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DIFFERENTIAL POLYNOMIAL RINGS OF
TRIANGULAR MATRIX RINGS

H. GHAHRAMANI AND A. MOUSSAVI*

Abstract. Let R, S be rings with identity and M be a unitary
(R, S)-bimodule. We characterize homomorphisms and derivations

of the generalized matrix ring T =

(
R M
0 S

)
, and provide a tri-

angular representation of the differential polynomial ring T [θ; d].

1. Introduction

Throughout the paper all rings are assumed to have identity and all
modules are unitary. The additive map δ : R→ R is called a derivation,
if for each a, b ∈ R, δ(ab) = aδ(b) + δ(a)b. For an element x ∈ R, the
mapping Ix : R→ R, given by Ix(a) = ax−xa, for each a ∈ R, is called
an inner derivation of R.

We denote R[θ; δ] to be the differential polynomial ring whose ele-
ments are the polynomials over R, the addition is defined as usual and
the multiplication is subject to the relation θa = aθ+δ(a) for any a ∈ R.

Derivations of the algebra of triangular matrices and some class of
their subalgebras have been the object of active research for a long time
[1, 4, 5, 7-9]. Coelho and Milies provided in [4] a description of the
derivations in Tn(R), the upper triangular matrices over R. They proved
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that every derivation is the sum of an inner derivation and another one
induced from R. Jondrup in [7] gave a new proof of this result. A similar
result for full matrix rings appears in [5], and the special case where R
is an algebra over a field, with char(R) 6= 2, 3 and n > 2, is given in [1].
The case of upper triangular matrix rings over a simple algebra finite
dimensional over its center appears in [5].

Here we give a description of homomorphisms and derivations of gen-

eralized matrix rings T :=
(
R M
0 S

)
assuming no restrictions on R,S

and M , other than the existence of the identity element. We shall show
that they are obtained in a very natural way. Analysts have studied
these derivations in the context of algebras on certain normed spaces.
Many widely studied algebras, including upper triangular matrix alge-
bras, nest algebras and triangular Banach algebras, may be viewed as
triangular algebras.

A large class of ring extensions which have a generalized triangular
matrix representations is investigated by Birkenmeier et al. in [3].

Let δR : R→ R and δS : S → S be derivations. The additive mapping
τ : M → M is called a generalized derivation with respect to (δR, δS),
on M , if τ(rm) = δR(r)m + rτ(m), τ(ms) = τ(m)s +mδS(s), for each
r ∈ R,s ∈ S and m ∈M .

If d : T → T is the derivation induced by the generalized derivation
τ with respect to (δR, δS).i.e,

d

(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
, for each r ∈ R, s ∈ S and m ∈M ,

then we provide a triangular representation of the differential polynomial
ring T [θ; d] in terms of the triangular matrix ring. Indeed, we prove the
isomorphism:

T [θ; d] ∼=
(
R[x; δR] M [x, y; τ ]

0 S[y; δS ]

)
,

where R[x; δR] and S[y; δS ] are the differential polynomial rings over R
and S, and M [x, y; τ ] is an (R[x; δR], S[y; δS ])-bimodule.

We denote Eij for the matrix units, for all i, j.
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2. Generalized module homomorphisms

In order to describe homomorphisms of the generalized matrix rings,
first we introduce and study the notion of generalized module homomor-
phisms.

Definition 2.1. Let R, R′, S and S′ be rings, M an (R,S)-bimodule,
N an (R′, S′)-bimodule, ϕ1 : R → R′ and ϕ2 : S → S′ be ring homo-
morphisms. Then an additive mapping T : M → N is called a general-
ized module homomorphism related to (ϕ1, ϕ2), if T (rm) = ϕ1(r)T (m),
T (ms) = T (m)ϕ2(s), for each r ∈ R, s ∈ S and m ∈M.

Lemma 2.2. Let M be an (R,S)-bimodule, N be an (R′, S′)-bimodule
and
T : M → N be a generalized module homomorphism related to (ϕ1, ϕ2).

Then, the mapping Ψ :
(
R M
0 S

)
→

(
R′ N
0 S′

)
, given by

Ψ
(
r m
0 s

)
=

(
ϕ1(r) T (m)

0 ϕ2(s)

)
, is a ring homomorphism.

Proof. Clearly Ψ is additive. We have,

Ψ[
(
r m
0 s

) (
r′ m′

0 s′

)
]

=
(
ϕ1(r)ϕ2(r′) ϕ1(r)T (m′) + T (m)ϕ2(s′)

0 ϕ2(s)ϕ2(s′)

)
= Ψ

(
r m
0 s

)
Ψ

(
r′ m′

0 s′

)
. �

Theorem 2.3. Let R, R′, S and S′ be rings with identity, M be a
unitary (R,S)-bimodule and N be a unitary (R′, S′)-bimodule. If Ψ :(
R M
0 S

)
→

(
R′ N
0 S′

)
is a mapping, then the followings are equivalent:

I. Ψ
(
r m
0 s

)
=

(
ϕ1(r) T (m)

0 ϕ2(r)

)
, where ϕ1 : R → R′ and ϕ2 :

S → S′ are ring homomorphisms and T : M → N is a generalized
module homomorphism related to (ϕ1, ϕ2).
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II. Ψ is a ring homomorphism such that Ψ(RE11) ⊆ R′E11, and
Ψ(SE22) ⊆ S′E22.

Proof. (I ⇒ II). The proof clearly follows from Lemma 2.2.

(II ⇒ I). The mappings ϕ1 : R→ R′ and ϕ2 : S → S′ are defined by

Ψ(rE11) = ϕ1(r)E11 and Ψ(sE22) = ϕ2(s)E22. By considering the effect

of Ψ on
(
r + r′ 0

0 s+ s′

)
we see that ϕ1, ϕ2 are additive, and

Ψ
(
rr′ 0
0 ss′

)
= Ψ

(
r 0
0 s

)
Ψ

(
r′ 0
0 s′

)
. So we have,(

ϕ1(rr′) 0
0 ϕ2(ss′)

)
=

(
ϕ1(r)ϕ1(r′) 0

0 ϕ2(s)ϕ2(s′)

)
.

Hence, we have,

ϕ1(rr′) = ϕ1(r)ϕ1(r′) and ϕ2(ss′) = ϕ2(s)ϕ2(s′), and ϕ1, ϕ2 are ring
homomorphisms.

Now, assume that Ψ(mE12) =
(
α(m) T (m)

0 β(m)

)
, for some α : M → R′,

T : M → N and β : M → S′. Then, for each m ∈M , we have,

Ψ(mE12) = Ψ(E11mE12) = ϕ1(1)E11

(
α(m) T (m)

0 β(m)

)
. So,(

α(m) T (m)
0 β(m)

)
=

(
ϕ1(1)α(m) ϕ1(1)T (m)

0 0

)
and hence

β(m) = 0. So, Ψ(mE12) = Ψ(mE12E22) =
(
α(m) T (m)

0 β(m)

)
ϕ2(1)E22.

