotent groups G with $\operatorname{cd}(G)=\{1, m\}$, and proved the following result.

Theorem C. Let G be a finite non-nilpotent group. Then, $\operatorname{cd}(G)=$ $\{1, m\}$ if and only if G^{\prime} is abelian and one of the following holds:
(a) m is a prime, and $F(G)$, the fitting subgroup of G, is abelian of index m in G.
(b) $G^{\prime} \cap Z(G)=1$ and $G / Z(G)$ is a Frobenius group with kernel $\frac{G^{\prime} \times Z(G)}{Z(G)}$ and a cyclic complement of order $\left|G: G^{\prime} \times Z(G)\right|=m$, where $Z(G)$ denotes the center of G.

Our notations and terminologies are standard and mainly taken from [8]. We also use the following notations:
$\operatorname{Lin}(\mathrm{G})=$ the set of linear characters of G.
$\operatorname{Irr}_{1}(G)=\operatorname{Irr}(G) \backslash \operatorname{Lin}(G)$.
$E S(c, 2)=$ the extra-special group of the order $2^{2 c+1}$.
$(H, N)=$ the Frobenius group with kernel N and complement H.
$C_{n}=$ the cyclic group of order n.
$E\left(q^{n}\right)=$ the elementary abelian q-group of rank n.
$Z_{i}=Z_{i}(G)=$ the i-th center of G.
Here, we characterize groups G with two irreducible character degrees, that is $\operatorname{cd}(G)=\{1, m\}$, such that the number of irreducible non-linear characters is a prime p. In [1], Berkovich characterized solvable groups for which the degrees of the characters are distinct, except for one pair (having the same degrees). Thus, by [1] we may assume that $p \geq 3$. Firstly, we consider nilpotent groups and prove the following result.

Theorem 1. Let G be a finite nilpotent group, $p \geq 3$, a prime and m, a positive integer. Then $\operatorname{cd}(G)=\{1, m\}$ and G has p non-linear
irreducible characters of degree m if and only if one of the followings holds:
(a) $G=C_{p} \times E S(c, 2)$; that is, G is the direct product of a cyclic group of order p and an extra-special group of order $2^{2 c+1}$.
(b) G is an special 2 -group of order $m^{2}(p+1)$, and for each subgroup M of index 2 of $G^{\prime}, G / M \simeq E S(c, 2)$, where $2^{c}=m$.
(c) G is dihedral, semidihedral or a generalized quaternion 2-group and $|G|=4(p+1)$.

If $\operatorname{cd}(G)=\{1, m\}$, then by Theorem B, G is metabelian. Theorem C characterizes non-nilpotent groups G with $\operatorname{cd}(G)=\{1, m\}$. We complete the characterization of groups G with $\operatorname{cd}(G)=\{1, m\}$ having p nonlinear characters of degree m, by considering the non-nilpotent case in the following theorem.

Theorem 2. Let G be a finite non-nilpotent group, $p \geq 3$, a prime and m, a positive integer. Then $\operatorname{cd}(G)=\{1, m\}$ and G has p non-linear characters of the degree m if and only if G^{\prime} is abelian and one of the followings holds:
(a) $G=\left(C_{m}, G^{\prime}\right)$, where G is a Frobenius group with kernel of order $m p+1$ and a cyclic complement of order m.
(b) $G / Z(G)=\left(C_{m},(G / Z(G))^{\prime}\right), Z(G)=C_{p}$ and $G^{\prime}=E\left(q^{n}\right)$, where $q^{n}-1=m$. Therefore, $G=C_{p} \times\left(C_{q^{n}-1}, E\left(q^{n}\right)\right)$ or $G=C_{p\left(q^{n}-1\right)} \ltimes$ $E\left(q^{n}\right)$; that is, G is a semidirect product with kernel $E\left(q^{n}\right)$.
(c) m is a prime, $G^{\prime} \cap Z_{t-1}=m^{t-2}=p+1$ and $G / Z_{t-1} \simeq\left(C_{m},\left(G / Z_{t-1}\right)^{\prime}\right)$, a Frobenius group with kernel of order b, such that $|G|=m^{t} b$ and $\operatorname{gcd}(m, b)=1$.

