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A NEW FAMILY IN THE STABLE HOMOTOPY
GROUPS OF SPHERES

X. LIU∗ AND K. MA

Communicated by Jean-Louis Cathelineau

Abstract. Let p be a prime number greater than three. Here, we
prove the existence of a new family of homotopy elements in the
stable homotopy groups of spheres π∗(S) which is represented by

hnhmβ̃s+2 ∈ Ext
s+4,q[pn+pm+(s+2)p+(s+1)]+s
A (Zp, Zp) up to a nonzero

scalar in the Adams spectral sequence, where n ≥ m + 2 > 5, 0 ≤
s < p− 2, q = 2(p− 1) and β̃s+2 ∈ Ext

s+2,q[(s+2)p+(s+1)]+s
A (Zp, Zp)

as defined by Wang and Zheng.

1. Introduction

Throughout the paper, we fix a prime p ≥ 5, and put q = 2(p−1). Let
M be the Moore spectrum modulo the prime p given by the cofibration

S
p→ S

i→ M
j→ ΣS,

where S is the sphere spectrum localized at the prime p. Let α : ΣqM →
M be the Adams map and V (1) be its cofibre given by the cofibration

ΣqM
α→ M

i′→ V (1)
j′→ Σq+1M.
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This spectrum V (1) is known to be the Toda-Smith spectrum. Let V (2)
be the cofibre of the v2-map β : Σ(p+1)qV (1) → V (1), given by the
cofibration

Σ(p+1)qV (1)
β→ V (1) ī→ V (2)

j̄→ Σ(p+1)q+1V (1).

Recall that there exists the β-family βt ∈ πq(tp+t−1)−2(S), for t ≥ 1,
where βt = jj′βti′i. The β-family βt was defined by Smith [7], and was
detected in the Adams-Novikov spectral sequence for BP-cohomology in
[5].

In [8], the second Greek letter family, denoted by β̃s, was first defined.
Wang and Zheng proved the following results.

Theorem 1.1. (1)[8, Theorem 2] When p ≥ 5, 2 ≤ s < p, β̃s represents
the β-family βs in the Adams spectral sequence (ASS).

(2)[8, Theorem 3] For p ≥ 5, 2 ≤ s < p, k ≥ 2, β̃sh0hk+1 survives to
E∞.

Recently, Liu [2, 3] got some results about β̃s.

Theorem 1.2. (1)[2, Theorem 1.1] For p ≥ 5, n ≥ 3, 2 ≤ s < p − 1,
b0hnβ̃s represents a nontrivial homotopy element in π∗S in the Adams
spectral sequence.

(1)[3, Theorem 1.4] For p ≥ 5, n ≥ 3, 2 ≤ s < p − 2, b0h0hnβ̃s

represents a nontrivial homotopy element in π∗S in the Adams spectral
sequence.

In [1], Lin detected a new element in the stable homotopy groups of
V (1).

Theorem 1.3. [1, Theorem 4.1] Let p ≥ 5, n ≥ 0 and
hn ∈ Ext1,pnq

A (Zp, Zp). Then, (i′i)∗(hn) ∈ Ext1,pnq
A (H∗V (1), Zp) is a

permanent cycle in the ASS and converges to a nontrivial element %n ∈
πpnq−1(V (1)).

Here, we will make use of the above theorem to detect a %n-related
homotopy element in π∗S.

Theorem 1.4. Let p ≥ 5, and n ≥ m+2 > 5, and 0 ≤ s < p−2. Then,
the product hnhmβ̃s+2 ∈ Exts+4,t(s)

A (Zp, Zp) is a permanent cycle in the
ASS and converges to a nontrivial homotopy element in πt(s)−s−4(S),
where t(s) = q[pn + pm + (s + 2)p + (s + 1)] + s.
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The proof of Theorem 1.4 is similar to that of Theorem 1.2. From the
conditions on the indices n, m and s in Theorem 1.4, we easily see that
Theorem 1.4 can not be obtained from published papers.

The reminder of our work is arranged as follows: after giving some
results on the May spectral sequence (MSS) in Section 2, we will make
use of the MSS and the ASS to prove Theorem 1.4 in Section 3.

2. Some results on the MSS

For computing the stable homotopy groups of spheres π∗(S) with
the ASS, we must compute the Adams E2-term, Ext∗,∗A (Zp, Zp). From
[4], Ext1,∗

A (Zp, Zp), has Zp-basis consisting of a0 ∈ Ext1,1
A (Zp, Zp), hi ∈

Ext1,piq
A (Zp, Zp), for all i ≥ 0, and Ext2,∗

A (Zp, Zp) has Zp-basis consisting
of α2, a2

0, a0hi(i > 0), gi(i ≥ 0), ki(i ≥ 0), bi(i ≥ 0), and hihj(j ≥
i + 2, i ≥ 0), whose internal degrees are 2q + 1, 2, piq + 1, pi+1q + 2piq,
2pi+1q + piq, pi+1q and piq + pjq, respectively.