Thus, we have,(
α(m) T (m)

0 β(m)

)
=

(
0 T (m)ϕ2(1)
0 β(m)ϕ2(1)

)
,

and so α(m) = 0, for each m ∈M .

Therefore, Ψ(mE12) = T (m)E12. We have Ψ(rmE12) = Ψ(rE11)Ψ(mE12),
and hence T (rm)E12 = ϕ1(r)T (m)E12. Thus, T (rm) = ϕ1(r)T (m).
Similarly,
T (ms) = T (m)ϕ2(s).
Therefore, we have,



Differential polynomial rings of triangular matrix rings 75

Ψ
(
r m
0 s

)
=

(
ϕ1(r) T (m)

0 ϕ2(s)

)
,

and that ϕ1, ϕ2 and T satisfy the required conditions. �

Proposition 2.4. If
(
R M
0 S

)
and

(
R′ N
0 S′

)
have the identity el-

ements and Ψ :
(
R M
0 S

)
→

(
R′ N
0 S′

)
is a ring homomorphism

such that
Ψ(E11) = E11 and Ψ(E22) = E22, then Ψ satisfies the conditions I and
II of Theorem 2.3.

Proof. Let Ψ(rE11) =
(
α(r) β(r)

0 γ(r)

)
for some α : R → R′, β : R →

N and γ : R→ S′. We have, Ψ(rE11) = Ψ(rE11)Ψ(E11). So(
α(r) β(r)

0 γ(r)

)
=

(
α(r) β(r)

0 γ(r)

)
E11 = α(r)E11

and hence β(r) = 0, γ(r) = 0.

So, Ψ(rE11) = α(r)E11, and RΨ(E11) ⊆ R′E11. We have,

Ψ(sE22) =
(
α′(s) β′(s)

0 γ′(s)

)
,

where α′ : S → R′, β′ : S → N and γ′ : S → S′ are additive mappings.
But, Ψ(sE22) = Ψ(E22)Ψ(sE22), and(
α′(s) β′(s)

0 γ′(s)

)
= E22

(
α′(s) β′(s)

0 γ′(s)

)
= γ′(s)E22, so α′(s) = 0,

β′(s) = 0.

Thus, Ψ(sE22) = γ′(s)E22, and hence Ψ(SE22) ⊆ S′E22. Therefore, Ψ
satisfies the condition II of Theorem 2.3. �

Example 2.5. The converse of Proposition 2.4 is not true, in gen-
eral. Let M be a unitary (R,S)-bimodule. Then, we make M a uni-
tary R × S-bimodule by defining (r, s)m := rm,m(r, s) := ms, for each
r ∈ R,m ∈M and s ∈ S.
Define ϕ1 : R→ R× S and ϕ2 : S → R× S, given by ϕ1(r) = (r, 0) and
ϕ2(s) = (0, s), for each r ∈ R, s ∈ S. Then, ϕ1 and ϕ2 are ring homomor-
phisms. Let T ∈ Hom(RMS ,RMS). Now we see that T is a generalized
module homomorphism related to (ϕ1, ϕ2). Since T (rm) = rT (m), then
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we have T (rm) = (r, 0)T (m) = ϕ1(r)T (m) and T (ms) = T (m)s, and so
T (ms) = T (m)(0, s) = T (m)ϕ2(s). Thus, the mapping

Ψ :
(
R M
0 S

)
→

(
R× S M

0 R× S

)
,

given by

Ψ
(
r m
0 s

)
=

(
ϕ1(r) T (m)

0 ϕ2(s)

)
,

is a ring homomorphism and we have,

Ψ(E11) = ϕ1(1)E11 = (1, 0)E11, Ψ(E22) = (0, 1)E22. Note that (1, 0)
and (0, 1) are not the identity elements of R× S. �

Lemma 2.6. Let R,R′, S and S′ be rings, M be an (R,S)-bimodule,
N be an (R′, S′)-bimodule, and ϕ1 : R → R′, ϕ2 : S → S′ be ring
isomorphisms. Let T : M → N be a bijective generalized homomorphism
related to (ϕ1, ϕ2). Then, the mapping defined in Lemma 2.2 is a ring
isomorphism.

Proof. By Lemma 2.2, Ψ is a ring homomorphism. We have,

Ψ
(
r m
0 s

)
= 0,

and so ϕ1(r) = 0, T (m) = 0, ϕ2(m) = 0. So
(
r m
0 s

)
= 0, and hence

Ψ is injective. If
(
r′ n
0 s′

)
∈

(
R′ N
0 S′

)
and ϕ1, ϕ2, T are surjective,

then there exist r ∈ R, s ∈ S and m ∈M, such that ϕ1(r) = r′, ϕ2(s) =
s′ and T (m) = n. So, we have,

Ψ
(
r m
0 s

)
=

(
ϕ1(r) T (m)

0 ϕ2(s)

)
=

(
r′ n
0 s′

)
.

Therefore, Ψ is surjective and hence a ring isomorphism. �

The mapping T in Lemma 2.6 is called a generalized module isomor-
phism related to (ϕ1, ϕ2).

3. Derivations on generalized triangular matrix rings

Let R,S be rings with identity and M be an (R,S)-bimodule. In
this section we determine the derivations of the generalized triangular
matrix ring
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T =:
(
R M
0 S

)
,

in terms of derivations of R and S and some special mapping of M .

Definition 3.1. Let R,S be rings, M be an (R,S)-bimodule, δR : R→
R and δS : S → S be derivations. The additive mapping τ : M →M is
called a generalized derivation with respect to (δR, δS), onM , if τ(rm) =
δR(r)m + rτ(m) and τ(ms) = τ(m)s + mδS(s), for each r ∈ R,s ∈ S
and m ∈M .

Theorem 3.2. If d : T → T is a derivation, then d = d̄+ IA, where IA
is an inner derivation with A ∈ T and d̄, is given by

d̄

(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
,

for derivations δR : R → R, δS : S → S and a generalized derivation
τ : M →M.

Proof. It is enough to determine d on rE11,mE12 and sE22, for each
r ∈ R, s ∈ S and m ∈M . Then, we have,
d(E11) = d(E2

11) = E11d(E11) + d(E11)E11. (∗)

Let d(E11) =
(
r b
0 s

)
, for some r ∈ R, s ∈ S and b ∈ M . From (∗),

we have,(
r b
0 s

)
= E11

(
r b
0 s

)
+

(
r b
0 s

)
E11 =

(
2r b
0 0

)
.

