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ON SOME PROPERTIES OF ANALYTIC SPACES
CONNECTED WITH BERGMAN METRIC BALL

SONGXIAO LI AND ROMI SHAMOYAN*

Communicated by Fereidoun Ghahramani

Abstract. We obtain some new sharp results for some new an-
alytic functional spaces defined with the help of Bergman metric
ball.

1. Introduction and notations

Let B denote the unit ball of Cn. Let z = (z1, . . . , zn) and w =
(w1, . . . , wn) be points in Cn. We write,

〈z, w〉 = z1w̄1 + · · ·+ znw̄n, |z| =
√
|z1|2 + · · ·+ |zn|2.

Thus, B = {z ∈ Cn : |z| < 1}. Let S be the unit sphere of Cn. Let
dv be the normalized Lebesgue measure on B and dσ be the normalized
rotation invariant Lebesgue measure on S. We denote by H(B) the class
of all holomorphic functions on B. Let r > 0 and z ∈ B. The Bergman
metric ball at z is defined as:

D(z, r) =
{

w ∈ B : β(z, w) =
1
2

log
1 + |ϕz(w)|
1− |ϕz(w)|

< r
}

.

Here, the involutions ϕz has the form,

ϕz(w) =
z − Pzw − szQzw

1− 〈w, z〉
,
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122 Li and Shamoyan

where sz = (1 − |z|2)1/2, Pzw = 〈w,z〉z
|z|2 , P0w = 0 and Qz = I − Pz (see,

e.g., [15]).
Let 0 < p < ∞ and α > −1. Recall that the weighted Bergman space

Ap
α consists of those functions f ∈ H(B) for which

‖f‖p
Ap

α
=

∫
B
|f(z)|pdvα(z) = Cα

∫
B
|f(z)|p(1− |z|2)αdv(z) < ∞,

where Cα = Γ(n + α + 1)/(n!Γ(α + 1)).
During the past decade, the theory of Bergman spaces has developed

in a variety of directions. About the Bergman spaces theory in the unit
disk and the unit ball, we refer the reader to [10, 15].

One of the goals of this paper is to extend some results of weighted
Bergman spaces in the unit ball (see [15]) to the case of more general
A(p, q, α) class.

Famous Muckenhoupt weights are well known in the study of prob-
lems connected with the boundedness of various operators (for example,
Maximal operator, Hilbert operator, etc.), acting in or from one weighted
space to another one (see, e.g., [8]). Nevertheless such type of weights
in higher dimensions (unit ball and polydisk) are less known. With the
help of Bergman metric ball, we introduce new analogues of Mucken-
houpt weights in the ball and prove two estimates for them generalizing
previously known inequalities. Some results of the main section of this
note can be transferred without big difficulties to the so called mixed
norm spaces and holomorphic Triebel-Lizorkin spaces in the unit ball;
see [13, 14]. For the simplicity of exposition, we present complete proofs
only in the linear case of weighted Bergman spaces; sketches of more
general “mixed norm” case will be presented.

Throughout the paper, constants are denoted by C and Ci, i = 1, 2, · · · ,
are positive and may not be the same at each occurrence.

2. Preliminaries

Here, we collect some known estimates and results connected with
the Bergman metric ball. We will use them in the final section for the
proof of the main theorems of this note. We also provide several new
inequalities for spaces defined with the help of Bergman metric ball. The
following three results can be found in [15].
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Lemma 2.1. There exists a positive integer N such that for any 0 <
r ≤ 1 we can find a sequence {ak} in B with the following properties:

(1) B = ∪kD(ak, r).
(2) The sets D(ak, r/4) are mutually disjoint.
(3) Each point z ∈ B belongs to at most N of the sets D(ak, 2r).

Such a sequence will be called a sampling sequence.

Lemma 2.2. For each r > 0, there exists a positive constant Cr such
that

C−1
r ≤ 1− |a|2

1− |z|2
≤ Cr, C−1

r ≤ 1− |a|2

|1− 〈z, a〉|
≤ Cr,

for all a and z such that β(a, z) < r. Moreover, if r is bounded above,
then we may choose Cr independent of r.

