PROPERTIES OF MULTIVALENT FUNCTIONS ASSOCIATED WITH A CERTAIN INTEGRAL OPERATOR

J-L LIU

Communicated by Heydar Radjavi

Abstract

Let $A(p)$ denote the class of functions of the form $f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}(p \in N=\{1,2,3, \cdots\})$, which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$. By making use of a certain integral operator, we obtain some interesting properties of multivalent analytic functions.

1. Introduction

Let $A(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, \quad(p \in N=\{1,2,3, \cdots\}), \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $U=\{z: z \in C$ and $|z|<1\}$.
Recently, Jung, et al. [2] introduced the following integral operator, $Q_{\beta, 1}^{\alpha}: A(1) \rightarrow A(1):$

$$
\begin{align*}
Q_{\beta, 1}^{\alpha} f(z)= & \binom{\alpha+\beta}{\beta} \frac{\alpha}{z^{\beta}} \int_{0}^{z}\left(1-\frac{t}{z}\right)^{\alpha-1} t^{\beta-1} f(t) d t \\
& (\alpha>0, \beta>-1 ; f \in A(1)) . \tag{1.2}
\end{align*}
$$

Keywords: Multivalent function, analytic function, integral operator.
Received: 5 July 2009, Accepted: 5 February 2011.
(c) 2012 Iranian Mathematical Society.

Some interesting subclasses of analytic functions, associated with the operator $Q_{\beta, 1}^{\alpha}$ and its many special cases, have been considered by Jung et al. [2], Auof et al. [1], Liu [3, 4, 5], Liu and Owa [6] and Patel and Rout [8].

Motivated by Jung, et al.'s work [2], we now introduce a linear operator, $Q_{\beta, p}^{\alpha}: A(p) \rightarrow A(p)$, as follows:

$$
\begin{align*}
Q_{\beta, p}^{\alpha} f(z)= & \binom{p+\alpha+\beta-1}{p+\beta-1} \frac{\alpha}{z^{\beta}} \int_{0}^{z}\left(1-\frac{t}{z}\right)^{\alpha-1} t^{\beta-1} f(t) d t \\
3) & (\alpha \geq 0, \beta>-1 ; f \in A(p)) . \tag{1.3}
\end{align*}
$$

We note that

$$
\begin{equation*}
Q_{\beta, p}^{\alpha} f(z)=z^{p}+\sum_{k=p+1}^{\infty} \frac{\Gamma(k+\beta) \Gamma(p+\alpha+\beta)}{\Gamma(k+\alpha+\beta) \Gamma(p+\beta)} a_{k} z^{k} \tag{1.4}
\end{equation*}
$$

It is easily verified from the definition (1.1),(1.2),(1.3) and (1.4) that

$$
\begin{equation*}
z\left(Q_{\beta, p}^{\alpha+1} f(z)\right)^{\prime}=(\alpha+\beta+p) Q_{\beta, p}^{\alpha} f(z)-(\alpha+\beta) Q_{\beta, p}^{\alpha+1} f(z) \tag{1.5}
\end{equation*}
$$

When $p=1$, the identity (1.5) was given by Jung et al. [2]. Here, we shall derive certain interesting properties of the linear operator $Q_{\beta, p}^{\alpha}$.

2. Main results

In order to give our results, we need the following lemma.
Lemma 2.1. (see [7]). Let Ω be a set in the complex plane C and let b be a complex number such that Reb >0. Suppose that the function $\psi: C^{2} \times U \rightarrow C$ satisfies the condition

$$
\psi(i x, y ; z) \notin \Omega
$$

for all real $x, y \leq-|b-i x|^{2} /(2 R e b)$ and all $z \in U$. If the function $p(z)$, defined by $p(z)=b+b_{1} z+b_{2} z^{2}+\cdots$, is analytic in U and if

$$
\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega
$$

then $\operatorname{Rep}(z)>0$ in U.
We now obtain some properties of the operator $Q_{\beta, p}^{\alpha}$.

