A CHARACTERIZATION OF THE INFINITESIMAL CONFORMAL TRANSFORMATIONS ON TANGENT BUNDLES

A. HEYDARI* AND E. PEYGHAN
Communicated by Karsten Grove

Abstract

Here, we present a new complete lift metric for which every infinitesimal fiber-preserving conformal transformation on the tangent bundle induces an infinitesimal projective transformation on the base manifold. Moreover, this correspondence gives rise to a homomorphism between Lie algebras. Also, we introduce an almost product structure on the tangent bundle and show that it is a product structure if and only if the corresponding Riemannian metric is of constant curvature.

1. Introduction

Let M be a Riemannian manifold, and ϕ be a transformation of M. Then, ϕ is called a projective transformation if it preserves the geodesics, where each geodesic should be confounded with a subset of M by neglecting its affine parameter. Furthermore, ϕ is called an affine transformation, if it preserves the Riemannian connection. We may also speak of local projective and affine transformation. Then, we remark that a (local) affine transformation may be characterized as a (local) projective transformation which preserves the affine parameter of geodesics.

[^0]Let V be a vector field on M, and consider the local one-parameter group $\left\{\phi_{t}\right\}$ of the local transformations of M generated by V. Then, V is called an infinitesimal projective (respectively affine) transformation, if each ϕ_{t} is a local projective (respectively affine) transformation. By a complete infinitesimal projective transformation, we mean an infinitesimal projective transformation which generates a (global) one-parameter group of projective transformations.

Let $T M$ be the tangent bundle of M, and ϕ be a transformation of $T M$. Then, ϕ is called a fibre-preserving transformation, if it takes fibres to fibres. Let X be a vector field on $T M$, and consider the local one-parameter group $\left\{\phi_{t}\right\}$ of the local transformations of $T M$ generated by X. Then, X is called an infinitesimal fibre-preserving transformation on $T M$, if each ϕ_{t} is a local fibre-preserving transformation of $T M$. Clearly, an infinitesimal fiber-preserving transformation on $T M$ induces an infinitesimal transformation in the base space M. Let \bar{g} be a (pseudo)-Riemannian metric of $T M$. An infinitesimal fiber-preserving transformation X on $T M$ is said to be an infinitesimal fiber-preserving conformal transformation, if there exists a scalar $\bar{\rho}$ on $T M$ such that $£_{X} \bar{g}=2 \bar{\rho} \bar{g}$, where $£_{X}$ denotes the Lie derivation with respect to X.

Let P be an endomorphism of the tangent bundle $T M$ satisfying $P^{2}=$ I, where $I=$ identity. Then, P defines an almost product structure on M. If g is a metric on M such that $g(P X, P Y)=g(X, Y)$ for arbitrary vector fields X and Y on M, then the triple (M, g, P) defines a (pseudo)Riemannian almost product structure.

Here, we define a new kind of (pseudo)-Riemannian metric G on $T M$ and introduce the natural almost product structure P on M. The main purpose is to investigate some relations between the Lie algebra of infinitesimal fiber-preserving conformal transformations of the tangent bundle $T M$ and the Lie algebra of infinitesimal projective transformations of M.

Throughout the paper, everything is C^{∞}, and Riemannian manifolds are connected with $\operatorname{dim} M>1$. Also, we suppose $\widetilde{T M}=T M-\{0\}$.

2. Complete lift metric

Let (M, g) be an n-dimensional (pseudo)-Riemannian manifold and ∇ its Levi-Civita connection. In a local chart $\left(U,\left(x^{i}\right)\right)$, we set $g_{i j}=$ $g\left(\partial_{i}, \partial_{j}\right)$, where $\partial_{i}:=\frac{\partial}{\partial x^{i}}$ and we denote by $\Gamma_{j k}^{i}$ the corresponding

Christoffel symbols. Let $\left(x^{i}, y^{i}\right) \equiv(x, y)$ be the local coordinates on the manifold $T M$ projected on M by τ. The indices i, j, k, \ldots are taken from 1 to n.

