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BRANCHES IN RANDOM RECURSIVE k-ARY TREES

M. JAVANIAN AND M. Q. VAHIDI-ASL∗

Communicated by Ahmad Reza Soltani

Abstract. Using the generalized Pólya urn models, we find the
expected value of the size of a branch in recursive k-ary trees. We
also find the expectation of the number of nodes of a given outdegree
in a branch of such trees.

1. Introduction

A tree is a connected graph which has no cycles (see [3] for basic
properties).

A tree with n nodes labelled 1, 2, . . . , n is a recursive tree if for each i
such that 2 ≤ i ≤ n, the labels of the nodes in the unique path from the
root (the node with label 1) to the ith node, form an increasing sequence
(see the survey by Smythe and Mahmoud [6] and also Bergeron, et al.
[1] for a wide class of results). Figure 1 shows all the recursive trees of
order 4.

The nodes with no descendants are the leaves of the tree. The number
of edges incident to a node of the tree is the degree of that node. When
the edges of a tree are directed with orientation from a node to its
immediate descendants, the outdegree of a node is the number of its
immediate descendants.
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Figure 1. Recursive trees of order 4.

Note that there is no restriction on the outdegrees of the nodes of
a recursive tree. A recursive tree in which outdegrees are equal to k,
is called a recursive k-ary tree. In the following, the term tree without
qualification will refer to a recursive k-ary tree.

The subtree rooted at the ith node in a tree is called the ith branch
of the tree. The number of nodes in a tree is its size. we assume that if
a tree has only one node, then that node is not a leaf.

Here, we work with some extensions of a tree, a representation in
which a different type of nodes called external is added at each possible
insertion position.

The nth node can be adjoined at any one of the insertion positions
in a tree of size n − 1. The probability that the nth node is joined to
a given node of outdegree d, is then k − d, the number of remaining
external nodes for that node, divided by (k− 1)(n− 1) + 1, the number
of all external nodes. A random recursive k-ary tree of size n, Tn, is a
tree which is obtained by random choosing of a node as a parent in Tn−1

and adjoining a node labelled n to it.
A chain letter scheme with discount can be considered as an appli-

cation of random recursive k-ary trees. This model has been proposed
as a model for chain letters where a company is founded to spread a
particular item (lottery tickets, good luck charm, etc.). The initial re-
cruiter looks for a willing participant to buy a copy of the letter. The
recruiter and the new letter holder compete with offering discounts to
attract new participants in proportion to the number of possible new
participants that they are able to attract. The process proceeds in this
way, where at each stage a participant (a node with outdegree d) who
sells d < k copies of the initial letter to d participants, offers discounts to
attract new participants in proportion to k − d, the number of possible
new participants that he or she is able to attract. This scheme increases
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the chance of attracting new participants, for a participant who has had
less customers.

Gastwirth and Bhattacharya [2] derived limiting distribution of the
size of a branch in random recursive trees, to be a geometric distribu-
tion. Szymański [7] found the mean and variance of the size of random
recursive trees. Also, the number of nodes of a given outdegree in a
branch of recursive trees was investigated in Szymański [7].

In Section 2, we find the expectation of the size of a branch of a
random recursive k-ary tree using the Pólya-Eggenberger urn scheme, a
special case of a general Pólya urn scheme (see [7]). In sections 3 and
4, we compute the expected value of the number of nodes of a given
outdegree in a branch.

2. Size of a branch

The Pólya urn models has been used in the context of size of a subtree
of some classes of trees (see the survey in [5] for the wide applications of
the Pólya urn models to random trees). We use a Pólya urn scheme to
prove our first result for random recursive k-ary trees. Let Sn,i denote
the number of nodes in the ith branch of a random tree of size n.

Theorem 2.1. For 1 ≤ i ≤ n,

E[Sn,i] =
kn− i + 1

(k − 1)i + 1
.