So we have r = 0 and s = 0, and hence d(E11) = bE12. But,

d(E11) + d(E22) = d(I) = 0, so d(E22) = −bE12. Now we have,
d(mE12) = d(E11mE12) = E11d(mE12) + d(E11)mE12. (∗∗)
Assume that

d(mE12) =
(
y1 y2

0 y3

)
,

for some y1 ∈ R, y3 ∈ S and y2 ∈M . From (∗∗),
we have,(
y1 y2

0 y3

)
= E11

(
y1 y2

0 y3

)
+ bE12mE12 =

(
y1 y2

0 0

)
. So y3 = 0.

We also have,
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d(mE12) = d(mE12E22) = mE12d(E22) + d(mE12)E22.
So,(
y1 y2

0 y3

)
=

(
0 y2

0 y3

)
.

Thus, we have y1 = 0 and that d(mE12) = y2E12 = τ(m)E12. So,
τ : M →M is a mapping.

To determine d(rE11) for each r ∈ R, assume d(rE12) =
(
z1 z2
0 z3

)
,

with z1 ∈ R, z3 ∈ S and z2 ∈M . We have,

rE11 = E11rE11 = rE11E11, so d(rE11) = d(rE11)E11 + rE11d(E11),
for each r ∈ R. So,(

z1 z2
0 z3

)
=

(
z1 rb
0 0

)
.

Hence z2 = rb and z3 = 0.

Now define δR : R→ R given by δR(r) = z1. Then we have,

d(rE11) =
(
δR(r) rb

0 0

)
.

Now we determine d(sE22) for each s ∈ S. Assume that d(sE22) =(
w1 w2

0 w3

)
, with w1 ∈ R, w3 ∈ S and w2 ∈ M . We have, d(sE22) =

d(E22sE22) = d(E22)sE22+E22d(sE22). So,
(
w1 w2

0 w3

)
=

(
0 −bs
0 w3

)
,

and hence w2 = −bs and w1 = 0. Now we define δS : S → S given by

δS(s) = w3. So, d(sE22) =
(

0 −bs
0 δS(s)

)
. Now by the above computa-

tions we get,

d

(
r m
0 s

)
=

(
δR(r) rb

0 0

)
+

(
0 τ(m)
0 0

)
+

(
0 −bs
0 δS(s)

)
=

(
δR(r) τ(m)

0 δS(s)

)
+ IA

(
r m
0 s

)
,

where A = bE12 = d(E11).
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Now we show that δR and δS are derivations of R and S respectively
and τ is a generalized (δR, δS)-derivation.
For each r, r′ ∈ R, we have d((r + r′)E11) = d(rE11) + d(r′E11). So
δR(r + r′) = δR(r) + δR(r′).

Now, d(rr′E11) =
(
δR(rr′) rr′b

0 0

)
, and

d(rr′E11) = d(rE11r
′E11) = d(rE11)r′E11 + rE11d(r′E11)

=
(
δR(r)r′ + rδR(r′) rr′b

0 0

)
.

Thus, we have δR(rr′) = δR(r)r′ + rδR(r′) for each r, r′ ∈ R, and hence
δR is a derivation of R. Similarly, δS is a derivation of S.
Next, we have that τ is an additive mapping of M . We have,
d(rmE12) = d(rE11mE12) = d(rE11)mE12 + rE11d(mE12). So,(

0 τ(rm)
0 0

)
=

(
0 δR(r)m+ rτ(m)
0 0

)
.

Thus, for each r ∈ R and m ∈M , τ(rm) = rτ(m) + δR(r)m.
Similarly, τ(ms) = τ(m)s+mδS(s), for each s ∈ S and m ∈M . There-
fore, τ is a generalized derivation, and d = d̄+ IA, where

d̄

(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
. �

Now, we show that for every given derivations δR : R → R and
δS : S → S, every generalized derivation τ : M → M with respect to
(δR, δS), induces a derivation d̄ on the formal triangular matrix ring T .

Proposition 3.3. Let M be a unitary (R,S)-bimodule. If d is a map-

ping of
(
R M
0 S

)
, then the followings are equivalent:

I. d =
(
δR τ
0 δS

)
, where δR : R → R, δS : S → S are derivations

and τ : M →M is a generalized derivation related to (δR, δS).

II. d is a derivation of
(
R M
0 S

)
such that d(RE11) ⊆ RE11.

III. d is a derivation of
(
R M
0 S

)
such that d(E11) = 0.
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IV. d is a derivation of
(
R M
0 S

)
such that d(SE22) ⊆ SE22.

V. d is a derivation of
(
R M
0 S

)
such that d(E22) = 0.

Proof. (I⇒ II). Since δR, δS , and τ are additive, then d is also additive.
So, we have,

d[
(
r m
0 s

) (
r′ m′

0 s′

)
] =(

rδR(r′) + δR(r)r′ rτ(m′) + δR(r)m′ + τ(m)s′ +mδS(s′)
0 sδS(s′) + δS(s)s′

)
=(

r m
0 s

)
d

(
r′ m′

0 s′

)
+ d

(
r m
0 s

) (
r′ m′

0 s′

)
.

So, d is a derivation. We have d(rE11) = δR(r)E11 for each r ∈ R, and
so d(RE11) ⊆ RE11.

(II⇒ III). By Theorem 3.2, we have,

d

(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
+ IbE12

(
r m
0 s

)
with b ∈ M . We

have, d(E11) = bE12. Since d(RE11) ⊆ RE11, then b = 0. So, d(E11) =
0.
(III ⇒ IV). We have,

d

(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
+ (rb− bs)E12, d(E11) = 0. So, b = 0.

We have d
(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
,

d(SE22) = δS(s)E22, and so d(SE22) ⊆ SE22.

(IV⇒ V). It is similar to (II⇒ III).
(IV⇒ I). We have,

d

(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
+(rb−bs)E12, and so d(E22) = −bE12.

Thus, b = 0, and hence d
(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
.

�
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By the above result we see that any generalized derivation τ induces a

derivation d̄ on
(
R M
0 S

)
, which satisfies one of the above equivalent

conditions; and every derivation on
(
R M
0 S

)
, is a sum of an inner

derivation and a derivation d̄ induced by τ .

Proposition 3.4. Let M be a unitary (R,S)-bimodule. If d is a map-

ping of
(
R M
0 S

)
, then the followings are equivalent:

I. d = IbE12, where 0 6= b ∈M .

II. d is a nonzero derivation of
(
R M
0 S

)
, d

(
R 0
0 S

)
⊆ ME12

and d(mE12) = 0, for each m ∈M .

Proof. (I⇒ II). It is clear. (II⇒ I). We have,

d

(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
+ (rb− bs)E12, with b ∈M .

We see that δR = 0, since otherwise, if for some r ∈ R, δR(r) 6= 0,
then d(rE11) = δR(r)E12 + rbE12 6∈ ME12, which contradicts the as-
sumption.