2. Proofs

To prove Theorem 1, firstly we prove the following Lemma for p groups.

Lemma 1. Let G be a finite p-group, where p is a prime, $\operatorname{cd}(G)=\{1, m\}$ and $\left|\operatorname{Irr}_{1}(G)\right|$ is odd. Then, at least one of the followings holds:
(a) G is an special 2-group, the index of G^{\prime} is m^{2}, and for each subgroup M of index 2 of $G^{\prime}, G / M \simeq E S(c, 2)$ such that $2^{c}=m$.
(b) G is dihedral, semidihedral or a generalized quaternion 2-group and $|G|=4(p+1)$.

Proof. Let $p \neq 2$. Then, by [8, Exercise 3.16], the number of non-linear characters of G is even, which is a contradiction. Thus, $|G|=2^{n}$ and $m=2^{c}$. Let $\left|\operatorname{Irr}_{1}(G)\right|=x$. From

$$
|G|=\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^{2}
$$

we have

$$
2^{n}=x 2^{2 c}+\left|G: G^{\prime}\right|=x 2^{2 c}+2^{k}
$$

for some positive integer k. Since x is odd, then $2 c=k$ and $|G|=$ $(x+1) 2^{2 c}$. Hence, $x+1=2^{r}=\left|G^{\prime}\right|$ and $\left|G: G^{\prime}\right|=2^{2 c}$. Now, we distinguish two cases below.

Case 1: $G^{\prime} \leq Z(G)$. Since G is nilpotent then $2^{2 c}=m^{2}=\chi(1)^{2}$ divides $|G: Z(G)|$, for all $\chi \in \operatorname{Irr}_{1}(G)$ (see [6, Theorem 8.2]). Since $\left|G: G^{\prime}\right|=2^{2 c}$, it follows that $Z(G)=G^{\prime}$. Now, let M be an arbitrary normal subgroup of index 2 in G^{\prime}. Note that M is normal in G, since G^{\prime} is central. If $\left|\operatorname{Irr}_{1}(G / M)\right|=y$, then

$$
|G / M|=2^{2 c+1}=y 2^{2 c}+2^{2 c}
$$

So $y=1$ and by [2, Main Theorem], $G / M \simeq E S(c, 2)$. Thus, $\Phi(G / M)=$ $(G / M)^{\prime}$, where $\Phi(G)$ is the Frattini subgroup of G, and $\frac{G / M}{\Phi(G / M)}=$ $\frac{G / M}{G^{\prime} / M} \simeq G / G^{\prime}$ is elementary. So, $\Phi(G) G^{\prime} / G^{\prime}=\Phi\left(G / G^{\prime}\right)=1$, and hence $\Phi(G) \leq G^{\prime}$. Therefore, $\Phi(G)=G^{\prime}$. Now, by [5, Lemma III, 3.14], $G^{2}=G^{\prime} \leq Z(G)$. So for each $g_{1}, g_{2} \in G,\left[g_{1}, g_{2}\right]^{2}=\left[g_{1}^{2}, g_{2}\right]=1$, and hence G^{\prime} is an elementary abelian group. Thus, G is an special 2-group. Therefore, (a) holds.
Case 2: $G^{\prime} \nless Z(G)$. Let $c \neq 1$. By [8, Exercise 5.14], each subgroup of index 2^{c} in G contains G^{\prime}. Then, each $\chi \in \operatorname{Irr}_{1}(G)$ can be induced from a linear character of some normal subgroup of G. Thus, G is an $n M$-group and by [7, Theorem 3], G^{\prime} is an elementary abelian subgroup.
(Recall that a group is said $n M$-group if all its irreducible characters are induced from a linear character of some normal subgroup of G.)

