
Bulletin of the Iranian Mathematical Society Vol. 38 No. 2 (2012), pp 447-459.

OPTIMAL ORDER FINITE ELEMENT
APPROXIMATION FOR A HYPERBOLIC
INTEGRO-DIFFERENTIAL EQUATION

F. SAEDPANAH

Communicated by Mohammad Asadzadeh

Abstract. Semidiscrete finite element approximation of a hyper-
bolic type integro-differential equation is studied. The model prob-
lem is treated as the wave equation which is perturbed with a mem-
ory term. Stability estimates are obtained for a slightly more gen-
eral problem. These, based on energy method, are used to prove
optimal order a priori error estimates.

1. Introduction

We consider a hyperbolic type integro-differential equation

ü + Au−
∫ t

0
K(t− s)Au(s) ds = f in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u(·, 0) = u0, ut(·, 0) = v0 in Ω,

(1.1)

where Ω is a bounded polygonal domain in Rd, d = 2, 3, with boundary
∂Ω. Here, A is a self-adjoint, positive definite uniformly elliptic second
order operator, and K is the kernel. The kernel K is considered to be
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either smooth (exponential), or weakly singular, in both cases with the
properties that

(1.2) K ≥ 0, K ′(t) ≤ 0, ‖K‖L1(0,∞) < 1.

Problems of this nature occur, e.g., in linear and fractional order vis-
coelasticity; see [1] and references therein. The model problem (1.1) is
of hyperbolic type, and numerical analysis of such a problem is inherent
from numerical analysis of the hyperbolic problems. Hence, we treat the
spatial finite element discretization of the problem as a wave equation
perturbed with a memory term.

We note that, for example, completely monotone functions satisfy
(1.2). That is, functions g ∈ L1(0,∞) ∩ C2(0,∞), such that

(−1)k dk

dtk
g(t) ≥ 0, ∀t > 0, k = 0, 1, 2.

For an example of this type of kernels, see [1].
There is an extensive literature on theoretical and numerical analysis

of integro-differential equations and their applications; see, e.g., [1, 2, 3,
4, 6, 8, 10], and references therein. Existence, uniqueness and regularity
of a similar problem have been studied in [1] in the framework of the
semigroup of linear operators. Spatial finite element approximations of
integro-differential equations similar to (1.1) have been studied in [2] and
[7], where optimal order L∞(L2) and L∞(H1) a priori error estimates
have been proved for the displacement solution u, and L∞(L2) estimates
for the velocity u̇. However, compared with the optimal order L∞(L2)
error estimate for the solution u, they require two extra derivatives of
regularity of the solution. Here, we improve those results by relaxing the
regularity assumptions on the smoothness of the solution by requiring
just one extra derivative. To this end, we prove stability estimates for
a slightly more general problem. These are then used to prove optimal
order a priori error estimates. The same argument has be applied for the
linear wave equation in [5]. In [9], based on an explicit representation of
the solution, it has been proved that the resulting regularity requirement,
for the wave equation, is minimal. However, a similar proof as in [9] can
not be directly applied for the finite element semidiscretization of the
model problem (1.1), since an explicit representation of the solution can
not be easily obtained.

In the next section, some preliminaries and finite element spatial dis-
cretization of the problem, based on a velocity-displacement weak for-
mulation, are provided. Then, in Section 3 an energy identity for a
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modified form of the discrete problem is obtained. Finally, these are
used in Section 4 to prove optimal order a priori error estimates for the
displacement and the velocity.

2. Preleminaries and finite element spatial discretization

We denote the standard Sobolev spaces by H i = H i(Ω)d with the
corresponding norms ‖ · ‖i. We recall that A is a self-adjoint, positive
definite uniformly elliptic second order operator with D(A) = H2 ∩
V , and we correspond the energy inner product a(v, w) = (Av,w) for
smooth functions v, w ∈ V . Here, V = {v ∈ H1 : v = 0 on ∂Ω} is
equiped with norm ‖ · ‖V = a(·, ·), which is equivalent to the standard
Sobolev norm ‖ · ‖1 on V . We also define H = L2(Ω)d with its usual
inner product and norm denoted by (·, ·) and ‖ · ‖, respectively.