Lemma 2.3. Suppose r > 0, p > 0 and α > −1. Then, there exists a
constant C > 0 such that

|f(z)|p ≤ C

(1− |z|2)n+1+α

∫
D(z,r)

|f(w)|pdvα(w)

for all f ∈ H(B) and z ∈ B.

Using properties of Bergman metric balls contained in Lemmas 2.1
and 2.3, we get

‖f‖p
Ap

α
=

∫
B
|f(w)|pdvα(w) �

∞∑
k=1

max
z∈D(ak,r)

|f(z)|pvα(D(ak, r))

�
∞∑

k=1

∫
D(ak,2r)

|f(z)|p(1− |z|)αdv(z), 0 < p < ∞, α > −1.

(2.1)

Motivated by (2.1), we introduce a new space as follows.

Definition 2.4. Let µ be a positive Borel measure in B, 0 < p, q < ∞
and s > −1. Fix an r ∈ (0,∞) and a sampling sequence {ak}k∈N. The
space A(p, q, dµ) is the space of all holomorphic functions f such that

‖f‖q
A(p,q,dµ) =

∞∑
k=1

( ∫
D(ak,r)

|f(z)|pdµ(z)
)q/p

< ∞. (2.2)
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If dµ = (1 − |z|2)sdv(z), then we will denote by A(p, q, s) the space
A(p, q, dµ). It is clear that A(p, p, s) = Ap

s.

Remark 2.5. From (2.2), we see that the definition of A(p, p, s) space
is independent from {ak} and r. But, in the general case of A(p, q, s),
the answer is unknown. Therefore, the quazinorm ‖f‖A(p,q,s), in gen-
eral, should be written as ‖f‖A(p,q,s,ak,r). For simplicity, we denote
‖f‖A(p,q,s,ak,r) by ‖f‖A(p,q,s).

It is known (see, e.g., [7]) that for every δ, there exists a sampling
sequence {aj} such that d(aj , ak) > δ/5 if j 6= k and

∞∑
k=1

χD(ak,5δ)(z) ≤ C. (2.3)

Using (2.3) and the inequality,( ∞∑
k=1

xk

)p/q
≤

∞∑
k=1

x
p/q
k , q ≥ p, (2.4)

we have,

‖f‖q
A(p,q,s) ≤

∞∑
k=1

( ∫
B

χD(ak,5δ)(z)|f(z)|p(1− |z|)sdv(z)
)q/p

≤ C
( ∫

B
|f(z)|p(1− |z|2)sdv(z)

)q/p

= ‖f‖q
Ap

s
, q ≥ p, s > −1,

(2.5)

that is,

‖f‖A(p,q,s) ≤ C‖f‖Ap
s
, q ≥ p, s > −1. (2.6)

Motivated by (2.6), we pose the following very natural and more general
problem.

Problem I. Let µ be a positive Borel measure and {ak}k∈N be a sam-
pling sequence. Let X be a quazinormed subspace of H(B) and 0 <
r, p, q < ∞. Describe all positive Borel measures such that

‖f‖A(p,q,dµ) ≤ C‖f‖X. (2.7)
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Proposition 2.6. Let {ak}k∈N be a sampling sequence and µ be a posi-
tive Borel measure on B, 0 < q < p < ∞. Then, for any f belonging to
Lorentz space Lp,∞(B, dµ), we have,( ∫

D(ak,r)
|f(z)|qdµ

)1/q

≤ C
(
µ(D(ak, r))

)(1/q−1/p)
‖f‖Lp,∞ . (2.8)

Proof. If f ∈ Lp,∞(B, dµ), 0 < q < p < ∞, then from [9] we see that∫
D(ak,r)

|f |qdµ ≤ C
( p

p− q

)
µ(D(ak, r))1−q/p‖f‖q

Lp,∞ .

Thus, the result follows immediately.

Remark 2.7. Let f ∈ H(B), 0 < q < p < ∞, and

ck =
(
µ(D(ak, r))

)(1/q−1/p)p̃
.