If N is a normal subgroup of G such that G / N is a non-abelian group, since $\operatorname{cd}(G / N)=\left\{1,2^{c}\right\}$, by $\left[6\right.$, Theorem 8.2], $2^{2 c}$ divides $|G / N|$. So, from $|G / N|=\sum_{\chi \in \operatorname{Irr}(G / N)} \chi(1)^{2}$, we have that $2^{2 c}$ divides $t=\mid G / N$: $(G / N)^{\prime} \mid$. But $t=\left|G: G^{\prime} N\right| \leq\left|G: G^{\prime}\right|=2^{2 c}$, so that $t=2^{2 c}$ and $N \leq G^{\prime}$. Therefore, $Z(G) \leq G^{\prime}$ and for $\chi \in \operatorname{Irr}_{1}(G)$ if $K=\operatorname{ker}(\chi)$, then $K \leq G^{\prime}$.

Now, suppose that $\bar{G}=\frac{G}{K}$. Since $c d(\bar{G})=\left\{1,2^{c}\right\}$, then from $|\bar{G}|=$ $\sum_{\bar{\chi} \in \operatorname{Irr}(\bar{G})} \bar{\chi}(1)^{2}$ we have that $\left|\operatorname{Irr}_{1}(G)\right|$ is odd. By a similar argument for the group \bar{G} instead of G, we have $Z(\bar{G}) \leq \bar{G}^{\prime}=G^{\prime} / K$. Since \bar{G} is an $n M$-group for each $\bar{\chi} \in \operatorname{Irr}_{1}(\bar{G})$, then there exists a normal subgroup \bar{H} of \bar{G} of index 2^{c} and $\bar{\theta} \in \operatorname{Lin}(\bar{H})$ such that $\bar{\chi}=\bar{\theta}^{\bar{G}}$. Let $\operatorname{ker}(\bar{\theta}) \neq 1$. From $Z(\bar{G}) \leq \bar{G}^{\prime} \leq \bar{H}$, we have $\operatorname{ker}(\bar{\theta}) \cap Z(\bar{G}) \neq 1$, and so $\bigcap_{x \in \bar{G}}(\operatorname{ker}(\bar{\theta}))^{x} \neq 1$. Thus, $\operatorname{ker}(\bar{\chi}) \neq 1$ (see [8, Lemma 5.11]). But, for each $x K \in \bar{G}$ we have $\bar{\chi}(x K)=\chi(x)$ and thus $\operatorname{ker}(\bar{\chi})=1$, which is a contradiction. Therefore, $\operatorname{ker}(\bar{\theta})=1$ and $\bar{H}^{\prime}=\bigcap\{\operatorname{ker}(\lambda) \mid \lambda \in$ $\operatorname{Lin}(\bar{H})\}=1$. So, \bar{H} is abelian and by [8, Theorem 2.32], \bar{H} is cyclic. Since $\bar{G}^{\prime} \leq \bar{H}^{\prime}$, then \bar{G}^{\prime} is cyclic. Thus, \bar{G}^{\prime} is a cyclic elementary abelian group and hence $\left|\bar{G}^{\prime}\right|=2$. Therefore, $Z(\bar{G})=\bar{G}^{\prime}$ and $G^{\prime}=Z(\chi)$, where $Z(\chi)=\{g \in G| | \chi(g) \mid=\chi(1)\}$. So,

$$
G^{\prime} \subseteq \bigcap_{\chi \in \operatorname{Ir} r_{1}(G)} Z(\chi)=Z(G)
$$

which is a contradiction. Therefore, $c=1,\left|G / G^{\prime}\right|=4$, and by $[5$, Chapter III, Theorem 11.9(a)], G is dihedral, semidihedral or generalized quaternion 2-group. So, (b) holds.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1: Since G is a non-abelian nilpotent group, then $G=Q \times A$, for some non-abelian Sylow q-subgroup Q and a subgroup A of G. Let A be non-abelian. Let $\chi_{1} \in \operatorname{Irr}_{1}(Q), \chi_{2} \in \operatorname{Irr}_{1}(A)$ and $\lambda \in \operatorname{Lin}(A)$. If $\chi_{1}(1)=x_{1}$ and $\chi_{2}(1)=x_{2}$, then $\chi_{1} \lambda(1)=x_{1}$ and $\chi_{1} \chi_{2}(1)=x_{1} x_{2}$. So, $x_{1}, x_{1} x_{2} \in \operatorname{cd}(G)$, which is a contradiction. Thus A is abelian.

