ON FINITE GROUPS WITH TWO IRREDUCIBLE CHARACTER DEGREES

A. HEYDARI AND B. TAERI*

Communicated by Jamshid Moori

Abstract. We characterize non-abelian finite groups with only two irreducible character degree and prime number of non-linear irreducible characters.

1. Introduction

Let \(\text{Irr}(G) \) be the set of irreducible complex characters of a finite group \(G \) and \(\text{cd}(G) = \{ \chi(1) \mid \chi \in \text{Irr}(G) \} \) be the set of irreducible character degrees of \(G \). The question:

Given the set \(\text{cd}(G) \), what can be said about the structure of \(G \)?

have been studied by several people. In case \(\text{cd}(G) = \{ 1, m \} \), for some integer \(m \), the basic tools for studying the question can be found in Chapter 12 of the well known book of Isaacs [8]. Isaacs proved in Theorem 12.5 and Corollary 12.6 the following results.

Theorem A. Let \(G \) be a finite group and \(\text{cd}(G) = \{ 1, m \} \). Then, at least one of the followings occurs:
(a) \(G \) has an abelian normal subgroup of index \(m \).
(b) \(m = p^r \) for some prime \(p \) and \(G \) is a direct product of a \(p \)-group and an abelian group.

Theorem B. Let \(G \) be a finite group and \(\text{cd}(G) = \{1, m\} \). Then, \(G' \) is an abelian group, where \(G' \) is the derived subgroup of \(G \).

If \(G \) is non-nilpotent and \(\text{cd}(G) = \{1, m\} \), then clearly (a) of Theorem A holds. Recently, Bianchi et al. [4], characterized non-nilpotent groups \(G \) with \(\text{cd}(G) = \{1, m\} \), and proved the following result.

Theorem C. Let \(G \) be a finite non-nilpotent group. Then, \(\text{cd}(G) = \{1, m\} \) if and only if \(G' \) is abelian and one of the following holds:

1. \(m \) is a prime, and \(F(G) \), the fitting subgroup of \(G \), is abelian of index \(m \) in \(G \).
2. \(G' \cap Z(G) = 1 \) and \(G/Z(G) \) is a Frobenius group with kernel \(G' \times Z(G) \) and a cyclic complement of order \(|G : G' \times Z(G)| = m \), where \(Z(G) \) denotes the center of \(G \).

Our notations and terminologies are standard and mainly taken from [8]. We also use the following notations:

- \(\text{Lin}(G) = \) the set of linear characters of \(G \).
- \(\text{Irr}_1(G) = \text{Irr}(G) \setminus \text{Lin}(G) \).
- \(ES(c, 2) = \) the extra-special group of the order \(2^{2c+1} \).
- \((H, N) = \) the Frobenius group with kernel \(N \) and complement \(H \).
- \(C_n = \) the cyclic group of order \(n \).
- \(E(q^n) = \) the elementary abelian \(q \)-group of rank \(n \).
- \(Z_i = Z_i(G) = \) the \(i \)-th center of \(G \).

Here, we characterize groups \(G \) with two irreducible character degrees, that is \(\text{cd}(G) = \{1, m\} \), such that the number of irreducible non-linear characters is a prime \(p \). In [1], Berkovich characterized solvable groups for which the degrees of the characters are distinct, except for one pair (having the same degrees). Thus, by [1] we may assume that \(p \geq 3 \). Firstly, we consider nilpotent groups and prove the following result.

Theorem 1. Let \(G \) be a finite nilpotent group, \(p \geq 3 \), a prime and \(m \), a positive integer. Then \(\text{cd}(G) = \{1, m\} \) and \(G \) has \(p \) non-linear
irreducible characters of degree \(m \) if and only if one of the followings holds:

(a) \(G = C_p \times ES(c, 2) \); that is, \(G \) is the direct product of a cyclic group of order \(p \) and an extra-special group of order \(2^{2c+1} \).

(b) \(G \) is an special \(2 \)-group of order \(m^2(p + 1) \), and for each subgroup \(M \) of index \(2 \) of \(G' \), \(G/M \cong ES(c, 2) \), where \(2^c = m \).

(c) \(G \) is dihedral, semidihedral or a generalized quaternion \(2 \)-group and \(|G| = 4(p + 1) \).

If \(cd(G) = \{1, m\} \), then by Theorem B, \(G \) is metabelian. Theorem C characterizes non-nilpotent groups \(G \) with \(cd(G) = \{1, m\} \). We complete the characterization of groups \(G \) with \(cd(G) = \{1, m\} \) having \(p \) non-linear characters of degree \(m \), by considering the non-nilpotent case in the following theorem.