The functions $N_{j}{ }^{i}(x, y):=\Gamma_{j k}{ }^{i}(x) y^{k}$ are the local coefficients of a nonlinear connection, that is, the local vector fields $\delta_{i}=\partial_{i}-N_{i}{ }^{k}(x, y) \partial_{\bar{k}}$, where $\partial_{\bar{k}}=\frac{\partial}{\partial y^{k}}$ spans a distribution on $T M$ called horizontal, which is supplementary to the vertical distribution $u \rightarrow V_{u} T M=\operatorname{ker}\left(\tau_{*}\right)_{u}$, where $u \in T M$. Denote by $u \rightarrow H_{u} T M$ the horizontal distribution and let $\left\{\delta_{i}, \partial_{\bar{i}}\right\}$ be the basis adapted to the decomposition $T_{u} T M=$ $H_{u} T M \oplus V_{u} T M$, where $u \in T M$. The dual basis of it is $\left\{d x^{i}, \delta y^{i}\right\}$ with $\delta y^{i}=d y^{i}+N_{k}^{i}(x, y) d x^{k}$.

We can easily prove the following lemma.
Lemma 2.1. The Lie brackets satisfy the followings:

$$
\begin{aligned}
{\left[\delta_{i}, \delta_{j}\right] } & =y^{r} K_{j i r}{ }^{m} \partial_{\bar{m}} \\
{\left[\delta_{i}, \partial_{\bar{j}}\right] } & =\Gamma_{j i}^{m} \partial_{\bar{m}} \\
{\left[\partial_{\bar{i}}, \partial_{\bar{j}}\right] } & =0
\end{aligned}
$$

where $K_{j i r}{ }^{m}$ denotes the components of the curvature tensor of M.

The complete metric on $T M$ is:

$$
G_{C}=2 g_{i j}(x) d x^{i} \delta y^{j}
$$

If we define $g_{i j}(x)$ as the components $h_{i j}(x, y)$ of a generalized Lagrange metric $([3])$, then we get a complete metric,

$$
G(x, y)=2 h_{i j}(x, y) d x^{i} \delta y^{j}
$$

In particular, $h_{i j}(x, y)$ could be a deformation of $g_{i j}(x)$, a case studied by Anastasiei in [2].

Here, we consider the metric G with $h_{i j}(x, y)$ to be the special deformation of $g_{i j}(x)$ of the form:

$$
h_{i j}(x, y)=a\left(L^{2}\right) g_{i j}(x)
$$

where $L^{2}=g_{i j}(x) y^{i} y^{j}, y_{i}=g_{i j}(x) y^{j}$ and $a: \operatorname{Im}\left(L^{2}\right) \subseteq \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$with $a>0$.

3. Almost product structures on $\mathbf{T M}$

Let P be an endomorphism of the tangent bundle $T M$ given in the adapted basis $\left\{\delta_{i}, \partial_{\bar{i}}\right\}$ by

$$
P\left(\delta_{i}\right)=\alpha \partial_{\bar{i}}, \quad P\left(\partial_{\bar{i}}\right)=\beta \delta_{i},
$$

where α and β are functions on $T M$ to be determined. Then, we have,

$$
P^{2}\left(\delta_{i}\right)=\alpha \beta \delta_{i}, \quad P^{2}\left(\partial_{\bar{i}}\right)=\beta \alpha \partial_{\bar{i}},
$$

i.e., the condition $P^{2}=I$ leads to $\alpha \beta=1$.