We put u1 = u and u2 = u̇. Then, the velocity-displacement weak
formulation of (1.1) is to find u1(t), u2(t) ∈ V such that

a(u̇1(t), v1)− a(u2(t), v1) = 0,

(u̇2(t), v2) + a(u1(t), v2)−
∫ t

0
K(t− s)a(u1(s), v2) ds

= (f(t), v2), ∀v1, v2 ∈ V, t ∈ (0, T ],

u1(0) = u0, u2(0) = v0.

(2.1)

2.1. Finite element spatial discretization. Let {Th} be a regular
family of triangulations of Ω with corresponding family of finite element
spaces Vh ⊂ V , consisting of continuous piecewise polynomials of degree
at most r − 1, that vanish on ∂Ω (so, the mesh is required to fit ∂Ω).
Here, r ≥ 2 is an integer number. We define piecewise constant mesh
function hK by

hK(x) = diam(K), for x ∈ K, K ∈ Th.

For our error analysis, we denote h = maxK∈Th
hK , and we note that

the finite element spaces Vh have the property

(2.2) min
χ∈Vh

{‖v−χ‖+h‖v−χ‖1} ≤ Chi‖v‖i, for v ∈ H i∩V, 1 ≤ i ≤ r.
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Then, the spatial finite element discretization of (2.1) is to find uh,1(t),
uh,2(t) ∈ Vh, such that

a(u̇h,1(t), χ1)− a(uh,2(t), χ1) = 0,

(u̇h,2(t), χ2) + a(uh,1(t), χ2)−
∫ t

0
K(t− s)a(uh,1(s), χ2) ds

= (f(t), χ2), ∀χ1, χ2 ∈ Vh, t ∈ (0, T ],

uh,1(0) = uh,0, uh,2(0) = vh,0,

(2.3)

where uh,0, vh,0 are, respectively, suitable approximations of u0 and v0

in Vh.
Denoting the error by (e1, e2) = (uh,1, uh,2) − (u1, u2), we can write

the Galerkin orthogonality in the form

a(ė1(t), χ1)− a(e2(t), χ1) = 0,

(ė2(t), χ2) + a(e1(t), χ2)−
∫ t

0
K(t− s)a(e1(s), χ2) ds

= 0, ∀χ1, χ2 ∈ Vh, t ∈ (0, T ].

(2.4)

We recall the L2-projection Ph : H → Vh and the Ritz projection
Rh : V → Vh, defined by

a(Rhv, χ) = a(v, χ) and (Phv, χ) = (v, χ), ∀χ ∈ Vh.

We also recall the elliptic regularity estimate ‖v‖2 ≤ C‖Av‖, ∀ v ∈
D(A) = H2 ∩ V . Then, for the Ritz projection Rh, the error estimates
(2.2) hold; see [11]. That is,

‖(Rh − I)v‖+ h‖(Rh − I)v‖1

≤ Chi‖v‖i, for v ∈ H i ∩ V, 1 ≤ i ≤ r.
(2.5)

We use the discrete norms

‖vh‖h,l = ‖Al/2
h vh‖ =

√
(Al

hvh, vh), ∀vh ∈ Vh, l ∈ R,

where Ah : Vh → Vh is the discrete operator defined by

(Ahvh, wh) = a(vh, wh), ∀vh, wh ∈ Vh.

It is easy to see that, for vh ∈ Vh,

(2.6) ‖vh‖h,0 = ‖vh‖, ‖vh‖h,1 = ‖A1/2vh‖ = ‖vh‖1,

and, for v ∈ V ∗,

(2.7) ‖Phv‖h,−1 ≤ ‖v‖−1,



FEM for a hyperbolic integro-differential equation 451

where V ∗ is the corresponding dual space of V .

3. Stability estimates

In our error analysis, we use stability estimates for a slightly more
general form of (2.3), by putting an extra load term to the first equation.
That is, we find stability estimates for the modified problem

a(u̇h,1(t), χ1)− a(uh,2(t), χ1) = a(f1(t), χ1),

(u̇h,2(t), χ2) + a(uh,1(t), χ2)−
∫ t

0
K(t− s)a(uh,1(s), χ2) ds

= (f2(t), χ2), ∀χ1, χ2 ∈ Vh, t ∈ (0, T ],

uh,1(0) = uh,0, uh,2(0) = vh,0.