Similarly, δS = 0. We also have τ = 0, since otherwise, if for some
m 6= 0, τ(m) 6= 0, then d(mE12) = τ(m)E12 6= 0. So,

d

(
r m
0 s

)
= (rb− bs)E12 = IbE12

(
r m
0 s

)
.

Since d 6= 0, we have b 6= 0. �

By the following example we can not weaken the condition II in Propo-
sition 3.4.

Example 3.5. If 0 6= T ∈ Hom(RMS ,RMS), then T is a generalized
(I0, I0)-derivation. Since T (rm) = rT (m) = rT (m) + I0(r)m,

T (ms) = T (m)s = T (m)s+mI0(s), and the mapping ∆ on
(
R M
0 S

)
,

given by

∆
(
r m
0 s

)
=

(
0 T (m)
0 0

)
+

(
0 rb− bs
0 0

)
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is a derivation. So, we have, ∆(E11) = bE12 6= 0 and ∆m(E12) =
τ(m)E12.
But, IdE12mE12 = 0, with m ∈ M . So, this contradicts the fact that ∆
is of the form of IdE12 .
Let δS : S → S be a nonzero derivation with δS(S) ⊆ annSM . Then,

the mapping ∆ :
(
R M
0 S

)
→

(
R M
0 S

)
, given by

∆
(
r m
0 s

)
= δS(s)E22 + IbE12

(
r m
0 s

)
, b 6= 0, is a derivation.

We have ∆(E11) = bE12 6= 0, and ∆(RE11) ⊆ME12,∆(mE12) = 0. But,

∆ 6= IdE12 , since ∆(sE22) =
(

0 −bs
0 δS(s)

)
. We also have IdE12(sE22) =

−dsE12, as ∆SE22 6⊆ME12 and IdE12(SE22) ⊆ME12. �

Let a ∈ R and b ∈ S be fixed elements. Define the mapping τ(a,b) :
M →M given by τ(a,b)(m) = am−mb for each m ∈M . Then, τ(a,b) is a
generalized derivation with respect to (I−a, I−b), on M , where I−a, I−b

are the inner derivations.
For each r ∈ R and m ∈M , we have,

τ(a,b)(rm) = arm− rmb = arm+ ram− ram− rmb =
(ar − ra)m+ r(am−mb) = I−a(r)m+ rτ(a,b)(m).

Similarly, we have τ(a,b)(ms) = τ(a,b)(m)s + mI−b(s), for each s ∈ S
and m ∈M .

We call τ(a,b) the generalized inner derivation on M .

Lemma 3.6. The induced derivation of τ(a,b) on T with respect to
(I−a, I−b) is an inner derivation.

Proof. It is clear.

We notice that the notion of the generalized derivation defined on a
module is a generalization of the notion of the derivation defined on a
ring. If R is a ring, d : R → R a derivation and R is considered as
an (R,R)-bimodule, then d is a (d, d)-generalized derivation on R, and
every inner derivation Ia of R is the inner generalized derivation τ(a,a)

on R.
If T : M → M is an (R,S)-bimodule homomorphism, that is T is

an additive mapping and T (rm) = rT (m), T (ms) = T (m)s, for each
r ∈ R,m ∈M, and s ∈ S, then T is a generalized derivation with respect
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to (I0, I0) on M . So, the generalized derivation is a generalization of
bimodule homomorphisms.

Lemma 3.7. If τ is a generalized derivation with respect to (δR, δS) on
M , then we have the Libnietz formula as follows:

τn(rm) =
∑n

k=0

(
n
k

)
δk
R(r)τn−k(m),

τn(ms) =
∑n

k=0

(
n
k

)
τn−k(m)δk

S(s),

for each r ∈ R, s ∈ S and m ∈M.

Proof. It is clear. �
Now, we provide another proof of the main result due to Coelho and

Milies [4], which is different from the one due to Jondrup [7]. This is a
corollary and an application of Theorem 2.2.

Theorem 3.8. Let R be a ring with identity. Every derivation 4 on
Tn(R), with n ≥ 2, is of the from: 4(rij)i,j = (δ(rij))i,j + IA(rij)i,j ,
where δ : R → R is a derivation and IA is the inner derivation induced
by A.

Proof. We first consider the case n = 2. Let T2(R) =
(
R R
0 R

)
,

and 4 :
(
R R
0 R

)
→

(
R R
0 R

)
be a derivation. We have,

4
(
r1 r2
0 r3

)
=

(
δ(r1) τ(r2)

0 δ′(r3)

)
+ IbE12

(
r1 r2
0 r3

)
,

and τ : R → R is a generalized derivation related to (δ, δ′). We have,
τ(r) = τ(r1) = rτ(1) + δ(r) = ra+ δ(r), with a = τ(1), and r ∈ R. So,

τ(r) = τ(1r) = τ(1)r + δ′(r) = ar + δ′(r), and ra + δ(r) = ar + δ′(r).
Hence δ(r) = ar − ra+ δ′(r). So,

4
(
r1 r2
0 r3

)
=

(
δ(r1) τ(r2)− r2a+ r2a

0 δ′(r3)− Ia(r3) + Ia(r3)

)
+IbE12

(
r1 r2
0 r3

)
=

(
δ(r1) δ(r2)

0 δ(r3)

)
+ IaE22

(
r1 r2
0 r3

)
+ IbE12

(
r1 r2
0 r3

)
=

(
δ(r1) δ(r2)

0 δ(r3)

)
+ IbE12+aE22

(
r1 r2
0 r3

)
.
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So, 4 satisfies the required conditions.
Now, we prove the theorem by induction on n, for n ≥ 2. Assume

inductively that the result holds for n. Now, we have the ring isomor-
phism

Tn+1(R) ∼=
(
R Rn

0 Tn(R)

)
,

with Rn = R× · · · ×R, where multiplication on Rn is given by
r(r1, · · · , rn) = (rr1, · · · , rrn), with r, r1, · · · , rn ∈ R, and multiplication
by Tn(R) to Rn is the matrix multiplication. The derivation 4 on(
R Rn

0 Tn(R)

)
is 4 =

(
δ1 τ ′

0 δ̄2

)
+ IB, where δ1 : R → R, δ̄2 : Tn(R) → Tn(R) are

derivations and τ ′ : Rn → Rn is the generalized derivation. By the hy-
pothesis,

δ̄2(rij)i,j = (δ2(rij))i,j + IA(rij), A ∈ Tn(R), we have,

4 =
(
δ1 τ ′

0 (δ2)ij + IA

)
+ IB.

Since IA is an inner derivation on Tn(R) , then τ(0,A) is a generalized

derivation with respect to (I0, IA) and
(

0 τ(0,A)

0 IA

)
is an inner deriva-

tion on
(
R Rn

0 Tn(R)

)
. So, we have,

4 =
(
δ1 τ ′ − τ(0,A)

0 (δ2)ij

)
+

(
0 τ(0,A)

0 IA

)
+ IB,

where τ = τ ′−τ(0,A) is the generalized derivation related to (δ1, (δ2)(i,j)).