As we know, the most successful method for computing Ext∗,∗A (Zp, Zp)
is the MSS. From [6, Theorem 3.2.5], there is a May spectral sequence
(MSS) {Es,t,∗

r , dr} which converges to Exts,t
A (Zp, Zp) with E1-term,

(2.1)
E∗,∗,∗

1 = E(hm,i|m > 0, i ≥ 0)⊗ P (bm,i|m > 0, i ≥ 0)⊗ P (an|n ≥ 0),

where E is the exterior algebra, P is the polynomial algebra, and
(2.2)
hm,i ∈ E

1,2(pm−1)pi,2m−1
1 , bm,i ∈ E

2,2(pm−1)pi+1,p(2m−1)
1 , an ∈ E1,2pn−1,2n+1

1 .

By the knowledge on the p-adic expression in number theory, each
integer t ≥ 0 can be expressed uniquely as

t = q(cnpn + cn−1p
n−1 + · · ·+ c1p + c0) + e,

where 0 ≤ ci < p (0 ≤ i < n), 0 < cn < p, 0 ≤ e < q. Let s be a given
positive integer. Suppose that a generator of the May E1-term Es,t,∗

1 is of
the form h = x1 · · ·xm, where xi is one of ak, hr,j or bu,z, 0 ≤ k ≤ n+1,
0 < r + j ≤ n + 1, 0 < u + z ≤ n, r > 0, j ≥ 0, u > 0, z ≥ 0. Assume
that, for any 1 ≤ i ≤ m, deg xi = q(ci,npn + · · · + ci,1p + ci,0) + ei,
where ci,j = 0 or 1, for 0 ≤ j ≤ n, ei = 1 if xi = aki

, or ei = 0. Then,
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dim h =
m∑

i=1
dim xi = s and

(2.1)

deg h =
m∑

i=1

deg xi = q[(
m∑

i=1

ci,n)pn+· · ·+(
m∑

i=1

ci,1)p+(
m∑

i=1

ci,0)]+(
m∑

i=1

ei).

For convenience, we denote
m∑

i=1
ci,j and

m∑
i=1

ei by c̃j and ẽ, respectively.

Proposition 2.1. With the notation as above, we have the following
consequences.

(1) Suppose that there exist three integers 0 ≤ n1 < n2 < n3 ≤ n such
that m = c̃n3 ≥ c̃n1 > c̃n2 or m = c̃n1 ≥ c̃n3 > c̃n2. Then, the generator
h of the form cannot exist.

(2) Suppose that there exist two integers 0 ≤ n1 < n2 ≤ n such that
m = c̃n2 ≥ ẽ > c̃n1 or m = ẽ ≥ c̃n2 > c̃n1. Then, the generator h of the
form cannot exist.
Proof. The second part is [3, Lemma 2.3]. The proof of (1) is similar
to that of (2). �

Proposition 2.2. With the notation as above, let s′ be a given positive
integer. Then, we have the following consequences.

(1) If there exists an integer 0 ≤ i′ ≤ n such that ci′ > s′, then the
May E1-term Es′,t,∗

1 = 0.
(2) If e > s′, then, the May E1-term Es′,t,∗

1 = 0.

Proof. The first part is [2, Lemma 2.1]. The proof of (2) is similar to
that of (1). �

3. Two Adams E2-terms and proof of Theorem 1.4

In this section, we make use of the MSS to determine two Adams
E2-terms which will be used in the proof of Theorem 1.4.

Lemma 3.1. Let p ≥ 5, n ≥ m+2 > 5, 0 ≤ s < p−2 and r ≥ 1. Then,
the May E1-term

E
s+4−r,t(s)+1−r,∗
1 = 0,

where t(s) = q[pn + pm + (s + 2)p + (s + 1)] + s.

Proof. Obviously, when r ≥ s + 4, the May E1-term E
s+4−r,t(s)+1−r,∗
1 =

0. Thus, in the rest of the proof, we assume that 1 ≤ r < s + 4.



A new family in the stable homotopy groups of spheres 317

Consider h = x1x2 · · ·xl ∈ E
s+4−r,t(s)−r+1,∗
1 in the MSS, where xi is

one of ak, hr,j or bu,z, 0 ≤ k ≤ n + 1, 0 ≤ r + j ≤ n + 1, 0 ≤ u + z ≤ n,
r > 0, j ≥ 0, u > 0, z ≥ 0. Assume that, for any 1 ≤ i ≤ l, deg xi =
q(ci,npn + · · ·+ ci,1p+ ci,0)+ ei, where ci,j = 0 or 1, for 0 ≤ j ≤ n, ei = 1

if xi = aki
, or ei = 0. It follows that dim h =

l∑
i=1

dim xi = s + 4− r and

(3.1) deg h =
l∑

i=1

deg xi

= q[(
l∑

i=1

ci,n)pn + · · ·+ (
l∑

i=1

ci,1)p + (
l∑

i=1

ci,0)] + (
l∑

i=1

ei)

= q[pn + pm + (s + 2)p + (s + 1)] + (s + 1− r).