With the above condition, we conclude that $G(P(X), P(Y))=G(X, Y)$. Then, the pair (G, P) is an almost product structure on $T M$.
Put

$$
\alpha=\frac{1}{a}, \quad \beta=a
$$

Then, we have,

$$
\begin{equation*}
P\left(\delta_{i}\right)=\frac{1}{a} \partial_{\bar{i}}, \quad P\left(\partial_{\bar{i}}\right)=a \delta_{i} \tag{3.1}
\end{equation*}
$$

Substitution $a \longrightarrow \frac{a}{L}$, then (1) is unified to:

$$
\begin{equation*}
P_{a, L}\left(\delta_{i}\right)=\frac{L}{a} \partial_{\bar{i}}, \quad P_{a, L}\left(\partial_{\bar{i}}\right)=\frac{a}{L} \delta_{i} . \tag{3.2}
\end{equation*}
$$

The metric G takes the form,

$$
\begin{equation*}
G_{a, L}(x, y)=2 \frac{a}{L} g_{i j}(x) d x^{i} \delta y^{j} \tag{3.3}
\end{equation*}
$$

If $a=\frac{L}{\sqrt{1+L^{2}}}$, then the relations (3.2) and (3.3) turn to:

$$
\begin{gather*}
P_{L}\left(\delta_{i}\right)=\sqrt{1+L^{2}} \partial_{\bar{i}}, \quad P_{L}\left(\partial_{\bar{i}}\right)=\frac{1}{\sqrt{1+L^{2}}} \delta_{i} \tag{3.4}\\
G_{L}(x, y)=\frac{2}{\sqrt{1+L^{2}}} g_{i j}(x) d x^{i} \delta y^{j} \tag{3.5}
\end{gather*}
$$

If $a=c$, where c is a constant scalar, then (3.2) and (3.3) take the form,

$$
\begin{gather*}
P_{c, L}\left(\delta_{i}\right)=\frac{L}{c} \partial_{\bar{i}}, \quad P_{c, L}\left(\partial_{\bar{i}}\right)=\frac{c}{L} \delta_{i} \tag{3.6}\\
G_{c, L}(x, y)=2 \frac{c}{L} g_{i j}(x) d x^{i} \delta y^{j} \tag{3.7}
\end{gather*}
$$

Here, we consider the almost product structures $(G, P),\left(G_{a, L}, P_{a, L}\right)$, $\left(G_{L}, P_{L}\right)$ and $\left(G_{c, L}, P_{c, L}\right)$.

In order to find conditions for the above almost product structures to be product structures, we have to put zero for the Nijenhuis tensor field of $P=P_{a}, P_{a, L}, P_{L}, P_{c, L}$,
$N_{P}(X, Y)=[P X, P Y]-P[P X, Y]-P[X, P Y]+[X, Y], \quad X, Y \in \chi(M)$.
By a simple calculation, we have the following results.
Proposition 3.1. In the adapted basis we have the unique decomposition,

$$
\begin{aligned}
& N_{P}\left(\delta_{i}, \delta_{j}\right)=\left(N_{P}\right)_{i j}^{s} \delta_{s}+\left(N_{P}\right)_{i j}^{\bar{s}} \partial_{\overline{\bar{s}}} \\
& N_{P}\left(\delta_{i}, \partial_{\bar{j}}\right)=\left(N_{P}\right)_{i \bar{j}}^{s} \delta_{s}+\left(N_{P}\right)_{i \bar{j}}^{s} \bar{\partial}_{\bar{s}} \\
& N_{P}\left(\partial_{\bar{i}}, \partial_{\bar{j}}\right)=\left(N_{P}\right)_{\bar{i} \bar{j}}^{s} \delta_{s}+\left(N_{P}\right)_{\bar{i}}^{\bar{j}} \partial_{\bar{s}}
\end{aligned}
$$

where,

$$
\begin{aligned}
& \left(N_{P}\right)_{i j}{ }^{\bar{s}}=y^{a} K_{j i a}^{s}+\frac{2 a^{\prime}}{a^{3}}\left(y_{j} \delta_{i}^{s}-y_{i} \delta_{j}^{s}\right), \quad\left(N_{P}\right)_{i j}^{s}=0 \\
& \left(N_{P}\right)_{i \bar{j}}^{s}=-a^{2}\left\{y^{a} K_{j i a}^{s}+\frac{2 a^{\prime}}{a^{3}}\left(y_{j} \delta_{i}^{s}-y_{i} \delta_{j}^{s}\right)\right\}, \quad\left(N_{P}\right)_{i \bar{j}} \overline{\bar{s}}^{s}=0 \\
& \left(N_{P}\right)_{\overline{i j}}^{\bar{s}}=a^{2}\left\{y^{a} K_{j i a}^{s}+\frac{2 a^{\prime}}{a^{3}}\left(y_{j} \delta_{i}^{s}-y_{i} \delta_{j}^{s}\right)\right\}, \quad\left(N_{P}\right)_{\overline{i j}}^{s}=0 .
\end{aligned}
$$