(3.1)

Theorem 3.1. Let (uh,1, uh,2) be a solution of (3.1). Then, for any
l ∈ R and T > 0, we have the identity

‖uh,2(T )‖2
h,l + κ(T )‖uh,1(T )‖2

h,l+1 +
∫ T

0
K‖uh,1‖2

h,l+1 dt

+
∫ T

0
K(s)‖wh,1(T, s)‖h,l+1 ds

+
∫ T

0

∫ t

0
(K(s)−K(t))Ds‖wh,1(t, s)‖h,l+1 ds dt

= ‖vh,0‖2
h,l + ‖uh,0‖2

h,l+1

+ 2
∫ T

0
(Phf2, A

l
huh,2) dt + 2

∫ T

0
κa(Rhf1, A

l
huh,1) dt

+ 2
∫ T

0

∫ t

0
K(t− s)a(Rhf1, A

l
hwh,1(t, s)) ds dt,

(3.2)

where wh,1(t, s) = uh,1(t)− uh,1(t− s) and

(3.3) 0 < κ(t) = 1−
∫ t

0
K(s) ds ≤ 1, t ∈ [0, T ].
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All terms on the left side are non-negative. Moreover, we have the sta-
bility estimate

‖uh,2(T )‖h,l + ‖uh,1(T )‖h,l+1

≤ C
(
‖vh,0‖h,l + ‖uh,0‖h,l+1 +

∫ T

0
‖Rhf1‖h,l+1 + ‖Phf2‖h,l dt

)
.

(3.4)

Proof. From the first equation of (3.1), we simply conclude

(3.5) uh,2 = u̇h,1 −Rhf1.

Now, using the new function wh,1(t, s) and (3.3), we can write the
second equation of (3.1) in the form

(u̇h,2(t), χ2) + κ(t)a(uh,1(t), χ2) +
∫ t

0
K(s)a(wh,1(t, s), χ2) ds

= (f2(t), χ2), ∀χ2 ∈ Vh.

(3.6)

Then, we choose χ2 = Al
huh,2(t) and integrate to obtain∫ T

0
(u̇h,2, A

l
huh,2) dt +

∫ T

0
κa(uh,1, A

l
huh,2) dt

+
∫ T

0

∫ t

0
K(s)a(wh,1(t, s), Al

huh,2) ds dt

=
∫ T

0
(Phf2, A

l
huh,2) dt.

(3.7)

Now, we need to study the three terms in the left side of the above
equation.

We can write the first term of the left side of (3.7), in a standard way,
as ∫ T

0
(u̇h,2, A

l
huh,2) dt =

1
2

∫ T

0
Dt‖uh,2‖2

h,l dt

=
1
2
(
‖uh,2(T )‖2

h,l − ‖vh,0‖2
h,l

)
.

(3.8)

For the second one, using (3.5), we have∫ T

0
κa(uh,1, A

l
huh,2) dt

=
1
2

∫ T

0
κDt‖uh,1‖2

h,l+1 dt−
∫ T

0
κa(uh,1, A

l
hRhf1) dt,
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and using integration by parts in the first term of the right side, and the
fatcs that κ̇(t) = −K(t) and κ(0) = 1, we have∫ T

0
κa(uh,1, A

l
huh,2) dt

=
1
2
(
κ(T )‖uh,1(T )‖2

h,l+1 − ‖uh,0‖2
h,l+1

)
+

1
2

∫ T

0
K‖uh,1‖2

h,l+1 dt−
∫ T

0
κa(uh,1, A

l
hRhf1) dt.