As a consequence of Proposition 2.6, we have,
∞∑

k=1

( ∫
D(ak,r)

|f(z)|qdµ

)p̃/q

≤ C

∞∑
k=1

ck

( ∫
D(ak,r)

|f(z)|pdµ(z)
)p̃/p

. (2.9)

Problem II. Describe all {ck}k∈N sequences such that (2.9) holds.

Definition 2.8. A positive locally integrable function V (z) on B is said
to belong to the MH(p) class if

sup
D(z,r)

(
1

|D(z, r)|

∫
D(z,r)

V (w)dv(w)
)(

1
|D(z, r)|

∫
D(z,r)

V
−q
p (w)dv(w)

) p
q

< ∞

(2.10)

for any Bergman metric ball D(z, r), where 1 < p < ∞ and 1
p + 1

q = 1.

The MH(p) class that we defined can be considered as natural ana-
logues of the so called Muckenhoupt class Ap, p > 1, that was introduced
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in [11] (see also [2, 3, 8]). Ap is defined as the class of locally integral
nonnegative function w satisfying

sup
I

( 1
|I|

∫
I
wdx

)( 1
|I|

∫
I

( 1
w

) 1
p−1 dx

)p−1
< ∞.

Fix two real parameters a, r > 0 and b > −1. Let f be a locally
integral function and {ak}k∈N be a sampling sequence in B. Consider
the integral operator defined by

Sa,b
ak,rf(z) = (1− |z|2)a

∫
D(ak,r)

(1− |w|2)bf(w)dv(w)
|1− 〈z, w〉|n+1+a+b

, z ∈ B. (2.11)

The following assertion, a consequence of Schur’s test, shows that the
Sa,b

ak,r operators are invariant in A(p, s, t) spaces. Note that for p = s,
the result easily follows from Theorem 2.10 of [15].

Proposition 2.9. Let {ak}k∈N be a sampling sequence in B, 0 < s < ∞,
r > 0, 1 ≤ p < ∞, t ∈ (−1,∞) and −pa < t + 1 < p(b + 1). Then,
∞∑

k=1

( ∫
D(ak,r)

|Sa,b
ak,rf(z)|pdvt(z)

)s/p
≤ C

∞∑
k=1

( ∫
D(ak,r)

|f(z)|pdvt(z)
)s/p

.

Proof. If p = 1, then the result follows from Fubini’s theorem. Now,
we consider the case of 1 < p < ∞. Let 1/p + 1/q = 1. Fix

s̃ ∈ (−b + 1
p

,
a

q
)
⋂

(−a + 1 + t

p
,
b− t

p
).

Let h(z) = (1− |z|2)s̃, z ∈ B. Then, by Lemma 2.2 we have,∫
D(ak,r)

(1− |w|2)s̃q(1− |z|2)a(1− |w|2)bdv(w)
|1− 〈z, w〉|n+1+a+b

≤ C(1− |z|2)s̃q,

and∫
D(ak,r)

(1− |z|2)s̃p(1− |z|2)a(1− |w|2)bdv(z)
|1− 〈z, w〉|n+1+a+b

≤ C(1− |w|2)s̃p.

Using Theorem 2.9 of [15], we obtain:∫
D(ak,r)

|Sa,b
ak,rf(z)|pdvt(z) ≤ C

∫
D(ak,r)

|f(z)|pdvt(z).

Then, the result follows.
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3. Main results and proofs

Here, we give partial solutions of problems I and II. Various sharp
embedding theorems for different holomorphic spaces on the unit ball
are well known (see, e.g., [4, 13, 15]). The following sharp result was
proved in [6].

Theorem A. Let µ be a positive Borel measure on B and {ak}k∈N be a
sampling sequence. If q ≥ p and α > −1. We have,

( ∫
B
|f |qdµ

)1/q

≤ C‖f‖Ap
α

if and only if

µ(D(ak, r)) ≤ C(1− |ak|)(
n+1+α

p
)q

.

Here, we also provide a new sharp embedding with the help of the
Bergman metric ball. The following assertion concerns Problem I.