Lemma 3.2. P is a product structure on $\widetilde{T M}$ if and only if we have,

$$
\begin{equation*}
y^{a} K_{j i a}^{s}=-\frac{2 a^{\prime}}{a^{3}}\left(y_{i} \delta_{j}^{s}-y_{j} \delta_{i}^{s}\right) \tag{3.8}
\end{equation*}
$$

From (3.8) and $y_{i}=g_{i a} y^{a}$, we obtain following equation,

$$
\begin{equation*}
K_{j i a}^{s}=-\frac{2 a^{\prime}}{a^{3}}\left(g_{i a} \delta_{j}^{s}-g_{j a} \delta_{i}^{s}\right) . \tag{3.9}
\end{equation*}
$$

From (3.9), we conclude following theorem.
Theorem 3.3. Let a be a function such that $a^{\prime}(t)=\frac{1}{2} k a^{3}(t)$, where k is a constant. Then the almost product structure P is a product structure on $\widetilde{T} M$ if and only if the Riemannian space (M, g) is of constant curvature $-k$.

For example, if we suppose $a(t)=\frac{1}{\sqrt{t}}$, then we have $a^{\prime}(t)=-\frac{1}{2} a^{3}(t)$. In this case, the value of k in Theorem 3.3 is equal to 1 . Taking $N_{P_{a, L}}=$

0 , we conclude:

$$
\begin{equation*}
K_{j i a}^{s}=-\frac{2 a^{\prime} L^{2}-a}{a^{3}}\left(g_{i a} \delta_{j}^{s}-g_{j a} \delta_{i}^{s}\right) \tag{3.10}
\end{equation*}
$$

From (3.10), we have the following result.
Theorem 3.4. Let a be a function such that $\frac{2 a^{\prime} L^{2}-a}{a^{3}}=k$, where k is a constant. Then, the almost product structure $P_{a, L}^{a^{a}}$ is a product structure on $\widetilde{T M}$ if and only if the Riemannian space (M, g) is of constant curvature $-k$.

Taking $N_{P_{L}}=0$, we conclude:

$$
\begin{equation*}
K_{j i a}^{s}=-\left(g_{i a} \delta_{j}^{s}-g_{j a} \delta_{i}^{s}\right) \tag{3.11}
\end{equation*}
$$

From (3.11), we have the following theorem.
Theorem 3.5. The almost product structure P_{L} is a product structure on $\widetilde{T M}$ if and only if the Riemannian space (M, g) is of constant curvature -1 .

Taking $N_{P_{c, L}}=0$, we conclude:

$$
\begin{equation*}
K_{j i a}^{s}=-\frac{1}{c^{2}}\left(g_{i a} \delta_{j}^{s}-g_{j a} \delta_{i}^{s}\right) \tag{3.12}
\end{equation*}
$$

From (3.12), we get the following theorem.
Theorem 3.6. The almost product structure $P_{c, L}$ is a product structure on $\widetilde{T M}$ if and only if the Riemannian space (M, g) is of constant curvature $-\frac{1}{c^{2}}$.

4. Infinitesimal conformal transformation

Here, we consider the infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. First of all, we recall that the vector field X on $T M$ with components $\left(v^{h}, v^{\bar{h}}\right)$ is a fiber-preserving vector field if and only if v^{h} are functions on M (see [5]).