We determine the structure of the derivation
(
δ1 τ
0 (δ2)

)
in terms of

δ1. We have,
τ(0, · · · , ri, · · · , 0) = τ [(0, · · · , ri, · · · , 0)eii] =
τ(0, · · · , ri, · · · , 0)eii + (0, · · · , ri, · · · , 0)(δ2(1)eii).
If τ(0, · · · , ri, · · · , 0) = (u1, · · · , un), then we have,
(u1, · · · , un) = (u1, · · · , un)eii = (0, · · · , ui, · · · , 0).
So for each j 6= i, uj = 0, and hence τ(0, · · · , ri, · · · , 0) =
(0, · · · , τi(ri), · · · , 0). By the definition, τi : R → R is additive, for
i = 1, · · · , n. We have,
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τ(0, · · · , rr′i, · · · , 0)
= τ [r(0, · · · , r′i, · · · , 0)]
= rτ(0, · · · , r′i, · · · , 0) + δ1(r)(0, · · · , r′i, · · · , 0).
So, (0, · · · , τi(rr′i), · · · , 0) = (0, · · · , rτi(r′i) + δ1(r)r′i, · · · , 0), and hence
τi(rr′i) = rτi(r′i) + δ1(r)r′i. Thus, τi(r) = τi(r1) = rτi(1) + δ1(r). We
have,
τ(0, · · · , r′ir, · · · , 0) = τ [(0, · · · , r′i, · · · , 0)reii], and
(0, · · · , τi(r′ir), · · · , 0) = (0, · · · , τi(r′i), · · · , 0)reii+(0, · · · , r′i, · · · , 0)δ2(r)eii
= (0, · · · , τi(r′i)r + r′iδ2(r), · · · , 0). So τi(r′ir) = τi(r′i)r + r′iδ2(r).
Hence, τi(r) = τi(1r) = τi(1)r+ δ2(r). Therefore, τi is a (δ1, δ2) general-
ized derivation of R. For each r ∈ R, (r, 0, · · · , 0)e1i = (0, · · · , r, · · · , 0),
and hence τ [(r, 0, · · · , 0)e1i] = τ(0, · · · , r, · · · , 0). So, we have,
(0, · · · , τi(r), · · · , 0) = (τ1(r), 0, · · · , 0)e1i + (r, 0, · · · , 0)δ2(1)e1i. Thus,
(0, · · · , τi(r), · · · , 0) = (0, · · · , τ1(r), · · · , 0). So τi(r) = τ1(r). Hence, all
τi are equal. Assume that τi(1) = a. So,
τ(r1, · · · , rn) = (τ1(r1), · · · , τ1(rn)) = (r1a+δ1(r1), · · · , rna+δ1(rn)) =
= (r1, · · · , rn)aIn + (δ1(r1), · · · , δ1(rn)). So, we have,
τ1(r) = ra+ δ1(r) = ar + δ2(r). Hence, δ2(r) = ra− ar + δ1(r). Thus, δ2(r11) · · · δ2(r1n)

. . .
...

0 δ2(rnn)

 = −

 ar11 · · · ar1n

. . .
...

0 arnn


+

 r11a · · · r1na
. . .

...
0 rnna

 +

 δ1(r11) · · · δ1(r1n)
. . .

...
0 δ1(rnn)


= −aIn

 r11 · · · r1n

. . .
...

0 rnn

 +

 r11 · · · r1n

. . .
...

0 rnn

 aIn + (δ1(rij)i,j).

So if d =
(
δ1 τ
0 (δ2)

)
, then we have

d


r11 (r12, · · · , r1,n+1)

0

 r22 · · · r2,n+1

. . .
...

0 · · · rn+1,n+1


 =
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δ1(r11) τ(r12, · · · , r1,n+1)

0

 δ2(r22) · · · δ2(r2,n+1)
. . .

...
0 · · · δ2(rn+1,n+1)


 =

(
δ1(r11) (r12, · · · , r1,n+1)A + (δ1(r12), · · · , δ1(r1,n+1))

0 BA− AB + (δ1(rij)i,j)

)
=

δ1(r11) (δ1(r12), · · · , δ1(r1,n+1))

0

 δ1(r22) · · · δ1(r2,n+1)
. . .

...
0 · · · δ1(rn+1,n+1)


 +

I( 0 0
0 A

)(
r11 (r12, · · · , r1,n+1)
0 B

)
,

where A = aIn and B =

 r22 · · · r2,n+1

. . .
...

0 · · · rn+1,n+1

 . Thus, we have,

∆(C) =


δ1(r11) (δ1(r12), · · · , δ1(r1,n+1))

0

 δ1(r22) · · · δ1(r2,n+1)
. . .

...
0 · · · δ1(rn+1,n+1)


 +

I( 0 0
0 A

)(C) +
(

0 τ(0,A)

0 IA

)
(C) + IB(C), where

C =


r11 (r12, · · · , r1,n+1)

0

 r22 · · · r2,n+1

. . .
...

0 · · · rn+1,n+1


 .

So, by the mentioned isomorphism, the derivation ∆ on Tn+1(R) is given
by:
∆(rij)i,j = (δ1(rij))i,j + ID(rij)i,j ,
with δ1 : R→ R a derivation. So the result follows. �
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4. Differential polynomial rings of triangular matrix rings

In this section, we study the differential polynomial extension of gen-
eralized matrix rings.

In [3], Birkenmeier and Park studied the condition of having a gen-
eralized triangular matrix representation to pass between a ring R and
some of its ring extensions.

If R and S are rings and M is an (R,S)-bimodule, then we provide a
triangular representation of differential polynomial ring T [θ; d].

Lemma 4.1. Let δ be a derivation of R and S = R[x; δ].
(I). We consider the ring T and ring homomorphism Φ : R→ T , so

that for each r ∈ R and an element y ∈ T , yΦ(r) = Φ(r)y + Φ(δ(r)).
In this case, there exists a unique ring homomorphism Ψ : S → T , such
that Ψ |R= Φ, and Ψ(x) = y. Indeed, we have Ψ(Σirix

i) =
∑

i Φ(ri)yi.
(II). If S′ = R[x′; δ], then there exists a unique ring isomorphism

Ψ : S → S′ with Ψ(x) = x′ and Ψ |R is the identity map on R.

Proof. [6, page 10, Exercise 1H].

Proposition 4.2. Let R be a ring, δ1, Ia and δ be derivations on R
such that δ = δ1 + Ia. In this case, we have R[x; δ1] ∼= R[θ; δ]. Indeed,
we have R[θ; δ] = R[θ + a; δ1].