Theorem 3.1. Let 0 < q, p < ∞, 0 < s ≤ p < ∞ and β > −1. Let
{ak}k∈N be a sampling sequence in B and µ be a positive Borel measure
on B. We have,

‖f‖A(q,p,dµ) ≤ C‖f‖As
β

(3.1)

if and only if

µ(D(ak, r)) ≤ C(1− |ak|2)
q(n+1+β)

s . (3.2)
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Proof. Suppose that (3.2) holds. Using Lemmas 2.1 and 2.3, we have,( ∞∑
k=1

( ∫
D(ak,r)

|f(z)|qdµ(z)
)p/q

)s/p

≤ C

( ∞∑
k=1

max
z∈D(ak,r)

|f(z)|p(1− |ak|)
p(n+1+β)

s

)s/p

≤ C
∞∑

k=1

max
z∈D(ak,r)

|f(z)|s(1− |ak|)n+1+β

≤ C

∫
B
|f(z)|s(1− |z|)βdv(z) ≤ C‖f‖s

As
β
, β > −1, 0 < s < ∞.

The result follows immediately from the above inequality.
Conversely, suppose that (3.1) holds. Set the family of test functions,

fk(z) =
(

(1− |ak|2)n+β+1

(1− 〈z, ak〉)2(n+β+1)

)1/s

, z ∈ B, k = 1, 2, · · · . (3.3)

It is easy to check, using Theorem 1.12 of [15], that supk ‖fk‖As
β
≤ C.

On the other hand, the following estimates are obvious:( ∫
D(ak,r)

|f(z)|qdµ(z)
)1/q

≤ C

( ∞∑
k=1

( ∫
D(ak,r)

|f(z)|qdµ(z)
)p/q

)1/p

≤ C‖f‖As
β
. (3.4)

Substituting the test functions fk into (3.4) we get the desire result.
Thus, the proof of the theorem is complete.

Remark 3.2. It is obvious that Theorem 3.1 is a generalization of
Theorem A.

Let 0 < p, q < ∞, α > −1 and f ∈ H(B). Recall that f ∈ F p,q
α , called

the holomorphic Triebel-Lizorkin spaces, if

‖f‖p
F p,q

α
=

∫
S

( ∫ 1

0
|f(rξ)|q(1− r)αdr

)p/q

dσ(ξ) < ∞.

Define for the same values of parameters the holomorphic Besov type
spaces (see [13]),

Bp,q
α = {f ∈ H(B) : ‖f‖q

Bp,q
α

=
∫ 1

0
M q

p (f, r)(1− r)αdr < ∞},
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where,

Mp
p (f, r) =

∫
S
|f(rξ)|pdσ(ξ), 0 < p < ∞, r ∈ (0, 1).

The result of Theorem 3.1 can be extended to the case of mixed norm
space and the so called holomorphic Triebel-Lizorkin space. Thus, the
following result holds. We have,

‖f‖A(q,p,dµ) ≤ C‖f‖F s,q
β+1

s q−1

if and only if

‖f‖A(q,p,dµ) ≤ C‖f‖Bs,q
β+1

s q−1

or equivalently, if and only if

µ(D(ak, r)) ≤ C(1− |ak|2)
q(n+1+β)

s .

Here, 0 < max{s, q} ≤ p < ∞, β > −1.
The proof for the necessity of the above mentioned statement make

use of the same type of standard test function as used in Theorem 3.1.
The proof of the sufficiency is based on the following embeddings (see
[14]): ∫

S

∫ 1

0
|f(rξ)|s(1− r)βdrdσ(ξ)

≤ C

∫
S

( ∫ 1

0
|f(rξ)|q(1− r)

β+1
s

q−1dr

) s
q

dσ(ξ),

and ∫
S

∫ 1

0
|f(rξ)|s(1− r)βdrdσ(ξ)

≤ C

( ∫ 1

0

( ∫
S
|f(rξ)|sdσ(ξ)

) q
s

(1− r)
β+1

s
q−1dr

)s/q

,

for 0 < q ≤ s < ∞, β > −1 and f ∈ H(B).