(3.9)

For the third term of the left side of (3.7), recalling (3.5), we have∫ T

0

∫ t

0
K(s)a(wh,1(t, s), Al

huh,2) ds dt

=
∫ T

0

∫ t

0
K(s)a(wh,1(t, s), Al

hu̇h,1) ds dt

−
∫ T

0

∫ t

0
K(s)a(wh,1(t, s), Al

hRhf1) ds dt

=
1
2

∫ T

0

∫ t

0
K(s)Dt‖wh,1(t, s)‖2

h,l+1 ds dt

+
1
2

∫ T

0

∫ t

0
K(s)Ds‖wh,1(t, s)‖2

h,l+1 ds dt

−
∫ T

0

∫ t

0
K(s)a(wh,1(t, s), Al

hRhf1) ds dt,

(3.10)

where for the last equality we used the fact that u̇h,1(t) = Dtwh,1(t, s)+
Dswh,1(t, s). In the first term on the right side, we change the order of
the integration, and we have

1
2

∫ T

0

∫ t

0
K(s)Dt‖wh,1(t, s)‖2

h,l+1 ds dt

=
1
2

∫ T

0
K(s)‖wh,1(T, s)‖2

h,l+1 ds− 1
2

∫ T

0
K(s)‖wh,1(s, s)‖2

h,l+1 ds.

Now, using

1
2

∫ T

0
K(s)‖wh,1(s, s)‖2

h,l+1 ds =
1
2

∫ T

0

∫ t

0
K(t)Ds‖wh,1(t, s)‖2

h,l+1 ds dt,
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we can write (3.10) as∫ T

0

∫ t

0
K(s)a(wh,1(t, s), Al

huh,2) ds dt

=
1
2

∫ T

0
K(s)‖wh,1(T, s)‖2

h,l+1 ds

+
1
2

∫ T

0

∫ t

0
(K(s)−K(t))Ds‖wh,1(t, s)‖2

h,l+1 ds dt

−
∫ T

0

∫ t

0
K(s)a(wh,1(t, s), Al

hRhf1) ds dt.

(3.11)

We show that the second term on the right side in non-negative. To this
end, for 0 < ε < t, we have∫ t

ε
(K(s)−K(t))Ds‖wh,1(t, s)‖2

h,l+1 ds

= −(K(ε)−K(t))‖wh,1(t, ε)‖2
h,l+1 −

∫ t

ε
K ′(s)‖wh,1(t, s)‖2

h,l+1 ds

≥ −K(ε)‖wh,1(t, ε)‖2
h,l+1,

where we used the facts that K ′(s) ≤ 0 and K(t) ≥ 0 from (1.2). Using

wh,1(t, ε) = wh,1(t, 0) +
∫ ε

0
Dswh,1(t, s) ds =

∫ ε

0
Dswh,1(t, s) ds,

and the Cauchy-Schwarz inequality, we have

‖wh,1(t, ε)‖2
h,l+1 ≤

( ∫ ε

0
‖Dswh,1(t, s)‖h,l+1

)2

≤
∫ ε

0

ds

K(s)

∫ ε

0
K(s)‖Dswh,1(t, s)‖2

h,l+1 ds,

and consequently,∫ t

ε
(K(s)−K(t))Ds‖wh,1(t, s)‖2

h,l+1 ds

≥ −
∫ ε

0

K(ε)
K(s)

ds

∫ ε

0
K(s)‖Dswh,1(t, s)‖2

h,l+1 ds.
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But, the kernel K is an decreasing function, which implies
∫ ε
0

K(ε)
K(s) ds ≤∫ ε

0 ds = ε such that∫ t

ε
(K(s)−K(t))Ds‖wh,1(t, s)‖2

h,l+1 ds

≥ −ε

∫ ε

0
K(s)‖Dswh,1(t, s)‖2

h,l+1 ds.

From the framework presented in [1], provided that the data are suffi-
ciently smooth, we have

∫ ε
0 K(s)‖Dswh,1(t, s)‖2

h,l+1 ds < ∞. Therefore,
we let ε → 0 and we have

(3.12)
∫ t

ε
(K(s)−K(t))Ds‖wh,1(t, s)‖2

h,l+1 ds ≥ 0.

We put (3.8), (3.9), and (3.11) in (3.7) to obtain the energy identity
(3.2). We recall that all terms on the left side are non-negative.

