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PROPERTIES OF MULTIVALENT FUNCTIONS
ASSOCIATED WITH A CERTAIN INTEGRAL

OPERATOR

J-L LIU

Communicated by Heydar Radjavi

Abstract. Let A(p) denote the class of functions of the form
f(z) = zp +

P∞
k=p+1 akzk (p ∈ N = {1, 2, 3, · · · }), which are ana-

lytic in the open unit disk U = {z : z ∈ C and |z| < 1}. By making
use of a certain integral operator, we obtain some interesting prop-
erties of multivalent analytic functions.

1. Introduction

Let A(p) denote the class of functions of the form

f(z) = zp +
∞∑

k=p+1

akz
k, (p ∈ N = {1, 2, 3, · · · }),(1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}.
Recently, Jung, et al. [2] introduced the following integral operator,

Qα
β,1 : A(1) → A(1):

Qα
β,1f(z) =

(
α+ β
β

)
α

zβ

∫ z

0

(
1− t

z

)α−1

tβ−1f(t)dt

(α > 0, β > −1; f ∈ A(1)).(1.2)
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Some interesting subclasses of analytic functions, associated with the
operator Qα

β,1 and its many special cases, have been considered by Jung
et al. [2], Auof et al. [1], Liu [3, 4, 5], Liu and Owa [6] and Patel and
Rout [8].

Motivated by Jung, et al.’s work [2], we now introduce a linear oper-
ator, Qα

β,p : A(p) → A(p), as follows:

Qα
β,pf(z) =

(
p+ α+ β − 1
p+ β − 1

)
α

zβ

∫ z

0

(
1− t

z

)α−1

tβ−1f(t)dt

(α ≥ 0, β > −1; f ∈ A(p)).(1.3)

We note that

Qα
β,pf(z) = zp +

∞∑
k=p+1

Γ(k + β)Γ(p+ α+ β)
Γ(k + α+ β)Γ(p+ β)

akz
k.(1.4)

It is easily verified from the definition (1.1),(1.2),(1.3) and (1.4) that

z
(
Qα+1

β,p f(z)
)′

= (α+ β + p)Qα
β,pf(z)− (α+ β)Qα+1

β,p f(z).(1.5)

When p = 1, the identity (1.5) was given by Jung et al. [2]. Here, we
shall derive certain interesting properties of the linear operator Qα

β,p.

2. Main results

In order to give our results, we need the following lemma.

Lemma 2.1. (see [7]). Let Ω be a set in the complex plane C and let
b be a complex number such that Reb > 0. Suppose that the function
ψ : C2 × U → C satisfies the condition

ψ(ix, y; z) /∈ Ω,

for all real x, y ≤ −|b− ix|2/(2Reb) and all z ∈ U . If the function p(z),
defined by p(z) = b+ b1z + b2z

2 + · · · , is analytic in U and if

ψ(p(z), zp′(z); z) ∈ Ω,

then Rep(z) > 0 in U .

We now obtain some properties of the operator Qα
β,p.
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Theorem 2.2. Let α ≥ 0, β > −1, σ ≥ 1 and γ > 0. Let f(z) ∈ A(p).
Then,

Re

{
Qα

β,pf(z)

Qα+1
β,p f(z)

}
<
α+ β + p+ γ

α+ β + p
(z ∈ U)(2.1)

implies

Re


(
Qα+1

β,p f(z)

zp

)−1/2σγ
 > 2−1/σ (z ∈ U).(2.2)

The bound 2−1/σ is the best possible.

Proof. From (1.5) and (2.1), we have

Re

{
z(Qα+1

β,p f(z))′

Qα+1
β,p f(z)

}
< p+ γ (z ∈ U).

That is,

1
2γ

(
z(Qα+1

β,p f(z))′

Qα+1
β,p f(z)

− p

)
≺ z

1− z
.(2.3)

Let

p(z) =

(
Qα+1

β,p f(z)

zp

)−1/2γ

.

Then, (2.3) may be written as

z(logp(z))′ ≺ z

(
log

1
1− z

)′
.(2.4)

By applying a well-known result [9] to (2.4), we obtain that:

p(z) ≺ 1
1− z

,

that is, (
Qα+1

β,p f(z)

zp

)−1/2σγ

=
(

1
1− w(z)

)1/σ

,(2.5)

where w(z) is analytic in U , w(0) = 0 and |w(z)| < 1, for z ∈ U .
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According to Re
(
t1/σ

)
≥ (Ret)1/σ for Ret > 0 and σ ≥ 1, (2.5) yields

(2.2) as follows:

Re


(
Qα+1

β,p f(z)

zp

)−1/2σγ
 ≥

(
Re

(
1

1− w(z)

))1/σ

> 2−1/σ (z ∈ U).

To see that the bound 2−1/σ cannot be increased, we consider the
function

g(z) = zp+
∞∑

k=p+1

Γ(k + α+ β)Γ(p+ β)
Γ(k + β)Γ(p+ α+ β)

·2γ(2γ − 1) · · · (2γ − k + p+ 1)
(k − p)!

zk.