Proof. The process of joining new external nodes to an extended tree,
with respect to the number of external nodes in the ith branch, is a
Pólya-Eggenberger urn scheme. Initially, we have (k − 1)i + 1 balls,
(k − 1)(i − 1) blue (not in ith branch) and k white (belonging to the
ith branch). After each random drawing, k − 1 balls of the same color
as the ball withdrawn, are added to the urn. After n − i drawings we
have (k − 1)n + 1 balls in the urn and the number of white balls equals
(k − 1)Sn,i + 1. The expectation of (k − 1)Sn,i + 1 is an immediate
consequence of results in [4]. �

3. Number of leaves in a branch

Let Ln,i denote the number of leaves in the ith branch of a random
tree Tn of size n. In the following, we determine E[Ln,i], the expectation
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of this random quantity. Some of our results involve the quantity

un =
n∏

j=1

(k − 1)j
(k − 1)j + 1

,

where the product is interpreted as 1 when the range of j is empty.

Theorem 3.1. For 1 ≤ i ≤ n,

E[Ln,i] =
k

2k − 1

(
(k − 1)n + 1
(k − 1)i + 1

− (i− 1)un−1

(n− 1)ui−1

)
.(3.1)

If n −→∞, i = o(n), then

E[Ln,i] ∼
k

2k − 1
· n

i
.(3.2)

Proof. Adding the nth node to the random tree Tn−1, with n− 1 nodes,
the number of leaves in the ith branch either increases by 1, or stays the
same. Then we have

P
(
Ln,i = Ln−1,i + 1 |Tn−1

)
=

(k − 1)Sn−1,i + 1− kLn−1,i

(k − 1)(n− 1) + 1
,

and

P
(
Ln,i = Ln−1,i |Tn−1

)
= 1− (k − 1)Sn−1,i + 1− kLn−1,i

(k − 1)(n− 1) + 1
.

So,

E[Ln,i|Tn−1] = (Ln−1,i + 1)× (k − 1)Sn−1,i + 1− kLn−1,i

(k − 1)(n− 1) + 1

+Ln−1,i ×
(

1− (k − 1)Sn−1,i + 1− kLn−1,i

(k − 1)(n− 1) + 1

)
.

Taking expectations, we obtain the following recurrence relation

E[Ln,i] =
(k − 1)(n− 2)

(k − 1)(n− 1) + 1
E[Ln−1,i] +

k

(k − 1)i + 1
,

with the boundary condition E[Li,i] = 0. Using standard methods for
solving such recurrence relations, we get

E[Ln,i] =
k

(k − 1)i + 1

n−1∑
j=i

j

n− 1

n−1∏
l=j+1

(k − 1)l
(k − 1)l + 1

.
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This expression can be written in terms of the numbers uj as

E[Ln,i] =
k

(k − 1)i + 1

n−1∑
j=i

jun−1

(n− 1)uj

=
kun−1

(n− 1)[(k − 1)i + 1]

(
n−1∑
j=1

j

uj
−

i−1∑
j=1

j

uj

)
.

The identity

n−1∑
j=1

j

uj
=

(n− 1)[(k − 1)n + 1]
(2k − 1)un−1

may be verified by induction and the result follows. �

4. Number of nodes of a given outdegree in a branch

Let Xn,d,i denote the number of nodes of outdegree d in the ith branch
of a random tree of size n. Of course, Ln,i = Xn,0,i.

Lemma 4.1. For d ≥ 1 and n ≥ i + d,

E[Xn,d,i] =
k − d + 1

(k − 1)(n− 1) + d

n−1∑
j=i+d−1

C
(n−1)
j,d E[Xj,d−1,i],

where

C
(n)
j,d =

n∏
l=j

(k − 1)l + d

(k − 1)l + 1
.