Proposition 4.1. Let X be a fiber-preserving vector field on $T M$. Then, the Lie derivative $£_{X} \delta_{h}, £_{X} \partial_{\bar{h}}, £_{X} d x^{h}$ and $£_{X} \delta y^{h}$ are given as follow:

$$
\begin{aligned}
(1) £_{X} \delta_{h}= & -\partial_{h} v^{a} \delta_{a}+\left\{y^{b} v^{c} K_{h c b}^{a}-v^{\bar{b}} \Gamma_{b h}^{a}-\delta_{h}\left(v^{\bar{a}}\right)\right\} \partial_{\bar{a}} \\
(2) £_{X} \partial_{\bar{h}}= & \left\{v^{b} \Gamma_{h b}^{a}-\partial_{\bar{h}}\left(v^{\bar{a}}\right)\right\} \partial_{\bar{a}}, \\
(3) £_{X} d x^{h}= & \partial_{m} v^{h} d x^{m}, \\
(4) £_{X} \delta y^{h}= & -\left\{y^{b} v^{c} K_{m c b}^{h}-v^{\bar{b}} \Gamma_{b m}^{h}-\delta_{m}\left(v^{\bar{h}}\right)\right\} d x^{m} \\
& -\left\{v^{b} \Gamma_{m b}^{h}-\partial_{\bar{m}}\left(v^{\bar{h}}\right)\right\} \delta y^{m} .
\end{aligned}
$$

Proof. Proof of this Theorem is similar to proof of the Proposition 2.2 of Yamauchi [5].

Proposition 4.2. The Lie derivatives $£_{X} G$ is in the following form:

$$
\begin{aligned}
& £_{X} G=-2 a\left(L^{2}\right) g_{i m}\left\{y^{b} v^{c} K_{j c b}^{m}-v^{\bar{b}} \Gamma_{b j}^{m}-\delta_{j}\left(v^{\bar{m}}\right)\right\} d x^{i} d x^{j} \\
&+2 a\left(L^{2}\right)\left\{2 \bar{\varphi} g_{i j}+£_{V} g_{i j}-g_{i m} \nabla_{j} v^{m}+g_{i m} \partial_{\bar{j}}\left(v^{\bar{m}}\right)\right\} d x^{i} \delta y^{j}
\end{aligned}
$$

where $\bar{\varphi}=v^{\bar{h}} y_{h} \frac{a^{\prime}\left(L^{2}\right)}{a\left(L^{2}\right)}$.

Proof. From the definition of Lie derivative we have:

$$
\begin{equation*}
£_{X} G=£_{X}\left(a\left(L^{2}\right)\right)\left(2 g_{i j} d x^{i} \delta y^{j}\right)+a\left(L^{2}\right) £_{X}\left(2 g_{i j} d x^{i} \delta y^{j}\right) \tag{4.1}
\end{equation*}
$$

By Proposition 4.1, we conclude the following result:

$$
\begin{gather*}
£_{X}\left(2 g_{i j} d x^{i} \delta y^{j}\right)=-2 g_{i m}\left\{y^{b} v^{c} K_{j c b}^{m}-v^{\bar{b}} \Gamma_{b j}^{m}-\delta_{j}\left(v^{\bar{m}}\right)\right\} d x^{i} d x^{j} . \\
+2\left\{£_{V} g_{i j}-g_{i m} \nabla_{j} v^{m}+g_{i m} \partial_{\bar{j}}\left(v^{\bar{m}}\right)\right\} d x^{i} \delta y^{j} . \tag{4.2}
\end{gather*}
$$

Also, it is obvious that:

$$
\begin{equation*}
£_{X}\left(a\left(L^{2}\right)\right)=X\left(a\left(L^{2}\right)\right)=2 v^{\bar{h}} y_{h} a^{\prime}\left(L^{2}\right) \tag{4.3}
\end{equation*}
$$

