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A CHARACTERIZATION OF THE INFINITESIMAL
CONFORMAL TRANSFORMATIONS ON TANGENT

BUNDLES

A. HEYDARI* AND E. PEYGHAN

Communicated by Karsten Grove

Abstract. Here, we present a new complete lift metric for which
every infinitesimal fiber-preserving conformal transformation on the
tangent bundle induces an infinitesimal projective transformation
on the base manifold. Moreover, this correspondence gives rise
to a homomorphism between Lie algebras. Also, we introduce an
almost product structure on the tangent bundle and show that it
is a product structure if and only if the corresponding Riemannian
metric is of constant curvature.

1. Introduction

Let M be a Riemannian manifold, and φ be a transformation of M .
Then, φ is called a projective transformation if it preserves the geodesics,
where each geodesic should be confounded with a subset of M by ne-
glecting its affine parameter. Furthermore, φ is called an affine transfor-
mation, if it preserves the Riemannian connection. We may also speak
of local projective and affine transformation. Then, we remark that a
(local) affine transformation may be characterized as a (local) projective
transformation which preserves the affine parameter of geodesics.
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Let V be a vector field on M , and consider the local one-parameter
group {φt} of the local transformations of M generated by V . Then, V
is called an infinitesimal projective (respectively affine) transformation,
if each φt is a local projective (respectively affine) transformation. By a
complete infinitesimal projective transformation, we mean an infinitesi-
mal projective transformation which generates a (global) one-parameter
group of projective transformations.

Let TM be the tangent bundle of M , and φ be a transformation of
TM . Then, φ is called a fibre-preserving transformation, if it takes fi-
bres to fibres. Let X be a vector field on TM , and consider the local
one-parameter group {φt} of the local transformations of TM gener-
ated by X. Then, X is called an infinitesimal fibre-preserving transfor-
mation on TM , if each φt is a local fibre-preserving transformation of
TM . Clearly, an infinitesimal fiber-preserving transformation on TM
induces an infinitesimal transformation in the base space M . Let ḡ be
a (pseudo)-Riemannian metric of TM . An infinitesimal fiber-preserving
transformation X on TM is said to be an infinitesimal fiber-preserving
conformal transformation, if there exists a scalar ρ̄ on TM such that
£X ḡ = 2ρ̄ḡ, where £X denotes the Lie derivation with respect to X.

Let P be an endomorphism of the tangent bundle TM satisfying P 2 =
I, where I = identity. Then, P defines an almost product structure on
M . If g is a metric on M such that g(PX, PY ) = g(X, Y ) for arbitrary
vector fields X and Y on M , then the triple (M, g, P ) defines a (pseudo)-
Riemannian almost product structure.

Here, we define a new kind of (pseudo)-Riemannian metric G on TM
and introduce the natural almost product structure P on M . The main
purpose is to investigate some relations between the Lie algebra of infini-
tesimal fiber-preserving conformal transformations of the tangent bundle
TM and the Lie algebra of infinitesimal projective transformations of
M .

Throughout the paper, everything is C∞, and Riemannian manifolds
are connected with dimM > 1. Also, we suppose T̃M = TM − {0}.

2. Complete lift metric

Let (M, g) be an n-dimensional (pseudo)-Riemannian manifold and
∇ its Levi-Civita connection. In a local chart (U, (xi)), we set gij =
g(∂i, ∂j), where ∂i := ∂

∂xi and we denote by Γ i
jk the corresponding
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Christoffel symbols. Let (xi, yi) ≡ (x, y) be the local coordinates on
the manifold TM projected on M by τ . The indices i, j, k, ... are taken
from 1 to n.

The functions N i
j (x, y) := Γ i

jk (x)yk are the local coefficients of a
nonlinear connection, that is, the local vector fields δi = ∂i−N k

i (x, y)∂k̄,
where ∂k̄ = ∂

∂yk spans a distribution on TM called horizontal, which
is supplementary to the vertical distribution u → VuTM = ker(τ∗)u,
where u ∈ TM . Denote by u → HuTM the horizontal distribution
and let {δi, ∂ī} be the basis adapted to the decomposition TuTM =
HuTM ⊕ VuTM, where u ∈ TM . The dual basis of it is {dxi, δyi} with
δyi = dyi + N i

k (x, y)dxk.
We can easily prove the following lemma.

Lemma 2.1. The Lie brackets satisfy the followings:

[δi, δj ] = yrK m
jir ∂m̄,

[δi, ∂j̄ ] = Γ m
ji ∂m̄,

[∂ī, ∂j̄ ] = 0,

where K m
jir denotes the components of the curvature tensor of M .

The complete metric on TM is:

GC = 2gij(x)dxiδyj .