Proof. We consider the mapping φ : R → R[θ; δ], where φ(r) = r and
y = θ + a ∈ R[θ; δ]. In this case, we have, yφ(r) = (θ + a)r = θr + ar =
rθ + δ(r) + ar
= rθ+δ1(r)+Ia(r)+ar = = rθ+δ1(r)+ra−ar+ar = r(θ+a)+δ1(r) =
φ(r)y + φ(δ1(r)).
So, by Lemma 4.1, there exists a unique ring homomorphism ψ : R[x; δ] →
R[θ; δ], with ψ |R= φ. So, for each r ∈ R, ψ(r) = φ(r) = r, and
ψ(x) = y = θ + a, ψ(

∑
i rix

i) =
∑

i ri(θ + a)i.
Applying Lemma 3.1 on φ : R→ R[x; δ1], with φ(r) = r and y = x−a ∈
R[x; δ1], we then have,
yφ(r) = (x−a)r = xr−ar = rx+ δ1(r)−ar = rx+ δ1(r)+ ra− ra−ar
= r(x− a) + δ1(r) + Ia(r) = φ(r)y + φ(δ(r)).
So, there exists a unique ring homomorphism ψ′ : R[θ; δ] → R[x; δ1],
where ψ′(r) = φ(r) = r, r ∈ R, and ψ′(θ) = y = x − a, ψ′(

∑
i riθ

i) =∑
i ri(x− a)i.
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So, we have
ψoψ′(

∑
i riθ

i) = ψ(
∑

i ri(x − a)i) =
∑

i ψ(ri)ψ(x − a)i =
∑
ri(ψ(x −

a))i =
∑

i riθ
i.

We have ψ(x − a) = θ and ψoψ′ = idR[θ;δ]. Similarly, we get ψ′oψ =
idR[x;δ1]. Therefore, we have R[x; δ1] ∼= R[θ; δ]. Thus, ψ is an isomor-
phism, and hence
R[θ; δ] = R[θ + a; δ1]. �

If δ = Ia is an inner derivation on R, then δ = I0 + Ia, where I0 is the
zero derivation on R. By Proposition 4.2, we have R[θ; δ] = R[θ+a; I0] =
R[θ + a].

Now, let T =
(
R M
0 S

)
and d be a derivation of T . Then, we have,

d = d̄ + IA, where d̄ =
(
δR τ
0 δS

)
. By Proposition 4.2, we have

T [θ; d] ∼= T [x; d̄].
Thus, to determine the structure of T [θ; d], it is enough to take d the

derivation induced by a generalized derivation such as d =
(
δR τ
0 δS

)
.

If T is a ring with identity and e ∈ T is an idempotent such that
e′Te = 0, where e′ = 1 − e, then R = Te and S = e′T are subrings of
T , and M = eTe′ is an additive subgroup of T which is also an (R,S)-
bimodule. We have eTe = Te, e′Te′ = e′T , e and e′ are the identity
elements of R and S, respectively.

Proposition 4.3. Let R,S,M, e and e′ be as mentioned above. Then,

the mapping g : T →
(
R M
0 S

)
, given by g(t) =

(
te ete′

0 e′t

)
, for

each t ∈ R, is a ring isomorphism.

Proof. See [2, Proposition 1.3].

Following Birkenmeier and Park [3], we provide conditions of having
a generalized triangular matrix representation of the differential poly-
nomial rings.
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Theorem 4.4. Let M be a unitary (R,S)-bimodule and T =
(
R M
0 S

)
be the generalized triangular matrix ring and d : T → T be the derivation
induced by the generalized derivation τ with respect to δR and δS; i.e.,

d

(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
, for each r ∈ R, s ∈ S, ,andm ∈M .

In this case, we have the isomorphism,

T [θ; δ] ∼=
(
R[x; δR] M [x, y; τ ]

0 S[y; δS ]

)
,

where R[x; δR] and S[y; δS ] are differential polynomial rings over R and
S, and M [x, y; τ ] is an (R[x; δR], S[y; δS ])−bimodule which satisfying,

I. M [x, y; τ ] contains M as an (R,S)−subbimodule.
II. For each m ∈M , we have xm = my + τ(m).
III. Each element p ∈M [x, y; τ ] is uniquely written as:

p = m0 + m1y + m2y
2 + · · · + mky

k, with mj ∈ M , 1 ≤ j ≤ k and
yj ∈ S[y; δS ].

Proof. We have T ⊆ T [θ; δ] and that e = E11, e
′ = E22, are idempo-

tents. For each
(
r m
0 s

)
∈ T , and each positive integer n,

e′
(
r m
0 s

)
θne = sE22θ

nE11 = sE22
∑n

k=0

(
n
k

)
dk(E11)θn−k

= sE22E11θ
n = 0.

So, for each p ∈ T [θ; δ], we have,

e′pe = e′(
∑

i

(
ri mi

0 si

)
θi)e =

∑
i e
′
(
ri mi

0 si

)
θie = 0.

So, we have,
e′T [θ; δ]e = 0, and by Proposition 4.3,

T [θ; d] ∼=
(
T [θ; d]e eT [θ; d]e′

0 e′T [θ; d]

)
.

So T [θ; d] is isomorphic to a generalized triangular matrix ring. Next,
we show that

T [θ; d]e ∼= R[x; δR], e′T [θ; d] ∼= S[y; δS ].

We have the following computations:
θe = E11 ∈ T [θ; d]e, n ≥ 0;

θne =
∑n

k=0

(
n
k

)
dkE11θ

n−k = E11θ
n = eθn, and similarly,

θne′ = e′θn;
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rE11 = E11e ∈ T [θ; d]e.
So, RE11 ⊆ T [θ; d]e.
Now, the map Φ : R → T [θ; d]e, given by Φ(r) = rE11, is a ring homo-
morphism. If y = θe, then we have,
yΦ(r) = θE11rE11 = θrE11 = rE11θ+δR(r)E11 = rE11E11θ+δR(r)E11 =
rE11θE11 + δR(r)E11 = Φ(r)y + Φ(δR(r)).
So, by Lemma 4.1, there exists a unique ring homomorphism,
Ψ : R[x; δR] → T [θ; d]e
such that,
Ψ(r) = rE11, for each r,
Ψ(x) = θe,
Ψ(

∑
i rix

i) =
∑

i riE11(θe)i =
∑

i riE11θ
ie.

Now, we show that Ψ is a bijection.
Assume that Ψ(

∑
i rix

i) = 0. So,
∑

i riE11θ
ie = 0, and thus we have,∑

i riE11E11θ
i = 0, and hence

∑
i riE11θ

i = 0. Thus, for each i,
riE11 = 0 and hence ri = 0, for each i. Therefore

∑
i rix

i = 0, and
Ψ is injective.