Theorem 2.2. Let $\alpha \geq 0, \beta>-1, \sigma \geq 1$ and $\gamma>0$. Let $f(z) \in A(p)$. Then,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{Q_{\beta, p}^{\alpha} f(z)}{Q_{\beta, p}^{\alpha+1} f(z)}\right\}<\frac{\alpha+\beta+p+\gamma}{\alpha+\beta+p} \quad(z \in U) \tag{2.1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\operatorname{Re}\left\{\left(\frac{Q_{\beta, p}^{\alpha+1} f(z)}{z^{p}}\right)^{-1 / 2 \sigma \gamma}\right\}>2^{-1 / \sigma} \quad(z \in U) . \tag{2.2}
\end{equation*}
$$

The bound $2^{-1 / \sigma}$ is the best possible.
Proof. From (1.5) and (2.1), we have

$$
\operatorname{Re}\left\{\frac{z\left(Q_{\beta, p}^{\alpha+1} f(z)\right)^{\prime}}{Q_{\beta, p}^{\alpha+1} f(z)}\right\}<p+\gamma \quad(z \in U) .
$$

That is,

$$
\begin{equation*}
\frac{1}{2 \gamma}\left(\frac{z\left(Q_{\beta, p}^{\alpha+1} f(z)\right)^{\prime}}{Q_{\beta, p}^{\alpha+1} f(z)}-p\right) \prec \frac{z}{1-z} \tag{2.3}
\end{equation*}
$$

Let

$$
p(z)=\left(\frac{Q_{\beta, p}^{\alpha+1} f(z)}{z^{p}}\right)^{-1 / 2 \gamma} .
$$

Then, (2.3) may be written as

$$
\begin{equation*}
z(\log p(z))^{\prime} \prec z\left(\log \frac{1}{1-z}\right)^{\prime} . \tag{2.4}
\end{equation*}
$$

By applying a well-known result [9] to (2.4), we obtain that:

$$
p(z) \prec \frac{1}{1-z},
$$

that is,

$$
\begin{equation*}
\left(\frac{Q_{\beta, p}^{\alpha+1} f(z)}{z^{p}}\right)^{-1 / 2 \sigma \gamma}=\left(\frac{1}{1-w(z)}\right)^{1 / \sigma} \tag{2.5}
\end{equation*}
$$

where $w(z)$ is analytic in $U, w(0)=0$ and $|w(z)|<1$, for $z \in U$.

According to $\operatorname{Re}\left(t^{1 / \sigma}\right) \geq(\operatorname{Ret})^{1 / \sigma}$ for Ret >0 and $\sigma \geq 1$, (2.5) yields (2.2) as follows:

$$
\begin{aligned}
\operatorname{Re}\left\{\left(\frac{Q_{\beta, p}^{\alpha+1} f(z)}{z^{p}}\right)^{-1 / 2 \sigma \gamma}\right\} & \geq\left(\operatorname{Re}\left(\frac{1}{1-w(z)}\right)\right)^{1 / \sigma} \\
& >2^{-1 / \sigma} \quad(z \in U)
\end{aligned}
$$

To see that the bound $2^{-1 / \sigma}$ cannot be increased, we consider the function
$g(z)=z^{p}+\sum_{k=p+1}^{\infty} \frac{\Gamma(k+\alpha+\beta) \Gamma(p+\beta)}{\Gamma(k+\beta) \Gamma(p+\alpha+\beta)} \cdot \frac{2 \gamma(2 \gamma-1) \cdots(2 \gamma-k+p+1)}{(k-p)!} z^{k}$.
Since $g(z)$ satisfies

$$
\frac{Q_{\beta, p}^{\alpha+1} g(z)}{z^{p}}=(1+z)^{2 \gamma}
$$

we easily have that $g(z)$ satisfies (2.1) and

$$
\operatorname{Re}\left\{\left(\frac{Q_{\beta, p}^{\alpha+1} g(z)}{z^{p}}\right)^{-1 / 2 \sigma \gamma}\right\} \rightarrow 2^{-1 / \sigma}
$$

as $\operatorname{Re} z \rightarrow 1^{-}$. The proof of the theorem is now complete.
Theorem 2.3. Let $\alpha \geq 1, \beta>-1, \lambda \geq 0$ and $\gamma>1$. Suppose that $f(z) \in A(p)$. Then,

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{Q_{\beta, p}^{\alpha} f(z)}{Q_{\beta, p}^{\alpha+1} f(z)}+\lambda \frac{Q_{\beta, p}^{\alpha-1} f(z)}{Q_{\beta, p}^{\alpha} f(z)}\right\}<\gamma \quad(z \in U) \tag{2.6}
\end{equation*}
$$

implies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{Q_{\beta, p}^{\alpha} f(z)}{Q_{\beta, p}^{\alpha+1} f(z)}\right\}<M \quad(z \in U) \tag{2.7}
\end{equation*}
$$

where $M \in(1,+\infty)$ is the positive root of the equation

$$
\begin{equation*}
2(\alpha+\beta+p+\lambda-1) x^{2}-[\lambda+2 \gamma(\alpha+\beta+p-1)] x-\lambda=0 \tag{2.8}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
p(z)=\frac{1}{M-1}\left[M-\frac{Q_{\beta, p}^{\alpha} f(z)}{Q_{\beta, p}^{\alpha+1} f(z)}\right] \tag{2.9}
\end{equation*}
$$