Putting (4.3) and (4.2) in (4.1), we have the proof.
Let X be an infinitesimal fibre-preserving conformal transformation on $T M$ with metric G. Then, there exists a scalar function $\bar{\rho}$ on $T M$ such that

$$
£_{X} G=2 \bar{\rho} G
$$

From proposition 4.2, we have,

$$
\begin{equation*}
2 \bar{\varphi} g_{i j}+£_{V} g_{i j}-g_{i m} \nabla_{j} v^{m}+g_{i m} \partial_{\bar{j}}\left(v^{\bar{m}}\right)=2 \bar{\rho} g_{i j} \tag{4.4}
\end{equation*}
$$

and
$g_{i m}\left\{y^{b} v^{c} K_{j c b}{ }^{m}-v^{\bar{b}} \Gamma_{b j}{ }^{m}-\delta_{j}\left(v^{\bar{m}}\right)\right\}+g_{j m}\left\{y^{b} v^{c} K_{i c b}{ }^{m}-v^{\bar{b}} \Gamma_{b i}{ }^{m}-\delta_{i}\left(v^{\bar{m}}\right)\right\}=0$.
The (4.4) can be written as:

$$
£_{V} g_{i j}-g_{i m} \nabla_{j} v^{m}+g_{i m} \partial_{\bar{j}}\left(v^{\bar{m}}\right)=2(\bar{\rho}-\bar{\varphi}) g_{i j} .
$$

Put $\bar{\Omega}=\bar{\rho}-\bar{\varphi}$. Then, we conclude following relation:

$$
\begin{equation*}
£_{V} g_{i j}-g_{i m} \nabla_{j} v^{m}+g_{i m} \partial_{\bar{j}}\left(v^{\bar{m}}\right)=2 \bar{\Omega} g_{i j} . \tag{4.6}
\end{equation*}
$$

Proposition 4.3. The scalar function $\bar{\Omega}$ on $T M$ depends only on the variables $\left(x^{h}\right)$ with respect to the induced coordinates $\left(x^{h}, y^{h}\right)$.

Proof. Applying $\partial_{\bar{k}}$ to the both sides of the equation (4.6), then we have,

$$
g_{i m} \partial_{\bar{k}} \partial_{\bar{j}}\left(v^{\bar{m}}\right)=2 \partial_{\bar{k}}(\bar{\Omega}) g_{i j} .
$$

By interchanging j and k in the above equation, we get,

$$
\partial_{\bar{k}}(\bar{\Omega}) g_{i j}=\partial_{\bar{j}}(\bar{\Omega}) g_{i k}
$$

It follows that

$$
(n-1) \partial_{\bar{k}}(\bar{\Omega})=0
$$

This means that the scalar function $\bar{\Omega}$ on $T M$ depends only on the variables $\left(x^{h}\right)$ with respect to the induced coordinates $\left(x^{h}, y^{h}\right)$.

Thus, we can regard $\bar{\Omega}$ as a function on M. In the following, we write Ω instead of $\bar{\Omega}$.

Also, let X be an infinitesimal fibre-preserving conformal transformation on $T M$ with metric $G_{a, L}$ and scalar function $\bar{\rho}_{a, L}$. Then, we have $\Omega_{a, L}=\bar{\rho}_{a, L}-\bar{\varphi}_{a, L}$, where,

$$
\bar{\varphi}_{a, L}=v^{\bar{h}} y_{h}\left(\frac{L^{2} a^{\prime}-\frac{1}{2} a}{L^{3}}\right)
$$

Similarly, for G_{L} we have $\Omega_{L}=\bar{\rho}_{L}-\bar{\varphi}_{L}$ with

$$
\bar{\varphi}_{L}=-\frac{v^{\bar{h}} y_{h}}{2\left(1+L^{2}\right) \sqrt{1+L^{2}}}
$$

and for $G_{c, L}$ we have $\Omega_{c, L}=\bar{\rho}_{c, L}-\bar{\varphi}_{c, L}$ with

$$
\bar{\varphi}_{c, L}=-\frac{v^{\bar{h}} y_{h}}{2 L^{3}} .
$$

From (4.6) and proposition 4.3, $\partial_{\bar{j}}\left(v^{\bar{m}}\right)$ depends only on the variables $\left(x^{h}\right)$, and thus we can put

$$
\begin{equation*}
v^{\bar{m}}=y^{a} A_{a}^{m}+B^{m} \tag{4.7}
\end{equation*}
$$

where $A^{m}{ }_{a}$ and B^{m} are certain functions depending only on the variable $\left(x^{h}\right)$. Furthermore, we can easily show that $A^{m}{ }_{a}$ and B^{m} are the components of a $(1,1)$ tensor field and a contravariant vector field on M, respectively.