Next, let pe = (
∑

i

(
ri mi

0 si

)
θi)E11 ∈ T [θ; d]e. Now, consider the

element q =
∑

i rix
i ∈ R[x; δR]. We have,

Ψ(q) = Ψ(
∑

i rix
i) =

∑
i riE11θ

iE11 = pe.
Therefore, Ψ is onto and hence R[x; δR] ∼= T [θ; d]e. By a similar method
we can show that there exists an isomorphism Ψ′ : S[y; δS ] → e′T [θ; d],
given by Ψ′(

∑
j sjy

j) =
∑

j sjE22θ
j , and that S[y; δS ] ∼= e′T [θ; d].

Next, we take eT [θ; d]e′ as M [x, y; τ ], and that eT [θ; d]e′ is an
(T [θ; d]e, e′T [θ; d])−bimodule. So, by the above isomorphisms,M [x, y; τ ]
is an (R[x; δR], S[y; δS ])−bimodule, by the following operations:
(
∑

j rjx
j)(epe′) = Ψ(

∑
j rjx

j)(epe′).
So, we have,

(
∑

j rjx
j)[e(

∑
i

(
ri mi

0 si

)
θi)e′] = (

∑
j rjE11θ

je)(epe′) = eqepe′, and

(epe′)(
∑

j sjy
j) = (epe′)Ψ′(

∑
j sjy

j).
So, we have,
(epe′)(

∑
j sjy

j) = (epe′)(
∑

j sjE22e
′θj) = epe′q′e′,

where p =
∑

i

(
ri mi

0 si

)
θi, q =

∑
j rjE11θ

je and q′ =
∑

j sjE22e
′θj .

So, M [x, y; τ ] is an (R,S)-bimodule, and for each m ∈M we have,
emE12e

′ = mE12 ∈M [x, y; τ ].
Since ME12 is an (R,S)-bimodule, and consider M as mE12, then it is
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an (R,S)-subbimodule of M [x, y; τ ]. Now, we have,
xm = θem = θmE12 = mE12θ + τ(m)E12 = mE12E22θ + τ(m)E12 =
me′θ + τ(m) = my + τ(m).
Next, we show that each element p ∈ M [x, y; τ ] can be written as∑k

i=0miy
i with mi ∈M . We have,

p = E11(
∑k

i=0

(
ri mi

0 si

)
θi)E22

=
∑k

i=0E11

(
ri mi

0 si

)
E22θ

i

=
∑k

i=0miE12θ
i =

∑k
i=0miE12E22θ

i

=
∑k

i=0mi(e′θ)i =
∑k

i=0miy
i.

Now, to show the uniqueness, it is enough to see that, if
∑k

i=0miy
i = 0,

then mi = 0 for each i. So, we have,
0 =

∑k
i=0miE12(e′θ)i =

∑k
i=0miE12θ

i. So, we have, miE12 = 0. Thus,
for each i, mi = 0. Therefore, each element p ∈M [x, y; τ ] can be written
as

∑k
i=0miy

i with mi ∈ M . Now, if we consider the identity mapping
id : M [x, y; τ ] →M [x, y; τ ], then we have,
id(qp) = qp = Ψ(q)p = Ψ(q)id(p), with q ∈ R[x; δR], p ∈M [x, y; θ].
We have id(pq′) = pq′ = pΨ′(q′) = id(p)Ψ′(q′), with q′ ∈ S[y; δS ]. But,
id is bijective, and so id is a generalized module isomorphism related to
(Ψ,Ψ′) and satisfies Lemma 2.6. So, we have,

T ∼=
(
Te eTe′

0 e′T

)
∼=

(
R[x; δR] M [x, y; τ ]

0 S[y; δS ]

)
,

and the result follows. �

Notice that, by the isomorphism mentioned in Theorem 4.4, the ele-

ment
(
x 0
0 y

)
is mapped to

(
θe 0
0 e′θ

)
and

(
r m
0 s

)
to(

rE11 mE12

0 sE22

)
. Therefore in the isomorphism mentioned in the The-

orem 4.4, θ is corresponds to(
x 0
0 y

)
and the isomorphism restricted to

(
R M
0 S

)
is the identity.

Theorem 4.5. Let M be a unitary (R,S)-bimodule, δR : R → R,
δS : S → S be derivations, τ : M → M be a generalized derivation and
M [x, y; τ ] be as in Theorem 4.4. Let N be a unitary (R[x; δR], S[y; δS ])-
bimodule and φ : M → N be an (R,S)-homomorphism such that for



92 Ghahramani and Moussavi

each m ∈ M , xφ(m) = φ(m)y + φoτ(m). Then, there exists a unique
(R[x; δR], S[y; δS ])-bimodule homomorphism Φ : M [x, y; τ ] → N such
that Φ |M= φ.

Proof. Define ϕ :
(
R M
0 S

)
→

(
R[x; δR] N

0 S[y; δS ]

)
, given by

ϕ

(
r m
0 s

)
=

(
r φ(m)
0 s

)
. We have that φ : M → N is a gen-

eralized module homomorphism related to iR : R → R[x; δR], and
iS : S → S[x; δS ] with iR(r) = r,iS(s) = s, for each r ∈ R and s ∈ S.

So, ϕ is a ring homomorphism and
(
x 0
0 y

)
∈

(
R[x; δR] N

0 S[y; δS ]

)
.

We have,(
x 0
0 y

)
ϕ

(
r m
0 s

)
=

(
x 0
0 y

) (
r φ(m)
0 s

)
=(

xr xφ(m)
0 ys

)
=

(
rx+ δR(r) φ(m)y + φ(τ(m))

0 sy + δS(s)

)
=(

r φ(m)
0 s

) (
x 0
0 y

)
+ ϕ

(
δR(r) τ(m)

0 δS(s)

)
=

ϕ

(
r m
0 s

) (
x 0
0 y

)
+ ϕod

(
r m
0 s

)
,

where d is the derivation induced by τ on
(
R M
0 S

)
and

d
(
r m
0 s

)
=

(
δR(r) τ(m)

0 δS(s)

)
. So, by Lemma 4.1, and the isomor-

phism in Theorem 4.4, we have the unique ring homomorphism defined
as:

ψ :
(
R[x; δR] M [x, y; τ ]

0 S[y; δS ]

)
→

(
R[x; δR] N

0 S[y; δS ]

)
,

such that ψ |( R M
0 S

)= ϕ, and ψ

(
x 0
0 y

)
=

(
x 0
0 y

)
. So, we

have,

ψ

(
r m
0 s

)
= ϕ

(
r m
0 s

)
=

(
r φ(m)
0 s

)
,

and hence
ψ(rE11) = E11, ψ(E22) = E22. So, by Proposition 2.4, ψ can be given
by:
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ψ =
(
ϕ1 Φ
0 ϕ2