Since g(z) satisfies
Qα+1

β,p g(z)

zp
= (1 + z)2γ ,

we easily have that g(z) satisfies (2.1) and

Re


(
Qα+1

β,p g(z)

zp

)−1/2σγ
→ 2−1/σ,

as Rez → 1−. The proof of the theorem is now complete. �

Theorem 2.3. Let α ≥ 1, β > −1, λ ≥ 0 and γ > 1. Suppose that
f(z) ∈ A(p). Then,

Re

{
(1− λ)

Qα
β,pf(z)

Qα+1
β,p f(z)

+ λ
Qα−1

β,p f(z)

Qα
β,pf(z)

}
< γ (z ∈ U)(2.6)

implies

Re

{
Qα

β,pf(z)

Qα+1
β,p f(z)

}
< M (z ∈ U),(2.7)

where M ∈ (1,+∞) is the positive root of the equation

2(α+ β + p+ λ− 1)x2 − [λ+ 2γ(α+ β + p− 1)]x− λ = 0.(2.8)

Proof. Let

p(z) =
1

M − 1

[
M −

Qα
β,pf(z)

Qα+1
β,p f(z)

]
.(2.9)
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Then, p(z) is analytic in U and p(0) = 1. Differentiating (2.9) with
respect to z and using (1.5), we obtain

(1− λ)
Qα

β,pf(z)

Qα+1
β,p f(z)

+ λ
Qα−1

β,p f(z)

Qα
β,pf(z)

= M +
λ(M − 1)

α+ β + p− 1
− (M − 1)(α+ β + p+ λ− 1)

α+ β + p− 1
p(z)

− λ(M − 1)
α+ β + p− 1

· zp′(z)
M − (M − 1)p(z)

= ψ(p(z), zp′(z)),

where

ψ(r, s) = M +
λ(M − 1)

α+ β + p− 1
− (M − 1)(α+ β + p+ λ− 1)

α+ β + p− 1
r

− λ(M − 1)
α+ β + p− 1

· s

M − (M − 1)r
.(2.10)

Using (2.6) and (2.10), we have

{ψ(p(z), zp′(z)) : z ∈ U} ⊂ Ω = {w ∈ C : Rew < γ}.

Now, for all real x, y ≤ −(1 + x2)/2, we have

Re{ψ(ix, y)}

= M +
λ(M − 1)

α+ β + p− 1
− λ(M − 1)
α+ β + p− 1

· My

M2 + (M − 1)2x2

≥ M +
λ(M − 1)

α+ β + p− 1
+

λM(M − 1)
2(α+ β + p− 1)

· 1 + x2

M2 + (M − 1)2x2

≥ M +
λ(M − 1)

α+ β + p− 1
+

λ(M − 1)
2M(α+ β + p− 1)

= M +
λ(M − 1)(2M + 1)
2M(α+ β + p− 1)

= γ,

where M is the positive root of the equation (2.8).
Note that α ≥ 1, β > −1, λ ≥ 0, γ > 1 and let

g(x) = 2(α+ β + p+ λ− 1)x2 − [λ+ 2γ(α+ β + p− 1)]x− λ.
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Then, g(0) = −λ ≤ 0, and g(1) = −2(α + β + p − 1)(γ − 1) < 0. This
shows M ∈ (1,+∞). Hence, for each z ∈ U , ψ(ix, y) /∈ Ω. By Lemma
2.1, we get Rep(z) > 0. This proves (2.7). �

Finally, we prove the following result.

Theorem 2.4. Let α ≥ 0, β > −1, λ ≥ 0, γ > 1 and 0 ≤ δ < 1. Let
g(z) ∈ A(p) satisfy

Re

{
Qα+1

β,p g(z)

Qα
β,pg(z)

}
> δ (z ∈ U).(2.11)

If f(z) ∈ A(p) satisfies

Re

{
(1− λ)

Qα+1
β,p f(z)

Qα+1
β,p g(z)

+ λ
Qα

β,pf(z)
Qα

β,pg(z)

}
< γ (z ∈ U),(2.12)

then

Re

{
Qα+1

β,p f(z)

Qα+1
β,p g(z)

}
<

2γ(α+ β + p) + λδ

2(α+ β + p) + λδ
(z ∈ U).(2.13)

Proof. Let M = 2γ(α+β+p)+λδ
2(α+β+p)+λδ (M > 1) and consider the function

p(z) =
1

M − 1

[
M −

Qα+1
β,p f(z)

Qα+1
β,p g(z)

]
.(2.14)

The function p(z) is analytic in U and p(0) = 1. Setting

B(z) =
Qα+1

β,p g(z)

Qα
β,pg(z)

,

we have Re{B(z)} > δ (z ∈ U). Differentiating (2.14) with respect to z
and using (1.5), we have

(1− λ)
Qα+1

β,p f(z)

Qα+1
β,p g(z)

+ λ
Qα

β,pf(z)
Qα

β,pg(z)

= M − (M − 1)p(z)− λ(M − 1)
α+ β + p

B(z) · zp′(z).

Let

ψ(r, s) = M − (M − 1)r − λ(M − 1)
α+ β + p

B(z) · s.
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Then, from (2.11) and (2.12), we deduce that

{ψ(p(z), zp′(z)) : z ∈ U} ⊂ Ω = {w ∈ C : Rew < γ}.
Now, for all real x, y ≤ −(1 + x2)/2, we have

Re{ψ(ix, y)} = M − λ(M − 1)y
α+ β + p

Re{B(z)}

≥ M +
λδ(M − 1)

2(α+ β + p)
(1 + x2)

≥ M +
λδ(M − 1)

2(α+ β + p)
= γ.

Hence, for each z ∈ U , ψ(ix, y) /∈ Ω. Thus, by Lemma 2.1, Rep(z) > 0
in U . This proves (2.13). The proof of the theorem is now complete. �
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