Now, every irreducible character of G is of the form $\chi \lambda$, where $\chi \in$ $\operatorname{Irr}(Q), \lambda \in \operatorname{Irr}(A)$. Since the number of non-linear characters is equal to p, then either Q has only one non-linear character and A has p linear characters or else $A=1$.

If Q has only one non-linear character then by [2, Main theorem], $Q \simeq E S(c, 2)$, for some positive integer c. Thus, $G \simeq E S(c, 2) \times C_{p}$ and (a) holds.

If $A=1$ then G is a q-group and by by Lemma $1, G$ satisfies (b) or (c).

Conversely, suppose $G=C_{p} \times E S(c, 2)$. Since $E S(c, 2)$ has only one non-linear character, then G has p non-linear characters of the same degree. If G satisfies (c), then G has a normal abelian subgroup of index 2 , and thus $\operatorname{cd}(G)=\{1,2\}$ and $\left|\operatorname{Irr}_{1}(G)\right|=p$.

If G is an special 2-group such that $\left|G: G^{\prime}\right|=m^{2}=2^{2 c}$, then G^{\prime} has $2^{r}-1$ distinct subgroups of index 2 , where $\left|G^{\prime}\right|=2^{r}$ for some positive integer r . If M is one of such subgroups, then $G / M \simeq E S(c, 2)$ has only one non-linear character. Then, for $\chi \in \operatorname{Irr}_{1}(G)$ there exists only one maximal subgroup M_{χ} of G^{\prime} such that $M_{\chi} \subseteq$ ker χ. Thus, G has at least $2^{r}-1$ non-linear characters of degree 2^{c} and $\left|G: G^{\prime}\right|=2^{2 c}$. Then, from $\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^{2}=|G|$, we have $\operatorname{cd}(G)=\left\{1,2^{c}\right\}$ and $\left|\operatorname{Irr}_{1}(G)\right|=p$.

Proof of Theorem 2: Since G has only p non-linear characters of degree m, then

$$
|G|=\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^{2}=p m^{2}+\left|G: G^{\prime}\right|
$$

Since G^{\prime} is an abelian normal subgroup G, then by Ito's Theorem, see [8, Theorem 6.15], $\chi(1)$ divides $\left|G: G^{\prime}\right|$. If $\left|G: G^{\prime}\right|=m p^{2}$, then $\left|G^{\prime}\right|=2$ and G is nilpotent, which is a contradiction. So, $\left|G: G^{\prime}\right|$ is one of the followings:
(i) $\left|G: G^{\prime}\right|=m y$, such that $y \neq p$ and y divides m. If m is not a prime, then by [3, Lemma 2] we have $G=\left(C_{m}, G^{\prime}\right)$. If m is not a prime, then by Theorem C, $G^{\prime} \cap Z(G)=1$ and $G / Z(G)=\left(C_{m}, \frac{G^{\prime} \times Z(G)}{Z(G)}\right)$. So,

$$
\begin{aligned}
& |Z(G)|=y . \text { If }\left|\operatorname{Irr}_{1}(G / Z(G))\right|=x \text {, then } \\
& \quad|G / Z(G)|=\frac{p m^{2}+m y}{y}=x m^{2}+\left|\frac{G}{Z(G)}: \frac{G^{\prime}}{Z(G)}\right|=x m^{2}+m .
\end{aligned}
$$

So $y=1$ and $G=\left(C_{m}, G^{\prime}\right)$ and (a) holds.
(ii) $\left|G: G^{\prime}\right|=p m y$, such that y divides m. We have $G=p m^{2}+p m y$. If $y \neq 1$ then $\left|G^{\prime}\right| \leq m$, and by [8, Exercise 5.14], G is nilpotent, which is a contradiction. So, $|G|=p m(m+1)$. Suppose m is a prime. By Theorem A, G has a normal abelian subgroup M of index m. By $[8$, Theorem $12.12],|M \cap Z(G)|=p$. If $Z(G) \not \subset M$, then $G=Z(G) M$. So, G is abelian, which is a contradiction. So, $Z(G) \leq M$ and $Z(G)=C_{p}$. Now, suppose m is not a prime. Then, by Theorem C, $G^{\prime} \cap Z(G)=1$ and $G / Z(G)=\left(C_{m}, \frac{G^{\prime} \times Z(G)}{Z(G)}\right)$. Since $|G|=p m(m+1)$, then $|Z(G)|=p$ and $Z(G)=C_{p}$. If $Z(G) \leqslant G^{\prime}$, then $\left|\frac{G}{Z(G)}:\left(\frac{G}{Z(G)}\right)^{\prime}\right|=p m$. Hence, by the above argument, $m(m+1)=x m^{2}+p m$ and $m+1=x m+p$, which is a contradiction. So, $Z(G) \nless G^{\prime}$ and $\left|\frac{G}{Z(G)}:\left(\frac{G}{Z(G)}\right)^{\prime}\right|=m$. Let x be the number of non-linear characters of $G / Z(G)$. Then,