Now, as the final step, we prove the stability estimate (3.4). To this
end, from the identity (3.2), we have

‖uh,2(T )‖2
h,l + κ(T )‖uh,1(T )‖2

h,l+1

≤ ‖vh,0‖2
h,l + ‖uh,0‖2

h,l+1

+ 2
∫ T

0
(Phf2, A

l
huh,2) dt + 2

∫ T

0
κa(Rhf1, A

l
huh,1) dt

+ 2
∫ T

0

∫ t

0
K(t− s)a(Rhf1, A

l
hwh,1(t, s)) ds dt

≤ ‖vh,0‖2
h,l + ‖uh,0‖2

h,l+1

+ 2
∫ T

0
‖Phf2‖h,l‖uh,2‖h,l dt + 2

∫ T

0
‖Rhf1‖h,l+1‖uh,1‖h,l+1 dt

+ 2
∫ T

0

∫ t

0
K(t− s)‖Rhf1‖h,l+1‖wh,1(t, s)‖h,l+1 ds dt

≤ ‖vh,0‖2
h,l + ‖uh,0‖2

h,l+1

+ C1 max
0≤t≤T

‖uh,2‖2
h,l +

1
C1

( ∫ T

0
‖Phf2‖h,l dt

)2

+ C2 max
0≤t≤T

‖uh,1‖2
h,l+1 +

1
C2

( ∫ T

0
‖Rhf1‖h,l+1 dt

)2

+ C3(κ(T )) max
0≤t≤T

‖uh,1‖2
h,l+1 +

1
C3(κ(T ))

(∫ T

0
‖Rhf1‖h,l+1 dt

)2
.



456 Saedpanah

Then, in a standard way, we conclude the stability estimate (3.4), and
the proof is complete. �

Remark 3.2. We used the axuiliary function wh,1(t, s) = uh,1(t) −
uh,1(t − s) to obtain the stability estimate (3.4). Another definition,
wh,1(t, s) = uh,1(t) − uh,1(s), can also be used to obtain the same esti-
mate. The proof can be adapted from [1] and we omit the details.

4. A priori error estimates

Now, by energy methods, we obtain L∞([0, T ],H) and L∞([0, T ], V ),
optimal order error estimates for the displacement u1, and L∞([0, T ],H),
optimal order error estimate for the velocity u2.

Theorem 4.1. Assume that Ω is a convex polygonal domain. Let u =
(u1, u2) and uh = (uh,1, uh,2) be, respectively, the solutions of (2.1) and
(2.3). Then, for 0 ≤ t ≤ T , we have

‖uh,1(t)− u1(t)‖ ≤ C
(
‖uh,0 −Rhu0‖+ ‖vh,0 − Phv0‖−1

)
+ Chr

(
‖u1(t)‖r +

∫ t

0
‖u2‖r dτ

)
,

(4.1)

‖uh,1(t)− u1(t)‖1 ≤ C
(
‖uh,0 −Rhu0‖1 + ‖vh,0 −Rhv0‖

)
+ Chr−1

(
‖u1(t)‖r +

∫ t

0
‖u̇2‖r−1 dτ

)
,

(4.2)

‖uh,2(t)− u2(t)‖ ≤ C
(
‖uh,0 −Rhu0‖1 + ‖vh,0 −Rhv0‖

)
+ Chr

(
‖u2(t)‖r +

∫ t

0
‖u̇2‖r dτ

)
.

(4.3)

Proof. We split the error uh − u as

(4.4) uh − u = θ + ρ = (uh −Πhu) + (Πhu− u),

where the operator Πh is chosen properly in terms of the elliptic and
L2-projectors Rh and Ph, respectively. Due to (2.5), we only need to
estimate θ. To this end, using (4.4) and the Galerkin orthogonality
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(2.4), we get

a(θ̇1(t), χ1)− a(θ2(t), χ1) = −a(ρ̇1(t), χ1) + a(ρ2(t), χ1),

(θ̇2(t), χ2) + a(θ1(t), χ2)−
∫ t

0
K(t− s)a(θ1(s), χ2) ds

= −(ρ̇2(t), χ2)− a(ρ1(t), χ2) +
∫ t

0
K(t− s)a(ρ1(s), χ2) ds,

∀χ1, χ2 ∈ Vh, t ∈ (0, T ].

To prove the first error estimate (4.1), we choose

θ1 = uh,1 −Rhu1, ρ1 = (Rh − I)u1,

θ2 = uh,2 − Phu2, ρ2 = (Ph − I)u2.