In the following theorem, we will give a complete characterization of
the “weighted” A(p, q, s) spaces, when q/p > 1.
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Theorem 3.3 Let 0 < p < q < ∞ and α > 0. Let {ak}k∈N be a
sampling sequence in B and µ be a positive Borel measure on B. Then,
the following two statements are equivalent:

(a)

∫
B

( ∫
B

( (1− |z|)n

|1− 〈λ, z〉|2n

)1+αq
dµ(z)

) q
q−p

dvαqn−1(λ) < ∞. (3.5)

(b)

∞∑
k=1

(1− |ak|)−(αqn+n) p
q−p

(
µ(D(ak, r))

) q
q−p

< ∞. (3.6)

Proof. (a) ⇒ (b). Using Lemma 2.2, we have the following chain of
estimates,∫

B

( ∫
B

( (1− |z|)n

|1− 〈λ, z〉|2n

)1+αq
dµ(z)

) q
q−p

dvαqn−1(λ)

≥ C

∞∑
k=1

∫
D(ak,r)

( ∞∑
k=1

∫
D(ak,r)

( (1− |z|)n

|1− 〈λ, z〉|2n

)1+αq
dµ(z)

) q
q−p

dvαqn−1(λ)

≥ C

∞∑
k=1

(1− |ak|)−(αqn+n) p
q−p

(
µ(D(ak, r))

) q
q−p

.

(b) ⇒ (a). Using Lemma 2.3,

|f(z)| =
(
|f(z)|q/p

)p/q
≤ C

(
1

(1− |ak|)n+1

∫
D(ak,r)

|f |q/pdv

)p/q

.

Using the above inequality, Lemmas 2.1 and 2.2, we have,∫
B
|f |dµ =

∞∑
k=1

∫
D(ak,r)

|f |dµ ≤
∞∑

k=1

max
z∈D(ak,r)

|f(z)|µ(D(ak, r))

≤ C
∞∑

k=1

( ∫
D(ak,2r)

|f(z)|q/pdvαqn−1(z)
)p/q

(1− |ak|)
−p(n+qnα)

q µ(D(ak, r)).
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Using Hölder’s inequality, we get finally for any subharmonic function
f ,∫

B
|f |dµ ≤ C‖f‖

A
q/p
αqn−1

[ ∞∑
k=1

(
(1− |ak|)

−(n+qnα)p
q µ(D(ak, r))

) q
q−p

] q−p
q

.

(3.7)

Let us consider the following function,

f(z) = (Sg)(z) =
∫

B

(
(1− |z|2)n

|1− 〈z, w〉|2n

)1+t

g(w)(1− |w|)tn−1dv(w). (3.8)

Then, f is subharmonic. From Theorem 2.10 of [15], we see that

‖Sg‖Lq/p(B,dvtn−1) ≤ C‖g‖Lq/p(B,dvtn−1), q > p. (3.9)

So substituting this fixed function into (3.7), we get∫
B

∫
B

(
(1− |z|2)n

|1− 〈z, w〉|2n

)1+αq

g(w)(1− |w|)αqn−1dv(w)dµ(z)

≤ C‖g‖
L

q/p
αqn−1

( ∞∑
k=1

(
(1− |ak|)

−(n+qnα)p
q µ(D(ak, r))

) q
q−p

) q−p
q

.

Now, using duality argument we get the desired result. The proof of the
theorem is complete.

Remark 3.4. The condition (3.5) first appeared in [5]. The approach
we used in the proof of Theorem 3.3 is based on theorems on projections
in weighted Bergman spaces, which can be used for estimates of more
general integrals such as∫

S

{ ∫ 1

0

( ∫
B

( (1− |z|2)n

|1− 〈λ, z〉|2n

)1+αq
dµ(z)

)q/(q−p)
(1− |λ|)αqn−1d|λ|

}p1

dσ,

and∫ 1

0

{ ∫
S

( ∫
B

( (1− |z|2)n

|1− 〈λ, z〉|2n

)1+αq
dµ(z)

)q/(q−p)
dσ

}p1

(1− |λ|)αqn−1d|λ|.

We should use projection theorems for mixed norm and holomorphic
Triebel-Lizorkin spaces from [1, 13], instead of projection theorems for
classical weighted Bergman spaces. Here, α > 0, q > p and p1 > 1.