Theorem 2. Let \(G \) be a finite non-nilpotent group, \(p \geq 3 \), a prime and \(m \), a positive integer. Then \(cd(G) = \{1, m\} \) and \(G \) has \(p \) non-linear characters of the degree \(m \) if and only if \(G' \) is abelian and one of the followings holds:

(a) \(G = (C_m, G') \), where \(G \) is a Frobenius group with kernel of order \(mp + 1 \) and a cyclic complement of order \(m \).

(b) \(G/Z(G) = (C_m, (G/Z(G))') \), \(Z(G) = C_p \) and \(G' = E(q^n) \), where \(q^n - 1 = m \). Therefore, \(G = C_p \times (C_{q^n-1}, E(q^n)) \) or \(G = C_p(q^n-1) \times E(q^n) \); that is, \(G \) is a semidirect product with kernel \(E(q^n) \).

(c) \(m \) is a prime, \(G' \cap Z_{t-1} = m^{t-2} = p+1 \) and \(G/Z_{t-1} \cong (C_m, (G/Z_{t-1})') \), a Frobenius group with kernel of order \(b \), such that \(|G| = m^tb \) and \(\gcd(m, b) = 1 \).

2. Proofs

To prove Theorem 1, firstly we prove the following Lemma for \(p \)-groups.

Lemma 1. Let \(G \) be a finite \(p \)-group, where \(p \) is a prime, \(cd(G) = \{1, m\} \) and \(|\text{Irr}_1(G)| \) is odd. Then, at least one of the followings holds:
(a) G is an special 2-group, the index of G' is m^2, and for each subgroup M of index 2 of G', $G/M \simeq ES(c, 2)$ such that $2^c = m$.

(b) G is dihedral, semidihedral or a generalized quaternion 2-group and $|G| = 4(p + 1)$.

Proof. Let $p \neq 2$. Then, by [8, Exercise 3.16], the number of non-linear characters of G is even, which is a contradiction. Thus, $|G| = 2^n$ and $m = 2^c$. Let $|\text{Irr}_1(G)| = x$. From

$$|G| = \sum_{\chi \in \text{Irr}(G)} \chi(1)^2$$

we have

$$2^n = x2^{2c} + |G : G'| = x2^{2c} + 2^k,$$

for some positive integer k. Since x is odd, then $2c = k$ and $|G| = (x + 1)2^{2c}$. Hence, $x + 1 = 2^r = |G'|$ and $|G : G'| = 2^{2c}$. Now, we distinguish two cases below.

Case 1: $G' \leq Z(G)$. Since G is nilpotent then $2^{2c} = m^2 = \chi(1)^2$ divides $|G : Z(G)|$, for all $\chi \in \text{Irr}_1(G)$ (see [6, Theorem 8.2]). Since $|G : G'| = 2^{2c}$, it follows that $Z(G) = G'$. Now, let M be an arbitrary normal subgroup of index 2 in G'. Note that M is normal in G, since G' is central. If $|\text{Irr}_1(G/M)| = y$, then

$$|G/M| = 2^{2c+1} = y2^{2c} + 2^{2c}.$$

So $y = 1$ and by [2, Main Theorem], $G/M \simeq ES(c, 2)$. Thus, $\Phi(G/M) = (G/M)'$, where $\Phi(G)$ is the Frattini subgroup of G, and

$$\frac{G/M}{\Phi(G/M)} \simeq G/G'$$

is elementary. So, $\Phi(G)G'/G' = \Phi(G/G') = 1$, and hence $\Phi(G) \leq G'$. Therefore, $\Phi(G) = G'$. Now, by [5, Lemma III, 3.14], $G^2 = (G')^2 \leq Z(G)$. So for each $g_1, g_2 \in G$, $[g_1, g_2]^2 = [g_1^2, g_2^2] = 1$, and hence G' is an elementary abelian group. Thus, G is an special 2-group. Therefore, (a) holds.

Case 2: $G' \nsubseteq Z(G)$. Let $c \neq 1$. By [8, Exercise 5.14], each subgroup of index 2^c in G contains G'. Then, each $\chi \in \text{Irr}_1(G)$ can be induced from a linear character of some normal subgroup of G. Thus, G is an nM-group and by [7, Theorem 3], G' is an elementary abelian subgroup.
(Recall that a group is said nM-group if all its irreducible characters are induced from a linear character of some normal subgroup of G.)