If we define gij(x) as the components hij(x, y) of a generalized Lagrange
metric([3]), then we get a complete metric,

G(x, y) = 2hij(x, y)dxiδyj .

In particular, hij(x, y) could be a deformation of gij(x), a case studied
by Anastasiei in [2].

Here, we consider the metric G with hij(x, y) to be the special defor-
mation of gij(x) of the form:

hij(x, y) = a(L2)gij(x),

where L2 = gij(x)yiyj , yi = gij(x)yj and a : Im(L2) ⊆ R+ −→ R+ with
a > 0.
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3. Almost product structures on TM

Let P be an endomorphism of the tangent bundle TM given in the
adapted basis {δi, ∂ī} by

P (δi) = α∂ī, P (∂ī) = βδi,

where α and β are functions on TM to be determined. Then, we have,

P 2(δi) = αβδi, P 2(∂ī) = βα∂ī,

i.e., the condition P 2 = I leads to αβ = 1.
With the above condition, we conclude that G(P (X), P (Y )) = G(X, Y ).

Then, the pair (G, P ) is an almost product structure on TM .
Put

α =
1
a
, β = a.

Then, we have,

P (δi) =
1
a
∂ī, P (∂ī) = aδi. (3.1)

Substitution a −→ a
L , then (1) is unified to:

Pa,L(δi) =
L

a
∂ī, Pa,L(∂ī) =

a

L
δi. (3.2)

The metric G takes the form,

Ga,L(x, y) = 2
a

L
gij(x)dxiδyj . (3.3)

If a = L√
1+L2

, then the relations (3.2) and (3.3) turn to:

PL(δi) =
√

1 + L2∂ī, PL(∂ī) =
1√

1 + L2
δi, (3.4)

GL(x, y) =
2√

1 + L2
gij(x)dxiδyj . (3.5)

If a = c, where c is a constant scalar, then (3.2) and (3.3) take the
form,

Pc,L(δi) =
L

c
∂ī, Pc,L(∂ī) =

c

L
δi, (3.6)

Gc,L(x, y) = 2
c

L
gij(x)dxiδyj . (3.7)

Here, we consider the almost product structures (G, P ), (Ga,L, Pa,L),
(GL, PL) and (Gc,L, Pc,L).
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In order to find conditions for the above almost product structures to
be product structures, we have to put zero for the Nijenhuis tensor field
of P = Pa, Pa,L, PL, Pc,L,

NP (X, Y ) = [PX, PY ]−P [PX, Y ]−P [X, PY ]+ [X, Y ], X, Y ∈ χ(M).

By a simple calculation, we have the following results.

Proposition 3.1. In the adapted basis we have the unique decomposi-
tion,

NP (δi, δj) = (NP )s
ijδs + (NP )s̄

ij∂s̄

NP (δi, ∂j̄) = (NP )s
ij̄δs + (NP )s̄

ij̄∂s̄

NP (∂ī, ∂j̄) = (NP )s
īj̄δs + (NP )s̄

īj̄∂s̄

where,

(NP ) s̄
ij = yaK s

jia +
2a′

a3
(yjδ

s
i − yiδ

s
j ), (NP ) s

ij = 0

(NP ) s
ij̄ = −a2{yaK s

jia +
2a′

a3
(yjδ

s
i − yiδ

s
j )}, (NP ) s̄

ij̄ = 0

(NP ) s̄
īj̄ = a2{yaK s

jia +
2a′

a3
(yjδ

s
i − yiδ

s
j )}, (NP ) s

īj̄ = 0.

Lemma 3.2. P is a product structure on T̃M if and only if we have,

yaKjia
s = −2a′

a3
(yiδ

s
j − yjδ

s
i ). (3.8)

From (3.8) and yi = giay
a, we obtain following equation,

K s
jia = −2a′

a3
(giaδ

s
j − gjaδ

s
i ). (3.9)

From (3.9), we conclude following theorem.

Theorem 3.3. Let a be a function such that a′(t) = 1
2ka3(t), where k

is a constant. Then the almost product structure P is a product struc-
ture on T̃M if and only if the Riemannian space (M, g) is of constant
curvature −k.

For example, if we suppose a(t) = 1√
t
, then we have a′(t) = −1

2a3(t).
In this case, the value of k in Theorem 3.3 is equal to 1. Taking NPa,L

=
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0, we conclude:

K s
jia = −2a′L2 − a

a3
(giaδ

s
j − gjaδ

s
i ). (3.10)

From (3.10), we have the following result.

Theorem 3.4. Let a be a function such that 2a′L2−a
a3 = k, where k is

a constant. Then, the almost product structure Pa,L is a product struc-
ture on T̃M if and only if the Riemannian space (M, g) is of constant
curvature −k.