Remark 3.5. Let us consider the particular case in Theorem 3.2
when dµ = |f(z)|q−pdvα(z). It is easy to see that for the limit case
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p = 0, the assertion of Theorem 3.3 with this particular value of dµ is a
simple fact concerning Bergman A(q, q, α) classes. Hence, our result can
be considered as an extension of an already known result on Bergman
A(q, q, α) spaces to the case of A(q − p, q, s) classes.

Theorem 3.6. Let 0 < q, s, r < ∞, q ≥ s and α > −1. Let {ak}k∈N
be a sampling sequence in B and µ a positive Borel measure on B. We
have, ∫

B
|f(z)|qdµ(z) ≤ C

∫
B

( ∫
D(w,r)

|f(z)|sdvα(z)
)q/s

dv(w) (3.10)

if and only if

µ(D(ak, r)) ≤ C(1− |ak|2)q(n+1+α
s

+n+1
q

)
, k ∈ N, (3.11)

for some constant C > 0.

Proof. Suppose that (3.11) holds. By Lemma 2.1, we have,∫
B
|f(z)|qdµ(z) ≤ C

∞∑
k=1

max
z∈D(ak,r)

|f(z)|qµ(D(ak, r))

≤ C

∞∑
k=1

(
max

z∈D(ak,r)
|f(z)|s

) q
s (1− |ak|2)q(n+1+α

s
+n+1

q
)
.

Using Lemma 2.3,∫
D(ak,2r) |f(z)|sdv(z) ≤ C

∫
D(ak,2r)

( ∫
D(z,r) |f(w̃)|sdvα(w̃)

)
dv(z)

(1−|z|)n+1+α .

Therefore, we have the following chain of estimates:∫
B |f(z)|qdµ(z)

≤ C
∑∞

k=1

( ∫
D(ak,2r) |f(z)|sdv(z) 1

(1−|ak|)n+1

)q/s
(1− |ak|2)q(n+1+α

s
+n+1

q
)
.

≤ C
∑∞

k=1

( ∫
D(ak,2r) |f(z)|sdv(z)

)q/s
(1− |ak|2)n+1+qα/s

≤ C
∑∞

k=1

( ∫
D(ak,2r)

∫
D(z,r) |f(w̃)|sdvα(w̃) dv(z)

(1−|z|)n+1

)q/s
(1− |ak|2)n+1.

(3.12)
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Using Hölder inequality,( ∫
D(ak,2r)

∫
D(z,r)

|f(w̃)|sdvα(w̃)
dv(z)

(1− |z|)n+1

)q/s

≤
∫

D(ak,2r)

( ∫
D(z,r)

|f(w̃)|sdvα(w̃)
)q/s

(1− |ak|2)−(n+1). (3.13)

Combining (3.12) with (3.13), we get the desired result.
Conversely, suppose that (3.10) holds. For any β which is big enough,

define,

fk(z) =
(1− |ak|)β−n+1+α

s
−n+1

q

(1− 〈z, ak〉)β
, ak, z ∈ B, k = 1, 2, · · · .

Then, ∫
B

( ∫
D(w,r)

|fk(z)|sdvα(z)
)q/s

dv(w)

≤ C(1− |ak|)βq−q n+1+α
s

−n+1 ×
∫

B

dv(w)

|1− 〈w, ak〉|βq−q n+1+α
s

≤ C,

and ∫
B
|f(z)|qdµ(z) ≥ µ(D(ak, r))(1− |ak|)−q(n+1+α

s
+n+1

q
)
.

Combining the last two inequalities we get the desired result. The proof
of the theorem is now complete.

Remark 3.7. For f ∈ H(B) and z ∈ B, let

∇f(z) =
( ∂f

∂z1
(z), · · ·, ∂f

∂zn
(z)

)
denote the complex gradient of f . Let ∇̃f denote the invariant gradient
of B; i.e., (∇̃f)(z) = ∇(f ◦ ϕz)(0).