Proof. Adding the nth node to the random tree Tn−1 with n− 1 nodes,
the number of nodes of outdegree d ≥ 1 in the ith branch either increases
by 1, decreases by 1, or stays the same. So,

E[Xn,d,i|Tn−1] = (Xn−1,d,i + 1)×
(k − d + 1)Xn−1,d−1,i

(k − 1)(n− 1) + 1

+(Xn−1,d,i − 1)×
(k − d)Xn−1,d,i

(k − 1)(n− 1) + 1
+ Xn−1,d,i

×
(

1−
(k − d + 1)Xn−1,d−1,i + (k − d)Xn−1,d,i

(k − 1)(n− 1) + 1

)
.
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Simplifying and taking expectations, we obtain

E[Xn,d,i] =
(k − 1)(n− 2) + d

(k − 1)(n− 1) + 1
E[Xn−1,d,i]

+
k − d + 1

(k − 1)(n− 1) + 1
E[Xn−1,d−1,i],(4.1)

with boundary condition E[Xi+d−1,d,i] = 0. By induction on n, we
obtain the result. �

Corollary 4.2. For 1 ≤ i ≤ n,

E[Xn,1,i] =
k2

2(k − 1)(2k − 1)

(
(k − 1)n + 1
(k − 1)i + 1

− (k − 1)(i− 1) + 1
(k − 1)(n− 1) + 1

− 2(k − 1)(i− 1)
[(k − 1)(n− 1) + 1]ui−1

n−1∑
j=i

uj−1

j − 1

)
.(4.2)

If n −→∞, i = o(n), then

E[Xn,1,i] ∼ k2

2(k − 1)(2k − 1)
· n

i
.(4.3)

Proof. By the special case of Lemma 4.1, for d = 1, we have

E[Xn,1,i] =
k

(k − 1)(n− 1) + 1

n−1∑
j=i

E[Lj,i]

=
k2(n− i)[(k − 1)(n + i− 1) + 2]

2(2k − 1)[(k − 1)i + 1][(k − 1)(n− 1) + 1]

− k2(i− 1)
(2k − 1)[(k − 1)(n− 1) + 1]ui−1

n−1∑
j=i

uj−1

j − 1

=
k2

2(k − 1)(2k − 1)
· (k − 1)n + 1

(k − 1)i + 1

− k2

2(k − 1)(2k − 1)
· (k − 1)(i− 1) + 1
(k − 1)(n− 1) + 1

− k2(i− 1)
(2k − 1)[(k − 1)(n− 1) + 1]ui−1

n−1∑
j=i

uj−1

j − 1
.

So the result (4.2) is derived. Since
∑n−1

j=i
uj−1

j−1 = O
(
ln(n

i )
)
, we obtain

(4.3). �
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Note that

C
(n)
j,2 =

n∏
l=j

(k − 1)l + 2
(k − 1)l + 1

=
n∏

l=j

(
1 +

1
(k − 1)l + 1

)
= 1 +

∑{
Sj⊆{j,...,n}|Sj 6=φ

} ∏
r∈Sj

1
(k − 1)r + 1

.(4.4)

By Lemma 4.1, (4.2) and (4.4), if n −→∞, i = o(n), then we obtain

E[Xn,2,i] =
k2(k − 1)

2(k − 1)(2k − 1)[(k − 1)(n− 1) + 2]

×
n−1∑

j=i+1

(k − 1)j + 1
(k − 1)i + 1

+ o(1)

=
k2(k − 1)(n− i− 1)[(k − 1)(n + i) + 2]

22(k − 1)(2k − 1)[(k − 1)i + 1][(k − 1)(n− 1) + 2]
+ o(1)

=
k2(k − 1)

22(k − 1)2(2k − 1)
· (k − 1)n + 1

(k − 1)i + 1
+ o(1).(4.5)

The evidence accumulating from the relations (3.2), (3.2) and (4.5) sug-
gests an asymptotic result for d ≥ 0, as given below.

Theorem 4.3. If i, n −→∞ such that n
i −→∞, then

E[Xn,d,i] ∼
k
∏d

j=1(k − j + 1)
2d(k − 1)d(2k − 1)

· n

i
,

for 0 ≤ d ≤ k − 1, and

E[Xn,k,i] ∼
(

k

k − 1
− k

2k − 1

k−1∑
d=0

∏d
j=1(k − j + 1)
2d(k − 1)d

)
n

i
,

where the product
∏d

j=1(k− j + 1) is interpreted as 1 when the range of
j is empty.