Taking NPL
= 0, we conclude:

K s
jia = −(giaδ

s
j − gjaδ

s
i ). (3.11)

From (3.11), we have the following theorem.

Theorem 3.5. The almost product structure PL is a product structure
on T̃M if and only if the Riemannian space (M, g) is of constant cur-
vature −1.

Taking NPc,L
= 0, we conclude:

K s
jia = − 1

c2
(giaδ

s
j − gjaδ

s
i ). (3.12)

From (3.12), we get the following theorem.

Theorem 3.6. The almost product structure Pc,L is a product struc-
ture on T̃M if and only if the Riemannian space (M, g) is of constant
curvature − 1

c2
.

4. Infinitesimal conformal transformation

Here, we consider the infinitesimal conformal transformations of the
tangent bundles over Riemannian manifolds. First of all, we recall that
the vector field X on TM with components (vh, vh̄) is a fiber-preserving
vector field if and only if vh are functions on M (see [5]).
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Proposition 4.1. Let X be a fiber-preserving vector field on TM . Then,
the Lie derivative £Xδh, £X∂h̄, £Xdxh and £Xδyh are given as follow:

(1)£Xδh = −∂hvaδa + {ybvcK a
hcb − vb̄Γ a

bh − δh(vā)}∂ā,
(2)£X∂h̄ = {vbΓ a

hb − ∂h̄(vā)}∂ā,
(3)£Xdxh = ∂mvhdxm,

(4)£Xδyh = −{yb vcK h
mcb − vb̄Γ h

bm − δm(vh̄)}dxm

−{vbΓ h
mb − ∂m̄(vh̄)}δym.

Proof. Proof of this Theorem is similar to proof of the Proposition 2.2
of Yamauchi [5]. �

Proposition 4.2. The Lie derivatives £XG is in the following form:

£XG = −2a(L2)gim{ybvcK m
jcb − vb̄Γ m

bj − δj(vm̄)}dxidxj

+2a(L2){2ϕ̄gij+£V gij−gim∇jv
m+gim∂j̄(v

m̄)}dxiδyj ,

where ϕ̄ = vh̄yh
a′(L2)
a(L2)

.

Proof. From the definition of Lie derivative we have:

£XG = £X(a(L2))(2gijdxiδyj) + a(L2)£X(2gijdxiδyj). (4.1)

By Proposition 4.1, we conclude the following result:

£X(2gijdxiδyj) = −2gim{ybvcK m
jcb − vb̄Γ m

bj − δj(vm̄)}dxidxj .

+2{£V gij − gim∇jv
m + gim∂j̄(v

m̄)}dxiδyj . (4.2)

Also, it is obvious that:

£X(a(L2)) = X(a(L2)) = 2vh̄yha′(L2). (4.3)

Putting (4.3) and (4.2) in (4.1), we have the proof. �

Let X be an infinitesimal fibre-preserving conformal transformation
on TM with metric G. Then, there exists a scalar function ρ̄ on TM
such that

£XG = 2ρ̄G.

From proposition 4.2, we have,

2ϕ̄gij + £V gij − gim∇jv
m + gim∂j̄(v

m̄) = 2ρ̄gij , (4.4)
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and

gim{ybvcK m
jcb −vb̄Γ m

bj −δj(vm̄)}+gjm{ybvcK m
icb −vb̄Γ m

bi −δi(vm̄)} = 0.
(4.5)

The (4.4) can be written as:

£V gij − gim∇jv
m + gim∂j̄(v

m̄) = 2(ρ̄− ϕ̄)gij .

Put Ω̄ = ρ̄− ϕ̄. Then, we conclude following relation:

£V gij − gim∇jv
m + gim∂j̄(v

m̄) = 2Ω̄gij . (4.6)

Proposition 4.3. The scalar function Ω̄ on TM depends only on the
variables (xh) with respect to the induced coordinates (xh, yh).

Proof. Applying ∂k̄ to the both sides of the equation (4.6), then we
have,

gim∂k̄∂j̄(v
m̄) = 2∂k̄(Ω̄)gij .

By interchanging j and k in the above equation, we get,

∂k̄(Ω̄)gij = ∂j̄(Ω̄)gik.

It follows that
(n− 1)∂k̄(Ω̄) = 0.

This means that the scalar function Ω̄ on TM depends only on the vari-
ables (xh) with respect to the induced coordinates (xh, yh). �

Thus, we can regard Ω̄ as a function on M . In the following, we write
Ω instead of Ω̄.