If N is a normal subgroup of G such that G/N is a non-abelian group, since $\text{cd}(G/N) = \{1, 2^c\}$, by [6, Theorem 8.2], 2^{2c} divides $|G/N|$. So, from $|G/N| = \sum_{\chi \in \text{Irr}(G/N)} \chi(1)^2$, we have that 2^{2c} divides $t = |G/N| : (G/N)'$. But $t = |G : G'| \leq |G : G'| = 2^{2c}$, so that $t = 2^{2c}$ and $N \leq G'$. Therefore, $Z(G) \leq G'$ and for $\chi \in \text{Irr}(G)$ if $K = \ker(\chi)$, then $K \leq G'$.

Now, suppose that $\bar{G} = G/K$. Since $\text{cd}(\bar{G}) = \{1, 2^c\}$, then from $|\bar{G}| = \sum_{\tilde{\chi} \in \text{Irr}(\bar{G})} \tilde{\chi}(1)^2$ we have that $|\text{Irr}(\bar{G})|$ is odd. By a similar argument for the group \bar{G} instead of G, we have $Z(\bar{G}) \leq G' / K$. Since \bar{G} is an nM-group for each $\tilde{\chi} \in \text{Irr}(\bar{G})$, then there exists a normal subgroup \bar{H} of \bar{G} of index 2^c and $\bar{\theta} \in \text{Lin}(\bar{H})$ such that $\tilde{\chi} = \bar{\theta} \bar{G}$. Let $\ker(\bar{\theta}) \neq 1$. From $Z(\bar{G}) \leq G' \leq \bar{H}$, we have $\ker(\bar{\theta}) \cap Z(\bar{G}) \neq 1$, and so $\bigcap_{x \in G}(\ker(\bar{\theta}))^x \neq 1$. Thus, $\ker(\tilde{\chi}) \neq 1$ (see [8, Lemma 5.11]). But, for each $xK \in \bar{G}$ we have $\tilde{\chi}(xK) = \chi(x)$ and thus $\ker(\tilde{\chi}) = 1$, which is a contradiction. Therefore, $\ker(\bar{\theta}) = 1$ and $\bar{H}' = \bigcap\{\ker(\lambda) \mid \lambda \in \text{Lin}(\bar{H})\} = 1$. So, \bar{H} is abelian and by [8, Theorem 2.32], \bar{H} is cyclic. Since $\bar{G}' \leq \bar{H}'$, then \bar{G}' is cyclic. Thus, \bar{G}' is a cyclic elementary abelian group and hence $|\bar{G}'| = 2$. Therefore, $Z(\bar{G}) = \bar{G}'$ and $\bar{G}' = Z(\chi)$, where $Z(\chi) = \{g \in G \mid |\chi(g)| = \chi(1)\}$. So,

$$G' \leq \bigcap_{\chi \in \text{Irr}(G)} Z(\chi) = Z(G),$$

which is a contradiction. Therefore, $c = 1$, $|G/G'| = 4$, and by [5, Chapter III, Theorem 11.9(a)], G is dihedral, semidihedral or generalized quaternion 2-group. So, (b) holds. \hfill \Box

Now, we are ready to prove Theorem 1.

Proof of Theorem 1: Since G is a non-abelian nilpotent group, then $G = Q \times A$, for some non-abelian Sylow q-subgroup Q and a subgroup A of G. Let A be non-abelian. Let $\chi_1 \in \text{Irr}(Q)$, $\chi_2 \in \text{Irr}(A)$ and $\lambda \in \text{Lin}(A)$. If $\chi_1(1) = x_1$ and $\chi_2(1) = x_2$, then $\chi_1 \lambda(1) = x_1$ and $\chi_1 \chi_2(1) = x_1 x_2$. So, $x_1, x_1 x_2 \in \text{cd}(G)$, which is a contradiction. Thus A is abelian.
Now, every irreducible character of G is of the form $\chi\lambda$, where $\chi \in \text{Irr}(Q), \lambda \in \text{Irr}(A)$. Since the number of non-linear characters is equal to p, then either Q has only one non-linear character and A has p linear characters or else $A = 1$.

If Q has only one non-linear character then by [2, Main theorem], $Q \simeq ES(c, 2)$, for some positive integer c. Thus, $G \simeq ES(c, 2) \times C_p$ and (a) holds.

If $A = 1$ then G is a q-group and by by Lemma 1, G satisfies (b) or (c).

Conversely, suppose $G = C_p \times ES(c, 2)$. Since $ES(c, 2)$ has only one non-linear character, then G has p non-linear characters of the same degree. If G satisfies (c), then G has a normal abelian subgroup of index 2, and thus $\text{cd}(G) = \{1, 2\}$ and $|\text{Irr}_1(G)| = p$.