By the definitions of the operators Rh and Ph, we have

a(θ̇1(t), χ1)− a(θ2(t), χ1) = a(ρ2(t), χ1),

(θ̇2(t), χ2) + a(θ1(t), χ2)−
∫ t

0
K(t− s)a(θ1(s), χ2) ds

= 0, ∀χ1, χ2 ∈ Vh, t ∈ (0, T ],

that is, θ1 and θ2 satisfy (3.1) with f1 = ρ2, f2 = 0. Therefore, we apply
stability inequality (3.4) with l = −1 to obtain

‖θ1(T )‖h,0 ≤ C
(
‖θ1(0)‖h,0 + ‖θ2(0)‖h,−1 +

∫ T

0
‖Rhρ2‖h,0 dt

)
.

Using (2.6), (2.7), (4.4), and

‖Rhρ2‖ = ‖Ph(I −Rh)u2‖ ≤ ‖(Rh − I)u2‖,

we have
‖uh,1(T )− u1(T )‖ ≤ ‖(Rh − I)u1(T )‖

+ C
(
‖uh,0 −Rhu0‖+ ‖vh,0 − Phv0‖−1

+
∫ T

0
‖(Rh − I)u2)‖dt

)
.

This, using (2.5), proves the first estimate in (4.1).
Now, to prove the error estimates of (4.2) and (4.3), we choose

θi = uh,i −Rhui, ρi = (Rh − I)ui, i = 1, 2.
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Then, similar to the previous case,

a(θ̇1(t), χ1)− a(θ2(t), χ1) = 0,

(θ̇2(t), χ2) + a(θ1(t), χ2)−
∫ t

0
K(t− s)a(θ1(s), χ2) ds

= −(ρ̇2, χ2), ∀χ1, χ2 ∈ Vh, t ∈ (0, T ],

that is, θ1, θ2 satisfy (3.1) with f1 = 0, f2 = −ρ̇2. Therefore, we apply
stability inequality (3.4), but this time with l = 0, and obtain

‖θ1(T )‖h,1 + ‖θ2(T )‖h,0

≤ C
(
‖θ1(0)‖h,1 + ‖θ2(0)‖h,0 +

∫ T

0
‖Phρ̇2‖h,0 dt

)
.

Now, using (2.6), (4.4), and

‖Phρ̇2‖ = ‖Ph(Rh − I)u̇2‖ ≤ ‖(Rh − I)u̇2‖,

we have

‖uh,1(T )− u1(T )‖1 ≤ ‖(Rh − I)u1(T )‖1

+ C
(
‖uh,0 −Rhu0‖1 + ‖vh,0 −Rhv0‖

+
∫ T

0
‖(Rh − I)u̇2‖dt

)
,

‖uh,2(T )− u2(T )‖ ≤ ‖(Rh − I)u2(T )‖

+ C
(
‖uh,0 −Rhu0‖1 + ‖vh,0 −Rhv0‖

+
∫ T

0
‖(Rh − I)u̇2‖dt

)
.

Using (2.5), we conclude the error estimates (4.2) and (4.3). The proof
is now complete. �

Acknowledgments

The author thanks the anonymous referee for constructive comments on
the first version of the manuscript.



FEM for a hyperbolic integro-differential equation 459

References

[1] S. Larsson and F. Saedpanah, The continuous Galerkin method for an integro-
differential equation modeling dynamic fractional order viscoelasticity, IMA J.
Numer. Anal. 30 (2009), no. 4, 964–986.

[2] K. Adolfsson, M. Enelund, S. Larsson and M. Racheva, Discretization of
Integro-Differential Equations Modeling Dynamic Fractional Order Viscoelas-
ticity. Large-Scale Scientific Computing, 76–83, Lecture Notes in Comput. Sci.,
3743, Springer, Berlin, 2006.

[3] H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equa-
tions, CWI Monographs, 3. North-Holland Publishing Co., Amsterdam, 1986.

[4] C. M. Dafermos, An abstract Volterra equation with applications to linear vis-
coelasticity, J. Differential Equations 7 (1970), 554–569.
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