Substituting (4.7) into (4.5), we have,

$$
\begin{equation*}
\nabla_{j} B_{i}+\nabla_{i} B_{j}=0 \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{a}\left(K_{j a h i}+K_{i a h j}\right)-\nabla_{j} A_{i h}-\nabla_{i} A_{j h}=0 \tag{4.9}
\end{equation*}
$$

where $B_{i}=g_{i m} B^{m}$ and $A_{i h}=g_{i m} A^{m}{ }_{h}$.
Proposition 4.4. If we put

$$
B=B^{b} \partial_{b}
$$

then the vector field B on M is an infinitesimal isometry of M.

Proof. From equation (4.8) we have,

$$
£_{B} g_{i j}=\nabla_{j} B_{i}+\nabla_{i} B_{j}=0
$$

This shows B is an infinitesimal isometry on M.
Proposition 4.5. If we put

$$
V=v^{h} \partial_{h}
$$

then the vector field V on M is an infinitesimal projective transformation of M.

Proof. Substituating (4.7) into (4.6), it follows:

$$
\begin{equation*}
A_{i j}=2 \Omega g_{i j}-\nabla_{i} v_{j} \tag{4.10}
\end{equation*}
$$

Substituating (4.10) into (4.9), we obtain,

$$
£_{V} \Gamma_{i j}^{h}=\delta_{i}^{h} \Omega_{j}+\delta_{j}^{h} \Omega_{i}
$$

where $\Omega_{i}=\nabla_{i} \Omega$. This shows that V is an infinitesimal projective transformation on M.

Now, we consider the converse problem, that is, let M admits an infinitesimal projective transformation $V=v^{h} \partial_{h}$. Then, we have the following proposition.

Proposition 4.6. The vector field X on $T M$ defined by

$$
X=v^{h} \delta_{h}+y^{r} A_{r}^{h} \partial_{\bar{h}}
$$

is an infinitesimal fibre-preserving conformal transformation on $T M$ with metric G, where,

$$
\begin{gathered}
A_{i}^{h}=g^{h r} A_{r i}, \quad A_{i j}=\nabla_{j} v_{i}+2 \Omega g_{i j}-£_{V} g_{i j}, \quad \Omega=\frac{1}{n+1} \nabla_{r} v^{r} \\
\bar{\varphi}=\frac{a^{\prime}\left(L^{2}\right)}{a\left(L^{2}\right)} y^{r} A_{r}^{h} y_{h}
\end{gathered}
$$

and $\bar{\rho}=\Omega+\bar{\varphi}$.

Proof. By proposition 4.2, it follows:

$$
\begin{aligned}
£_{X} G= & £_{X}\left(2 a\left(L^{2}\right) g_{i j} d x^{i} \delta y^{j}\right) \\
= & 2 X\left(a\left(L^{2}\right) g_{i j}\right) d x^{i} \delta y^{j}+2 a\left(L^{2}\right) g_{i j}\left(£_{X} d x^{i}\right) \delta y^{j} \\
& +2 a\left(L^{2}\right) g_{i j} d x^{i}\left(£_{X} \delta y^{j}\right) \\
= & 4 y^{r} A^{h}{ }_{r} a^{\prime}\left(L^{2}\right) y_{h} g_{i j} d x^{i} \delta y^{j}+4 a\left(L^{2}\right) \Omega g_{i j} d x^{i} \delta y^{j} \\
& +2 a\left(L^{2}\right) y^{r}\left(v^{b} K_{b j r i}+\nabla_{j} A_{i r}\right) d x^{i} d x^{j} \\
= & 4 a\left(L^{2}\right)\left(y^{r} A^{h} \frac{a^{\prime}\left(L^{2}\right)}{a\left(L^{2}\right)} y_{h}+\Omega\right) g_{i j} d x^{i} \delta y^{j} \\
& +2 a\left(L^{2}\right) y^{r}\left(v^{b} K_{b j r i}+\nabla_{j} A_{i r}\right) d x^{i} d x^{j} .
\end{aligned}
$$