If G is an special 2-group such that $|G : G'| = m^2 = 2^{2c}$, then G' has $2^r - 1$ distinct subgroups of index 2, where $|G'| = 2^r$ for some positive integer r. If M is one of such subgroups, then $G/M \simeq ES(c, 2)$ has only one non-linear character. Then, for $\chi \in \text{Irr}_1(G)$ there exists only one maximal subgroup M_χ of G' such that $M_\chi \subseteq \ker\chi$. Thus, G has at least $2^r - 1$ non-linear characters of degree 2^r and $|G : G'| = 2^{2c}$. Then, from $\sum_{\chi \in \text{Irr}(G)} \chi(1)^2 = |G|$, we have $\text{cd}(G) = \{1, 2^r\}$ and $|\text{Irr}_1(G)| = p$. \hfill \Box

Proof of Theorem 2: Since G has only p non-linear characters of degree m, then

$$|G| = \sum_{\chi \in \text{Irr}(G)} \chi(1)^2 = pm^2 + |G : G'|.$$

Since G' is an abelian normal subgroup G, then by Ito’s Theorem, see [8, Theorem 6.15], $\chi(1)$ divides $|G : G'|$. If $|G : G'| = mp^2$, then $|G'| = 2$ and G is nilpotent, which is a contradiction. So, $|G : G'|$ is one of the followings:

(i) $|G : G'| = my$, such that $y \neq p$ and y divides m. If m is not a prime, then by [3, Lemma 2] we have $G = (C_m, G')$. If m is not a prime, then by Theorem C, $G' \cap Z(G) = 1$ and $G/Z(G) = (C_m, \frac{G' \times Z(G)}{Z(G)})$. So,
\[|Z(G)| = y. \text{ If } |\text{Irr}_1(G/Z(G))| = x, \text{ then} \]
\[|G/Z(G)| = \frac{pm^2 + my}{y} = xm^2 + \left| \frac{G}{Z(G)} : \frac{G'}{Z(G)} \right| = xm^2 + m. \]

So \(y = 1 \) and \(G = (C_m, G') \) and (a) holds.

(ii) \(|G : G'| = pm^2, \) such that \(y \) divides \(m \). We have \(G = pm^2 + pm^2. \) If \(y \neq 1 \) then \(|G'| \leq m \), and by [8, Exercise 5.14], \(G \) is nilpotent, which is a contradiction. So, \(|G'| = pm(m+1). \) Suppose \(m \) is a prime. By Theorem A, \(G \) has a normal abelian subgroup \(M \) of index \(m \). By [8, Theorem 12.12], \(|M \cap Z(G)| = p. \) If \(Z(G) \not\subseteq M \), then \(G = Z(G)M \). So, \(G \) is abelian, which is a contradiction. So, \(Z(G) \leq M \) and \(Z(G) = C_p \). Now, suppose \(m \) is not a prime. Then, by Theorem C, \(G' \cap Z(G) = 1 \) and \(G/Z(G) = \left(C_m, \frac{G'}{Z(G)} \right). \) Since \(|G'| = pm(m+1) \), then \(|Z(G)| = p \) and \(Z(G) = C_p \). If \(Z(G) \not\subseteq G' \), then \(\frac{G}{Z(G)} : \frac{(G/Z(G))'}{Z(G)} = pm \). Hence, by the above argument, \(m(m+1) = xm^2 + pm \) and \(m+1 = xm + p \), which is a contradiction. So, \(Z(G) \not\subseteq G' \) and \(|\frac{G}{Z(G)}| : (\frac{G}{Z(G)})' = m. \) Let \(x \) be the number of non-linear characters of \(G/Z(G) \). Then,
\[|G/Z(G)| = \sum_{\chi \in \text{Irr}(G/Z(G))} \chi(1)^2 = xm^2 + m, \]
and hence \(x = 1 \). Therefore, by [2, Main Theorem], \(G/Z(G) = (C_{q^n-1}, E(q^n)) \) is a Frobenius group with elementary abelian kernel \(E(q^n) = (G/Z(G))' \approx G' \) and cyclic complement \(C_{q^n-1} \), for some prime \(q \) and integer \(n \) such that \(m = q^n - 1 \).