Let 1 < p < ∞. Recall that the Möbius invariant Besov space
Bp consists of those holomorphic functions f for which the ∇̃f are p-
integrable functions with respect to the invariant measure dλ(z), where
dλ(z) = (1− |z|2)−n−1dv(z).

Fix any radius r > 0 and f ∈ H(B), and define,

Irf(z) =
∫

D(z,r)
|∇̃f(w)|dλ(w), z ∈ B.
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From [12] or [15], f ∈ Bp if and only if Irf ∈ Lp(B, dλ). We define
∇̃−1(∇̃f) = f . Then, from the above result we see that ∇̃−1f ∈ Bq if
and only if ∫

D(z,r)
|f(w)|dλ(w) ∈ Lq(B, dλ), 1 < q < ∞.

This means that for s = 1 and α = 0, estimate (3.10) in Theorem 3.6 is
equivalent to:∫

B
|f(z)|qdµ(z) ≤ C‖(∇̃−1f)× (1− |w|)(n+1)+n+1

q ‖Bq , 1 < q < ∞.

Theorem 3.8. Let 0 < r < ∞ and f ∈ H(B). Let {ak}k∈N be a
sampling sequence in B. Then, the following two statements hold.

(a) If 0 < s < ∞, α > −1, V ∈ MH(p), p > 1, then
∞∑

k=1

( ∫
D(ak,r)

(
S0,α

ak,rf
)p

V (z)dv(z)
)s/p

≤ C

∞∑
k=1

( ∫
D(ak,r)

|f(w)|pV (z)dv(z)
)s/p

.

(b) If V p ∈ MH(p/q), p > q and∫
D(ak,r)

|f(z)|pdv(z)

×(1− |ak|)−
(n+1)(p−q)

q

( ∫
D(ak,r)

[V −p(z)]
q

p−q dv(z)
) q−p

q

(3.14)

≤
∫

D(ak,r)
|f(z)|pV −p(z)dv(z),

then ( ∫
B
|f(z)|pV p(z)dv(z)

)q/p

≤
∞∑

k=1

(1− |ak|)(n+1)(p−q)( 1
p
− 1

q
)
( ∫

D(ak,2r)
|f(z)|pV −p(z)dv(z)

)q/p
.
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Proof. (a). Note that

M =
∫

D(ak,r)

( ∫
D(ak,r)

|f(w)|(1− |w|)αdv(w)
|1− 〈z, w〉|n+1+α

)p

V (z)dv(z)

≤ (1− |ak|)−(n+1)p

∫
D(ak,r)

V (z)dv(z)
( ∫

D(ak,r)
|f(w)|dv(w)

)p
.

Using Hölder inequality, we get,

( ∫
D(ak,r)

|f(w)|dv(w)
)p

≤
∫

D(ak,r)
|f(w)|pV (w)dv(w) ·

( ∫
D(ak,r)

(V (w))−
q
p dv(w)

)p/q
.

Since V ∈ MH(p), we obtain,

M ≤
∫

D(ak,r)
|f(w)|pV (z)dv(w).

Thus, the result follows.
(b). By Lemmas 2.1-2.3, we have,

K =
( ∫

B
|f(z)|pV p(z)dv(z)

)q/p

≤ C
∞∑

k=1

( ∫
D(ak,r)

V p(z)|f(z)|pdv(z)
)q/p

≤ C

∞∑
k=1

( ∫
D(ak,r)

V p(z)dv(z) sup
z∈D(ak,r)

|f(z)|p
)q/p

≤ C
∞∑

k=1

1
(1− |ak|)(n+1)q/p

( ∫
D(ak,2r)

|f(z)|pdv(z)
)q/p

( ∫
D(ak,r)

V p(z)dv(z)
)q/p

.
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From the conditions that V p ∈ MH(p/q), p > q and (3.14), we have,

K ≤ C
∞∑

k=1

(1− |ak|)n+1

(1− |ak|)(n+1)q/p

[
1

(1− |ak|)(n+1)p/q

∫
D(ak,r)

V p(z)dv(z)

×
( ∫

D(ak,r)
[V −p(z)]

q
p−q dv(z)

) p−q
q

]q/p

×
( ∫

D(ak,2r)
|f(z)|pdv(z)

)q/p( ∫
D(ak,r)

[V −p(z)]
q

p−q dv(z)
) q−p

p

≤ C
∞∑

k=1

(1− |ak|)(n+1)(p−q)( 1
p
− 1

q
)
( ∫

D(ak,2r)
|f(z)|pV −p(z)dv(z)

)q/p
.