)
,

where ϕ1 : R[x; δR] → R[x; δR] and ϕ2 : S[y; δS ] → S[x; δS ] are ring
homomorphisms and Φ : M [x, y; τ ] → N is the generalized module ho-
momorphism related to (ϕ1, ϕ2). We have,
ψ(rE11) = ϕ1(r)E11 = rE11 and ψ(sE22) = ϕ2(s)E22 = sE22.
We have that ϕ1 : R[x; δR] → R[x; δR] is a ring homomorphism such that
ϕ1(R) ⊆ R and ϕ1(x) = x. So, by Lemma 4.1 and the uniqueness, ϕ
must be the identity, and by a similar argument ϕ2 : S[y; δS ] → S[y; δS ]
is also the identity. Hence, we have,
Φ(q1p) = ϕ1(q1)Φ(p) = q1Φ(p), and Φ(pq2) = Φ(p)ϕ2(q2) = Φ(p)q2, for
q1 ∈ R[x; δR], q2 ∈ S[y; δS ] and p ∈M [x, y; τ ]. So, Φ is a
(R[x; δR], S[y; δS ])-bimodule homomorphism and we have,
ψ(mE12) = Φ(m)E12. Therefore, Φ |M= φ. Now if Φ′ : M [x, y; τ ] → N
is an (R[x; δR], S[y; δS ])-bimodule homomorphism such that Φ′ |M= φ.
Then, we consider the following mapping,

ψ′ :
(
R[x; δR] M [x, y; τ ]

0 S[y; δS ]

)
→

(
R[x; δR] N

0 S[y; δS ]

)
,

given by ψ′
(
q1 p
0 q2

)
=

(
q1 Φ′(p)
0 q2

)
. In this case, ψ′ is a ring ho-

momorphism and

ψ′
(
r m
0 s

)
=

(
r φ(m)
0 s

)
, ψ′

(
x 0
0 y

)
=

(
x 0
0 y

)
.

So, by the uniqueness of ψ we must have ψ′ = ψ, and hence Φ′ = Φ.
Therefore, Φ is unique. �

Corollary 4.6. Let M be a unitary (R,S)-bimodule, δR : R → R, δS :
S → S be derivations and τ : M → M be a (δR, δS)-generalized deriva-
tion and M [x, y; τ ], M [x, y; τ ]′ be (R[x; δR], S[y; δS ])-bimodule satisfying
conditions in Theorem 4.4. Then, there exists a unique
(R[x; δR], S[y; δS ])-bimodule isomorphism,
Λ : M [x, y; τ ] → M [x, y; τ ]′ such that Λ |M= IM , where IM is the iden-
tity mapping of M .

Proof. Consider φ : M →M [x, y; τ ]′, with φ(m) = m for each m ∈M .
Then, φ is an (R,S)-bimodule homomorphism such that.
xφ(m) = xm = my + τ(m) = φ(m)y + φoτ(m).
So, φ satisfies the conditions of Theorem 4.5, and hence there exists a
unique
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(R[x; δR], S[y; δS ])-bimodule homomorphism Λ : M [x, y; τ ] →M [x, y; τ ]′

such that Λ |M= φ so Λ(m) = m, for each m ∈ M . Similarly, by The-
orem 4.5, there exists a unique (R[x; δR], S[y; δS ])-bimodule homomor-
phism Λ′ : M [x, y; τ ]′ → M [x, y; τ ] such that Λ′ |M= φ so Λ′(m) = m,
for each m ∈M . We have,
ΛoΛ′(p) = ΛoΛ′(m0 +m1y + · · ·+mky

k) = Λ(
∑k

i=0 Λ′(mi)yi) =
Λ(

∑k
i=0miy

i) =
∑k

i=0 Λ(mi)yi =
∑k

i=0miy
i.

So, ΛoΛ′ = I and similarly Λ′oΛ = I. Therefore, Λ is a bimodule isomor-
phism such that Λ(m) = m, for each m ∈ M . The uniqueness follows
from Theorem 4.5. �

By the proof of Corollary 4.6, we observe that the bimodule isomor-
phism Λ is defined by:
Λ(m0 +m1y + · · ·+mky

k) = m0 +m1y + · · ·+mky
k.

We also observe that the bimodule M [x, y; τ ] in Corollary 4.6, is unique
up to isomorphism. Therefore, we can define the following definition.

Definition 4.7. Let M be a unitary (R,S)-bimodule, δR : R → R,
δS : S → S be derivations and τ : M → M be a (δR, δS)-generalized
derivation. We define M [x, y; τ ] as:

I. M [x, y; τ ] is a unitary (R[x; δR], S[y; δS ])-bimodule, which contains
M as an (R,S)-subbimodule.

II. For each m ∈M , we have xm = my + τ(m).
III. Each element of p ∈M [x, y; τ ] is uniquely written as:

p = m0 +m1y + · · ·+mky
k, with mj ∈M , yj ∈ S[y; δS ], 1 ≤ j ≤ k.

If the module M [x, y; τ ] exists, then by Corollary 4.6, it is unique up
to isomorphism and is called the module of differential polynomials over
RMS .

By Theorem 4.4, for each (R,S)-bimodule M and generalized deriva-
tion τ on M , the module M [x, y; τ ] exists.

Let R be a ring and δ : R → R a derivation. Consider R as an
(R,R)-bimodule. Then, the differential polynomial module R[x, x; δ], is
an (R[x; δ], R[x; δ])-bimodule, and satisfies the conditions in Definition
4.7. On the other hand, R[x; δ] as (R[x; δ], R[x; δ])-bimodule, satisfies
the conditions in Definition 4.7, and so R[x, x; δ] is isomorphic to R[x; δ],
as (R[x; δ], R[x; δ])-bimodule, by Corollary 4.6.
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Some properties of the module of differential polynomials are similar
to those of the ring of differential polynomials, such as what follows next.

Lemma 4.8. Let M [x, y; τ ] be the module of differential polynomials.
Then, for each m ∈M we have,

xkm =
∑k

i=0

(
k
i

)
τ i(m)yk−i,

for each xk ∈ R[x; δR], m ∈M , τ0(m) = m, and k ≥ 0.

Proof. We proceed by induction on k. If k = 1, then xm = my+τ(m) =∑1
i=0

(
1
i

)
τ i(m)y1−i,

Assume that the result is true for k ≤ n. Now, we have,
xn+1m = xn(xm) = xn(my + τ(m) = xnmy + xnτ(m) =

(
∑n

i=0

(
n
i

)
τ i(m)yn−i)y +

∑n
i=0

(
n
i

)
τ i(τ(m))yn−i =

myn+1 +
(
n
1

)
τ(m)yn + · · ·+ τn(m)y+ τ(m)yn +

(
n
1

)
τ2(m)yn−1 +

· · ·+τn+1 = myn+1+[
(
n
0

)
+

(
n
1

)
]τ(m)yn+[

(
n
1

)
+

(
n
2

)
]τ2(m)yn−1

+ · · ·+ τn+1(m) =
∑n+1

i=0

(
n+ 1
i

)
τ i(m)y(n+1)−i. �
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