Then, $p(z)$ is analytic in U and $p(0)=1$. Differentiating (2.9) with respect to z and using (1.5), we obtain

$$
\begin{aligned}
&(1-\lambda) \frac{Q_{\beta, p}^{\alpha} f(z)}{Q_{\beta, p}^{\alpha+1} f(z)}+\lambda \frac{Q_{\beta, p}^{\alpha-1} f(z)}{Q_{\beta, p}^{\alpha} f(z)} \\
&= M+\frac{\lambda(M-1)}{\alpha+\beta+p-1}-\frac{(M-1)(\alpha+\beta+p+\lambda-1)}{\alpha+\beta+p-1} p(z) \\
&-\frac{\lambda(M-1)}{\alpha+\beta+p-1} \cdot \frac{z p^{\prime}(z)}{M-(M-1) p(z)} \\
&= \psi\left(p(z), z p^{\prime}(z)\right),
\end{aligned}
$$

where

$$
\begin{align*}
\psi(r, s) & =M+\frac{\lambda(M-1)}{\alpha+\beta+p-1}-\frac{(M-1)(\alpha+\beta+p+\lambda-1)}{\alpha+\beta+p-1} r \\
10) & -\frac{\lambda(M-1)}{\alpha+\beta+p-1} \cdot \frac{s}{M-(M-1) r} . \tag{2.10}
\end{align*}
$$

Using (2.6) and (2.10), we have

$$
\left\{\psi\left(p(z), z p^{\prime}(z)\right): z \in U\right\} \subset \Omega=\{w \in C: \text { Rew }<\gamma\}
$$

Now, for all real $x, y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re} & \{\psi(i x, y)\} \\
& =M+\frac{\lambda(M-1)}{\alpha+\beta+p-1}-\frac{\lambda(M-1)}{\alpha+\beta+p-1} \cdot \frac{M y}{M^{2}+(M-1)^{2} x^{2}} \\
& \geq M+\frac{\lambda(M-1)}{\alpha+\beta+p-1}+\frac{\lambda M(M-1)}{2(\alpha+\beta+p-1)} \cdot \frac{1+x^{2}}{M^{2}+(M-1)^{2} x^{2}} \\
& \geq M+\frac{\lambda(M-1)}{\alpha+\beta+p-1}+\frac{\lambda(M-1)}{2 M(\alpha+\beta+p-1)} \\
& =M+\frac{\lambda(M-1)(2 M+1)}{2 M(\alpha+\beta+p-1)}=\gamma,
\end{aligned}
$$

where M is the positive root of the equation (2.8).
Note that $\alpha \geq 1, \beta>-1, \lambda \geq 0, \gamma>1$ and let

$$
g(x)=2(\alpha+\beta+p+\lambda-1) x^{2}-[\lambda+2 \gamma(\alpha+\beta+p-1)] x-\lambda .
$$

Then, $g(0)=-\lambda \leq 0$, and $g(1)=-2(\alpha+\beta+p-1)(\gamma-1)<0$. This shows $M \in(1,+\infty)$. Hence, for each $z \in U, \psi(i x, y) \notin \Omega$. By Lemma 2.1, we get $\operatorname{Rep}(z)>0$. This proves (2.7).

Finally, we prove the following result.
Theorem 2.4. Let $\alpha \geq 0, \beta>-1, \lambda \geq 0, \gamma>1$ and $0 \leq \delta<1$. Let $g(z) \in A(p)$ satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{Q_{\beta, p}^{\alpha+1} g(z)}{Q_{\beta, p}^{\alpha} g(z)}\right\}>\delta \quad(z \in U) \tag{2.11}
\end{equation*}
$$