On the other hand, from (4.10), we have,

$$
\begin{aligned}
\nabla_{j} A_{i r} & =g_{i m} \nabla_{j} \nabla_{r} v^{m}+2 \Omega_{j} g_{i r}-\left(£_{V} \Gamma_{j i}^{m}\right) g_{m r}-\left(£_{V} \Gamma_{j r}^{m}\right) g_{i m} \\
& =-v^{b} K_{b j r i}+\Omega_{j} g_{i r}-\Omega_{i} g_{j r}
\end{aligned}
$$

from which we obtain,

$$
£_{X} G=2 \bar{\rho} G
$$

Hence, X is an infinitesimal fibre-preserving conformal transformation on $T M$.
Proposition 4.6 holds for $T M$ with metric $G_{a, L}$ if we have,

$$
\bar{\varphi}_{a, L}=v^{\bar{h}} y_{h}\left(\frac{L^{2} a^{\prime}-\frac{1}{2} a}{L^{3}}\right)
$$

Similarly, for G_{L} we have,

$$
\bar{\varphi}_{L}=-\frac{v^{\bar{h}} y_{h}}{2\left(1+L^{2}\right) \sqrt{1+L^{2}}}
$$

and for $G_{c, L}$ we have,

$$
\bar{\varphi}_{c, L}=-\frac{v^{\bar{h}} y_{h}}{2 L^{3}}
$$

Now, using propositions 4.3 to 4.6 , we conclude the following theorem.
Theorem 4.7. Let M be an n-dimensional Riemannian manifold, and $T M$ be its tangent bundle with the metric G. Then, every infinitesimal fibre-preserving conformal transformation X on $T M$ naturally induces an infinitesimal projective transformation V on M. Furthermore, the correspondence $X \longrightarrow V$ gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations of $T M$ onto the Lie algebra of infinitesimal projective transformations of M, and the kernel of this homomorphism is naturally homomorphic onto the Lie algebra of infinitesimal isometries of M.

The above theorem holds for Pseudo-Riemannian metric $G_{a, L}, G_{L}$ and $G_{c, L}$.

References

[1] P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Application in Physics and Biology, FTPH, Vol. 58, Kluwer, Dordecht, 1993.
[2] M. Anastasiei, Locally conformal Kähler structures on tangent manifold of a space form, Libertas Math. 19 (1999) 71-76.
[3] R. Miron and M. Anastasiei, The Geometry of Lagrange spaces: Theory and Applications, Kluwer Acad. Publ. FTPH, No.59, 1994.
[4] E. Peyghan, A. Razavi and A. Heydari, Conformal vector fields on tangent bundle with a special lift Finsler metric, Iranian Journal of Science and Technology, Trans. A, 2007, to appear.
[5] K. Yamauchi , On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds, Ann. Rep. Asahikawa. Med. Coll. Vol. 15, 1994.

Abbas Heydari
Department of Mathematics, Tarbiat Modares University, Tehran, Iran.
Email: aheydari@modares.ac.ir
\section*{Esmail Peyghan}
Faculty of Science, Department of Mathematics, Arak University, Arak, Iran.
Email: epeyghan@gmail.com

[^0]: MSC(2000): Primary: 53C99, 53A99; Secondary: 58A99
 Keywords: Almost product structure, complete lift metric, conformal transformation Received:15 November 2007, Accepted:3 May 2008
 *Corresponding author
 (c) 2008 Iranian Mathematical Society.