Proof. By (3.2), the assertion is correct for d = 0. Let εd =
k
Qd

j=1(k−j+1)

2d(k−1)d(2k−1)

and αn,d,i = E[Xn,d,i]− εd
(k−1)n+1
(k−1)i+1 . We shall show that

|αn,d,i|
εd · n

i

n
i
→∞
−→ 0, for 1 ≤ d ≤ k − 1.(4.6)
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Substitute αn,d,i in (4.1) to get

αn+1,d,i =
(k − 1)(n− 1) + d

(k − 1)n + 1
αn,d,i +

k − d + 1
(k − 1)n + 1

αn,d−1,i

+
(d− 1)εd

(k − 1)i + 1
.(4.7)

Assume that for some 1 ≤ d ≤ k − 1, there exists a positive constant
C(j) such that |αn,j,i| ≤ C(j), for all n ≥ i + j, and for all 1 ≤ j ≤ d− 1
(by (4.2), this holds for d = 2). For this d in the assumption, it is
sufficient to prove that there exists a positive constant C(d) such that
|αn,d,i| ≤ C(d), for all n ≥ i + d.
From (4.7),

|αn+1,d,i| ≤ (k − 1)(n− 1) + d

(k − 1)n + 1
|αn,d,i|+

(k − d + 1)C(d−1)

(k − 1)n + 1

+
(d− 1)εd

(k − 1)i + 1
.(4.8)

Choose C(d) > 2 max{(k − d + 1)C(d−1), 1 + (d + 1)εd}. Then,

[(k − 1)(n− 1) + d]C(d)

(k − 1)n + 1
+

(k − d + 1)C(d−1)

(k − 1)n + 1
+

(d− 1)εd

(k − 1)i + 1

< C(d) +
(d− k)C(d)

(k − 1)n + 1
+

C(d)/2
(k − 1)n + 1

+
C(d)/2

(k − 1)i + 1

< C(d) +
(d− k + 1)C(d)

(k − 1)i + 1
≤ C(d),(4.9)

for all n ≥ i + d, (by the induction hypothesis on d,
1 ≤ d ≤ k − 1). By definition of αn,d,i,

αi+d,d,i =
d∏

j=1

(k − j + 1)
(k − 1)(i + j − 1) + 1

− εd
(k − 1)(i + d) + 1

(k − 1)i + 1
,

and so |αi+d,d,i| < 1 + (d + 1)εd < C(d). Using this, (4.9), and taking
n = i + d in (4.8), we get

|αi+d+1,d,i| ≤ [(k − 1)(i + d− 1) + d]C(d)

(k − 1)(i + d) + 1
+

(k − d + 1)C(d−1)

(k − 1)(i + d) + 1

+
(d− 1)εd

(k − 1)i + 1
< C(d),
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and an induction on n gives |αn,d,i| < C(d), for all n ≥ i + d (for the d
of the induction hypothesis on d). So, an induction on d gives |αn,d,i| <
C(d), for all n ≥ i + d and all 1 ≤ d ≤ k − 1. Now, choose C =
min{C(1), C(2), . . . , C(k−1)}. Then, |αn,d,i| < C, for all n ≥ i + d and all
1 ≤ d ≤ k−1. This implies (4.6). For the case of d = k, since E[Xn,k,i] =
E[Sn,i]−

∑k−1
d=0 E[Xn,d,i] and by Theorem 2.1, E[Sn,i] ∼ k

k−1 ·
n
i , and the

proof is complete. �
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[7] J. Szymański, Branches in recursive trees, Fasc. Math. 29 (1999), 139–147.

Mehri Javanian

Department of Statistics, Faculty of Sciences, Zanjan University, Zanjan, Iran

Email: javanian m@yahoo.com

Mohammad Q. Vahidi-Asl

Department of Statistics, Shahid Beheshti University, P.O. Box 19835-389,

Tehran, Iran

Email: m vahidi@sbu.ac.ir


	1. Introduction
	2. Size of a branch
	3. Number of leaves in a branch
	4. Number of nodes of a given outdegree in a branch
	References