If $f(z) \in A(p)$ satisfies

$$
\begin{equation*}
R e\left\{(1-\lambda) \frac{Q_{\beta, p}^{\alpha+1} f(z)}{Q_{\beta, p}^{\alpha+1} g(z)}+\lambda \frac{Q_{\beta, p}^{\alpha} f(z)}{Q_{\beta, p}^{\alpha} g(z)}\right\}<\gamma \quad(z \in U) \tag{2.12}
\end{equation*}
$$

then

$$
\begin{equation*}
R e\left\{\frac{Q_{\beta, p}^{\alpha+1} f(z)}{Q_{\beta, p}^{\alpha+1} g(z)}\right\}<\frac{2 \gamma(\alpha+\beta+p)+\lambda \delta}{2(\alpha+\beta+p)+\lambda \delta} \quad(z \in U) \tag{2.13}
\end{equation*}
$$

Proof. Let $M=\frac{2 \gamma(\alpha+\beta+p)+\lambda \delta}{2(\alpha+\beta+p)+\lambda \delta}(M>1)$ and consider the function

$$
\begin{equation*}
p(z)=\frac{1}{M-1}\left[M-\frac{Q_{\beta, p}^{\alpha+1} f(z)}{Q_{\beta, p}^{\alpha+1} g(z)}\right] \tag{2.14}
\end{equation*}
$$

The function $p(z)$ is analytic in U and $p(0)=1$. Setting

$$
B(z)=\frac{Q_{\beta, p}^{\alpha+1} g(z)}{Q_{\beta, p}^{\alpha} g(z)}
$$

we have $\operatorname{Re}\{B(z)\}>\delta(z \in U)$. Differentiating (2.14) with respect to z and using (1.5), we have

$$
\begin{aligned}
& (1-\lambda) \frac{Q_{\beta, p}^{\alpha+1} f(z)}{Q_{\beta, p}^{\alpha+1} g(z)}+\lambda \frac{Q_{\beta, p}^{\alpha} f(z)}{Q_{\beta, p}^{\alpha} g(z)} \\
& =M-(M-1) p(z)-\frac{\lambda(M-1)}{\alpha+\beta+p} B(z) \cdot z p^{\prime}(z)
\end{aligned}
$$

Let

$$
\psi(r, s)=M-(M-1) r-\frac{\lambda(M-1)}{\alpha+\beta+p} B(z) \cdot s
$$

Then, from (2.11) and (2.12), we deduce that

$$
\left\{\psi\left(p(z), z p^{\prime}(z)\right): z \in U\right\} \subset \Omega=\{w \in C: \text { Rew }<\gamma\} .
$$

Now, for all real $x, y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re}\{\psi(i x, y)\} & =M-\frac{\lambda(M-1) y}{\alpha+\beta+p} \operatorname{Re}\{B(z)\} \\
& \geq M+\frac{\lambda \delta(M-1)}{2(\alpha+\beta+p)}\left(1+x^{2}\right) \\
& \geq M+\frac{\lambda \delta(M-1)}{2(\alpha+\beta+p)}=\gamma .
\end{aligned}
$$

Hence, for each $z \in U, \psi(i x, y) \notin \Omega$. Thus, by Lemma 2.1, $\operatorname{Rep}(z)>0$ in U. This proves (2.13). The proof of the theorem is now complete.

Acknowledgements

The author expresses sincere thanks to the referees for their careful readings and suggestions which helped to improve the presentation.

References

[1] M. K. Aouf, H. M. Hossen and A. Y. Lashin, An application of certain integral operator, J. Math. Anal. Appl. 248 (2000), no. 2, 475-481.
[2] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one parameter families of integral operators, J. Math. Anal. Appl. 176 (1993), no. 1, 138-147.
[3] J.-L. Liu, Certain integral operator and strongly starlike functions, Int. J. Math. Math. Sci. 30 (2002), no. 9, 569-574.
[4] J.-L. Liu, Notes on Jung-Kim-Srivastava integral operator, J. Math. Anal. Appl. 294 (2004), no. 1, 96-103.
[5] J.-L. Liu, On application of certain integral operator, Indian J. Math. 49 (2007), no. 1, 1-6.
[6] J.-L. Liu and S. Owa, Properties of certain integral operator, Int. J. Math. Sci. 3 (2004), no. 2, 351-359.
[7] S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), no. 2, 157-171.
[8] J. Patel and S. Rout, Properties of certain analytic functions involving Ruscheweyh derivatives, Math. Japon. 39 (1994), no. 3, 509-518.
[9] T.J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775-777.

Jin-Lin Liu
Department of Mathematics, Yangzhou University, 225002, Yangzhou City, China Email: jlliu@yzu.edu.cn