Now \(G' \) is a minimal normal subgroup of \(G \). Since \(H \) is a proper subgroup of \(G' \) which is normal in \(G \), then \(|\frac{G}{H} : (G/H)'| = |G : G'| = mp. \) Hence, if \(G/H \), has \(r \) non-linear characters of degree \(m \), then \(|G/H| = rm^2 + pm). \) So, \((rm^2 + pm) \mid mp(m+1) = |G| \) and \((rm + p) \mid m(p-r) \) so \((rm + p) \mid (m+1) \), which is a contradiction. Since \(G \) is a non-nilpotent group, then there exists one maximal normal subgroup \(M \) of \(G \). Now, \(G' \) is a minimal normal abelian subgroup of \(G \), and thus \(G' \cap M = 1 \), and \(G = M \times G' \). Now, \(G/Z(G) = (C_{q^n-1}, E(q^n)) \) and \(G' \approx (C_{q^n-1}, E(q^n)). \) Hence, \(G = Z(G) \times (C_{q^n-1}, E(q^n)) \) or \(G = C_{p(q^n-1)} \times E(q^n) \), a semidirect product with kernel \(G' = E(q^n) \). So, (b) holds.
(iii) $|G : G'| = m^2$. We have $|G| = m^2(p + 1)$. Let m be a prime. Now G has a normal abelian group A of index m and by [8, Lemma 12.2], $|Z(G) \cap A| = m$. If $Z(G) \neq A$, then G is abelian, and so $Z(G) \leq A$ and $|Z(G)| = m$. Suppose that $|G| = m^2b$, such that $\gcd(m, b) = 1$. From $\sum_{\chi \in \text{Irr}(G/Z(G))} \chi(1)^2 = |G/Z(G)|$, we have $mb = xm^2 + |\frac{G}{Z(G)} : (\frac{G}{Z(G)})'|$, where $|\text{Irr}_1(G/Z(G))| = x$. Thus, m^2 divide $|\frac{G}{Z(G)} : (\frac{G}{Z(G)})'| = |\frac{G}{Z(G)}|$.

Now, $|G : G'| = m^2$, and so $Z(G) \leq G'$. For $1 \leq i < t$, G/Z_i is a non-nilpotent group and $\text{cd}(G/Z_i) = \{1, m\}$. Thus, by the above argument, $|Z(G/Z_i)| = m$. Hence, $Z_{t-1}(G)$ is a subgroup of order m^{t-1} of G. If $G = G'Z_{t-1}$, then G/Z_{t-1} is abelian, which is a contradiction. Therefore $|G' \cap Z_{t-1}| = m^{t-2}$.

Now, from $\sum_{\chi \in \text{Irr}(G/Z_{t-1})} \chi(1)^2 = |G/Z_{t-1}|$, we have $mb = xm^2 + |\frac{G}{Z_{t-1}} : (\frac{G}{Z_{t-1}})'|$, where $|\text{Irr}_1(G/Z_{t-1})| = x$. Hence, $|\frac{G}{Z_{t-1}} : (\frac{G}{Z_{t-1}})'| = m$. Thus, by [3, Lemma 2], $G/Z_{t-1} = (C_m, (G/Z_{t-1}))$.

Now, let m be not a prime. Then, by Theorem C, $G/Z(G) = (C_m, \frac{G' \times Z(G)}{Z(G)})$, and $|\frac{G' \times Z(G)}{Z(G)}| = p + 1$. Then, $m \mid p$ and $m = p$ is prime, which is a contradiction.

Conversely, if G satisfies (a) or (b), then $Z(G) \cap G' = 1$ and $G/Z(G) = (C_m, \frac{G' \times Z(G)}{Z(G)})$. So, by Theorem C, $\text{cd}(G) = \{1, m\}$ and $|\text{Irr}_1(G)| = p$. If G satisfies (c), then $|G| = m^2b$ and G' is a normal abelian subgroup of index m^2 of G. So, G' contains N, a normal abelian subgroup of order b of G, and thus NZ_{t-1} is a normal abelian subgroup of index m of G. So, by [8, Theorem 6.15], $\text{cd}(G) = \{1, m\}$. Now, since $|G : G'| = m^2$, then $|\text{Irr}_1(G)| = p$. This completes the proof. \qed

Acknowledgment

This work was partially supported by Center of Excellence of Mathematics of Isfahan University of Technology (CEAMA).

References

[1] Y. Berkovich, Finite solvable groups in which only two non-linear irreducible characters have equal degree, J. Algebra 184 (1996) 584-603.
On finite groups with two irreducible character degrees

Abbas Heydari
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Email: a-heydari@math.iut.ac.ir

Bijan Taeri
Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Email: b.taeri@cc.iut.ac.ir