$$
|G / Z(G)|=\sum_{\chi \in \operatorname{Irr}(G / Z(G))} \chi(1)^{2}=x m^{2}+m,
$$

and hence $x=1$. Therefore, by [2, Main Theorem], $G / Z(G)=$ $\left(C_{q^{n}-1}, E\left(q^{n}\right)\right.$) is a Frobenius group with elementary abelian kernel $E\left(q^{n}\right)=$ $(G / Z(G))^{\prime} \simeq G^{\prime}$ and cyclic complement $C_{q^{n}-1}$, for some prime q and integer n such that $m=q^{n}-1$.

Now G^{\prime} is a minimal normal subgroup of G. Since H is a proper subgroup of G^{\prime} which is normal in G, then $\left|\frac{G}{H}:\left(\frac{G}{H}\right)^{\prime}\right|=\left|G: G^{\prime}\right|=m p$. Hence, if G / H, has r non-linear characters of degree m, then $|G / H|=$ $r m^{2}+p m$. So, $\left(r m^{2}+p m\right)|m p(m+1)=|G|$ and $(r m+p)| m(p-r)$ so $(r m+p) \mid(m+1)$, which is a contradiction. Since G is a non-nilpotent group, then there exists one maximal normal subgroup M of G. Now, G^{\prime} is a minimal normal abelian subgroup of G, and thus $G^{\prime} \cap M=1$, and $G=M \ltimes G^{\prime}$. Now, $G / Z(G)=\left(C_{q^{n}-1}, E\left(q^{n}\right)\right)$ and $G^{\prime} \leq\left(C_{q^{n}-1}, E\left(q^{n}\right)\right)$. Hence, $G=Z(G) \times\left(C_{q^{n}-1}, E\left(q^{n}\right)\right)$ or $G=C_{p\left(q^{n}-1\right)} \ltimes E\left(q^{n}\right)$, a semidirect product with kernel $G^{\prime}=E\left(q^{n}\right)$. So, (b) holds.
(iii) $\left|G: G^{\prime}\right|=m^{2}$. We have $|G|=m^{2}(p+1)$. Let m be a prime. Now G has a normal abelian group A of index m and by [8, Lemma 12.2], $|Z(G) \cap A|=m$. If $Z(G) \notin A$, then G is abelian, and so $Z(G) \leq A$ and $|Z(G)|=m$. Suppose that $|G|=m^{t} b$, such that $\operatorname{gcd}(m, b)=1$. From $\sum_{\chi \in \operatorname{Irr}(G / Z(G))} \chi(1)^{2}=|G / Z(G)|$, we have $m b=x m^{2}+\left|\frac{G}{Z(G)}:\left(\frac{G}{Z(G)}\right)^{\prime}\right|$, where $\left|\operatorname{Irr}_{1}(G / Z(G))\right|=x$. Thus, m^{2} divide $\left|\frac{G}{Z(G)}:\left(\frac{G}{Z(G)}\right)^{\prime}\right|=\left|\frac{G}{G^{\prime} Z(G)}\right|$. Now, $\left|G: G^{\prime}\right|=m^{2}$, and so $Z(G) \leq G^{\prime}$. For $1 \leq i<t, G / Z_{i}$ is a nonnilpotent group and $\operatorname{cd}\left(G / Z_{i}\right)=\{1, m\}$. Thus, by the above argument, $\left|Z\left(G / Z_{i}\right)\right|=m$. Hence, $Z_{t-1}(G)$ is a subgroup of order m^{t-1} of G. If $G=G^{\prime} Z_{t-1}$, then G / Z_{t-1} is abelian, which is a contradiction. Therefore $\left|G^{\prime} \cap Z_{t-1}\right|=m^{t-2}$.