The proof of the theorem is complete.

Remark 3.9. Theorem 3.8 shows also that our introduced S0,α
ak,r op-

erators are invariant in some sense in some Bergman type spaces with
MH(p) weights. Such type of a result was previously proved by Bekollé
(see [2]). To be more precise, in [2], in particular, the boundedness of
Bergman projections in Bergman spaces with Muckehoupt weights was
obtained.

Remark 3.10. For q = p, V (z) = C, condition (3.14) vanishes and the
second estimate is well known; see [15]. The first estimate in Theorem
3.8 for V (z) = C is contained in Proposition 2.9.

In the following assertions, a partial solution of Problem II is pre-
sented.

Theorem 3.11. Let {ak}k∈N be a sampling sequence in B, tk > 1,fk ∈
H(B), k ∈ N and α > −1. If 1 ≤ p ≤ q < ∞ and q1 ∈ (0,∞), then( ∞∑

k=1

( ∫
D(ak,r)

|fk(z)|q1dvα(z)
) q

q1

)1/q

≤ C

( ∞∑
k=1

tk

( ∫
D(ak,r)

|fk(z)|q1dvα(z)
) p

q1

)1/p

(3.15)
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if and only if

sup
k

t
−1/p
k < ∞. (3.16)

Proof. Suppose that (3.16) holds. Let

y0 = 0, yk =
( ∫

D(ak,r)
|fk(z)|q1dvα(z)

)1/q1 , k = 1, 2, · · · .

Since we have,

|yj | ≤ sup
j∈N

(t−1/p
j )

( j+1∑
k=j−1

tk|yk|p
)1/p

,

then it follows:
∞∑

j=1

|yj |q ≤ C
(

sup
n

t
−1/p
j

)q
∞∑

j=1

( j+1∑
k=j−1

tk|yk|p
)q/p

≤ C

( ∞∑
j=1

( j+1∑
k=j−1

tk|yk|p
))q/p

.

Hence, ( ∞∑
j=1

|yj |q
)1/q

≤ C
( ∞∑

k=1

tk|yk|p
)1/p

.

Conversely, suppose that (3.15) holds. Fix fk = 0, k 6= j and

fj(z) =
(1− |aj |)β

|1− 〈z, aj〉|γ
, k = j, β = γ − α + n + 1

q1
> 0.

Substituting these into a fixed vector f = (fk) and then substituting f
into (3.15), using standard properties of {ak}k∈N, we get what we need.
Indeed, since yk = 0, for all k 6= j, we see that (3.15) is equivalent to:( ∫

D(aj ,r)
|fj(z)|q1dvα(z)

)1/q1

≤ Ct
1/p
j

( ∫
D(aj ,r)

|fj(z)|q1dvα(z)
)1/q1

,

j = 1, 2, · · · .
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It remains to note that

C1 ≤
( ∫

D(aj ,r)
|fj(z)|q1dvα(z)

)1/q1

≤ C2, j = 1, 2, · · · .

Remark 3.12. Let tk > 1, α > −1, 1 ≤ p ≤ q < ∞ and supk t
−1/p
k < ∞.

Substitute in estimate (3.15) of Theorem 3.11, fk = f for all k = 1, 2, · · · ,
q = q1. Then,

‖f‖Aq
α
≤ C

[ ∞∑
k=1

tk

( ∫
D(ak,r)

|f(z)|qdvα(z)
)p/q

]1/p

.

Remark 3.13. Using Theorem 3.11, various assertions can be obtained
for various concrete {tk} for example,

tk = sup
z∈D(ak,r)

|fk(z)|q > 1 or tk =
∫

D(ak,r)
|fk(z)|qdvα(z) > 1, fk ∈ H(B).
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