Also, let X be an infinitesimal fibre-preserving conformal transforma-
tion on TM with metric Ga,L and scalar function ρ̄a,L. Then, we have
Ωa,L = ρ̄a,L − ϕ̄a,L, where,

ϕ̄a,L = vh̄yh(
L2a′ − 1

2a

L3
).

Similarly, for GL we have ΩL = ρ̄L − ϕ̄L with

ϕ̄L = − vh̄yh

2(1 + L2)
√

1 + L2
,

and for Gc,L we have Ωc,L = ρ̄c,L − ϕ̄c,L with

ϕ̄c,L = −vh̄yh

2L3
.



A characterization of the infinitesimal conformal transformations 67

From (4.6) and proposition 4.3, ∂j̄(vm̄) depends only on the variables
(xh), and thus we can put

vm̄ = yaAm
a + Bm, (4.7)

where Am
a and Bm are certain functions depending only on the variable

(xh). Furthermore, we can easily show that Am
a and Bm are the com-

ponents of a (1, 1) tensor field and a contravariant vector field on M ,
respectively.

Substituting (4.7) into (4.5), we have,

∇jBi +∇iBj = 0, (4.8)

and
va(Kjahi + Kiahj)−∇jAih −∇iAjh = 0, (4.9)

where Bi = gimBm and Aih = gimAm
h.

Proposition 4.4. If we put

B = Bb∂b,

then the vector field B on M is an infinitesimal isometry of M .

Proof. From equation (4.8) we have,

£Bgij = ∇jBi +∇iBj = 0.

This shows B is an infinitesimal isometry on M . �

Proposition 4.5. If we put

V = vh∂h,

then the vector field V on M is an infinitesimal projective transformation
of M .

Proof. Substituating (4.7) into (4.6), it follows:

Aij = 2Ωgij −∇ivj . (4.10)

Substituating (4.10) into (4.9), we obtain,

£V Γ h
ij = δh

i Ωj + δh
j Ωi,

where Ωi = ∇iΩ. This shows that V is an infinitesimal projective trans-
formation on M .
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Now, we consider the converse problem, that is, let M admits an
infinitesimal projective transformation V = vh∂h. Then, we have the
following proposition.

Proposition 4.6. The vector field X on TM defined by

X = vhδh + yrAh
r∂h̄,

is an infinitesimal fibre-preserving conformal transformation on TM
with metric G, where,

Ah
i = ghrAri, Aij = ∇jvi + 2Ωgij −£V gij , Ω =

1
n + 1

∇rv
r,

ϕ̄ =
a′(L2)
a(L2)

yrAh
ryh,

and ρ̄ = Ω + ϕ̄.

Proof. By proposition 4.2, it follows:

£XG = £X(2a(L2)gijdxiδyj)

= 2X(a(L2)gij)dxiδyj + 2a(L2)gij(£Xdxi)δyj

+ 2a(L2)gijdxi(£Xδyj)

= 4yrAh
ra
′(L2)yhgijdxiδyj + 4a(L2)Ωgijdxiδyj

+ 2a(L2)yr(vbKbjri +∇jAir)dxidxj

= 4a(L2)(yrAh
r

a′(L2)
a(L2)

yh + Ω)gijdxiδyj

+ 2a(L2)yr(vbKbjri +∇jAir)dxidxj .

On the other hand, from (4.10), we have,
∇jAir = gim∇j∇rv

m + 2Ωjgir − (£V Γ m
ji )gmr − (£V Γ m

jr )gim

= −vbKbjri + Ωjgir − Ωigjr,

from which we obtain,
£XG = 2ρ̄G.

Hence, X is an infinitesimal fibre-preserving conformal transformation
on TM . �
Proposition 4.6 holds for TM with metric Ga,L if we have,

ϕ̄a,L = vh̄yh(
L2a′ − 1

2a

L3
).
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Similarly, for GL we have,

ϕ̄L = − vh̄yh

2(1 + L2)
√

1 + L2
,

and for Gc,L we have,

ϕ̄c,L = −vh̄yh

2L3
.

Now, using propositions 4.3 to 4.6, we conclude the following theorem.

Theorem 4.7. Let M be an n-dimensional Riemannian manifold, and
TM be its tangent bundle with the metric G. Then, every infinitesimal
fibre-preserving conformal transformation X on TM naturally induces
an infinitesimal projective transformation V on M . Furthermore, the
correspondence X −→ V gives a homomorphism of the Lie algebra of
infinitesimal fiber-preserving conformal transformations of TM onto the
Lie algebra of infinitesimal projective transformations of M , and the
kernel of this homomorphism is naturally homomorphic onto the Lie
algebra of infinitesimal isometries of M .

The above theorem holds for Pseudo-Riemannian metric Ga,L, GL and
Gc,L.
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