Now, from $\sum_{\chi \in \operatorname{Irr}\left(G / Z_{t-1}\right)} \chi(1)^{2}=\left|G / Z_{t-1}\right|$, we have $m b=$ $x m^{2}+\left|\frac{G}{Z_{t-1}}:\left(\frac{G}{Z_{t-1}}\right)^{\prime}\right|$, where $\left|\operatorname{Irr}_{1}\left(G / Z_{t-1}\right)\right|=x$. Hence, $\left|\frac{G}{Z_{t-1}}:\left(\frac{G}{Z_{t-1}}\right)^{\prime}\right|=$ m. Thus, by [3, Lemma 2], $G / Z_{t-1}=\left(C_{m},\left(G / Z_{t-1}\right)^{\prime}\right)$.

Now, let m be not a prime. Then, by Theorem C, $G / Z(G)=$ $\left(C_{m}, \frac{G^{\prime} \times Z(G)}{Z(G)}\right)$, and $\left|\frac{G^{\prime} \times Z(G)}{Z(G)}\right|=p+1$. Then, $m \mid p$ and $m=p$ is prime, which is a contradiction.

Conversely, if G satisfies (a) or (b), then $Z(G) \cap G^{\prime}=1$ and $G / Z(G)=$ $\left(C_{m}, \frac{G^{\prime} \times Z(G)}{Z(G)}\right)$. So, by Theorem C, $\operatorname{cd}(G)=\{1, m\}$ and $\left|\operatorname{Irr}_{1}(G)\right|=p$. If G satisfies (c), then $|G|=m^{t} b$ and G^{\prime} is a normal abelian subgroup of index m^{2} of G. So, G^{\prime} contains N, a normal abelian subgroup of order b of G, and thus $N Z_{t-1}$ is a normal abelian subgroup of index m of G. So, by $\left[8\right.$, Theorem 6.15], $\operatorname{cd}(G)=\{1, m\}$. Now, since $\left|G: G^{\prime}\right|=m^{2}$, then $\left|\operatorname{Irr}_{1}(G)\right|=p$. This completes the proof.

Acknowledgment

This work was partially supported by Center of Excellence of Mathematics of Isfahan University of Technology (CEAMA).

References

[1] Y. Berkovich, Finte solvable groups in which only two non-linear irreducible characters have equal degree, J. Algebra 184 (1996) 584-603.
[2] Y. Berkovich, D. Chillag and M. Herzog, Finite groups in which the degrees of the non-linear irreducible characters are distinct, Proc. Amer. Math. Soc. 115 (1992) 955-959.
[3] Y. Berkovich and A. Mann, On sums of degrees of irreducible characters, J. Algebra 199 (1998) 646-665.
[4] M. Bianchi, A. G. B. Mauri, M. Herzog, G. Qian and W. Shi, Characterization of non-nilpotent groups with two irreducible character degrees, J. Algebra 284 (2005) 326-332.
[5] B. Huppert, Endliche Gruppen I, Speringer-Verlag, 1967.
[6] B. Huppert, Character Theory of Finite Groups, de Gruyter, Berlin, 1998.
[7] A. Mann, Normally monomial p-groups, J. Algebra 300 (2006) 2-9.
[8] I. M. Isaacs, Character Theory of Finite Groups, Academic Prees, New York, 1976.

Abbas Heydari

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Email: a-heydari@math.iut.ac.ir

Bijan Taeri
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Email: b.taeri@cc.iut.ac.ir

[^0]: MSC(2000): Primary: 20C15, 20E99
 Keywords: Groups, irreducible characters, degrees, non-linear characters
 Received: 26 September 2007, Accepted: 9 February 2008
 *Corresponding author
 (c) 2008 Iranian Mathematical Society.