Note that dim hi,j = dim ai = 1, dim bi,j = 2 and 0 ≤ s < p − 2.

From dim h =
l∑

i=1
dim xi = s + 4 − r, we can have l ≤ s + 4 − r <

p− 2 + 4− r = p + 2− r ≤ p + 1.

We claim that s + 1− r ≥ 0. Otherwise, by 1 ≤ r < s + 4 and p ≥ 5,

we would have that
l∑

i=1
ei = (s − r + 1) + q > q − 3 ≥ p. Meanwhile,

by ei = 0 or 1, we would also have that
l∑

i=1
ei ≤ l ≤ p. This yields a

contradiction. Thus, the claim is proved.
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Using 0 ≤ s + 2, s + 1, s + 1 − r < p and the knowledge in number
theory, from (3.1), we have

(3.2)



lP

i=1
ei = s + 1− r + λ−1q, λ−1 ≥ 0;

lP

i=1
ci,0 + λ−1 = s + 1 + λ0p, λ0 ≥ 0;

lP

i=1
ci,1 + λ0 = s + 2 + λ1p, λ1 ≥ 0;

lP

i=1
ci,2 + λ1 = 0 + λ2p, λ2 ≥ 0;

lP

i=1
ci,3 + λ2 = 0 + λ3p, λ3 ≥ 0;

· · · · · ·
lP

i=1
ci,m−1 + λm−2 = 0 + λm−1p, λm−1 ≥ 0;

lP

i=1
ci,m + λm−1 = 1 + λmp, λm ≥ 0;

lP

i=1
ci,m+1 + λm = 0 + λm+1p, λm+1 ≥ 0;

· · · · · ·
lP

i=1
ci,n−1 + λn−2 = 0 + λn−1p, λn−1 ≥ 0;

lP

i=1
ci,n + λn−1 = 1.

From ei = 0 or 1, ci,j = 0 or 1, and l ≤ p, we easily have that

(λ−1, λ0, λ1) = (0, 0, 0). Consider the fourth equality of (3.2),
l∑

i=1
ci,2 =

λ2p. By ci,2 = 0 or 1 and l ≤ p, λ2 may equal 0 or 1.

Case 1 λ2 = 0. We claim that in this case λ3 must equal 0. Otherwise,

λ3 = 1, and then we would have
l∑

i=1
ci,2 = 0 and

l∑
i=1

ci,3 = p. Noting

that l ≤ p and ci,3 = 0 or 1, it would follow that l must equal p. By
Proposition 2.1, h is impossible to exist. Hence, λ3=0. The claim is
proved.

By induction on j, we have that

λj = 0 (3 ≤ j ≤ m− 1).

Consider the (m + 2)-th equality
l∑

i=1
ci,m = 1 + λmp. By l ≤ p and

ci,m = 0 or 1, we get
λm = 0.

Similarly, it is easy to obtain that λj = 0 (m+1 ≤ j ≤ n−1). By λj = 0,
for −1 ≤ j ≤ n− 1, from (3.2) we have the following four possibilities.
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Subcase 1.1 There are two factors h1,n and h1,m in h. Then, up
to a sign, h = h1,nh1,mh′ with h′ ∈ E

s+2−r,q[(s+2)p+(s+1)]+(s+1−r),∗
1 . By

Proposition 2.2, E
s+2−r,q[(s+2)p+(s+1)]+(s+1−r),∗
1 = 0. Thus, in this case

h cannot exist.
Similarly, by Proposition 2.2 we can show the followings:

Subcase 1.2 There cannot exist two factors h1,n and b1,m−1 in h.

Subcase 1.3 There cannot exist two factors b1,n−1 and h1,m in h.

Subcase 1.4 There cannot exist two factors b1,n−1 and b1,m−1 in h.

Case 2 λ2 = 1. In this case, we easily get that l must equal p.
It follows that in this case s = p − 3 and r = 1. Thus, we have that

h = x1 · · ·xp ∈ E
p,t(p−3),∗
1 . From the fifth equality of (3.2),

p∑
i=1

ci,3 + 1 =

0 + λ3p and 0 ≤
p∑

i=1
ci,3 ≤ p, one can easily deduce that

λ3 = 1.

By induction on j, we have

λj = 1 (4 ≤ j ≤ m− 1).

Now consider the (m+2)-th equality of (3.2),
p∑

i=1
ci,m + 1 = 1 + λmp.

Noting that 0 ≤
p∑

i=1
ci,m ≤ p, we have that λm = 0 or 1.

Subcase 2.1 λm = 1. It follows that
p∑

i=1
ci,m = p. Note that in this

case
p∑

i=1
ci,2 = p and

p∑
i=1

ci,j = p − 1 for 3 ≤ j ≤ m − 1. By Proposition

2.1, h is impossible to exist.

Subcase 2.2 λm = 0. It follows that
p∑

i=1
ci,m = 0. By Proposition

2.1, we can easily prove that λm+1 = 0, i.e.,
p∑

i=1
ci,m+1 = 0. Otherwise,
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λm+1 = 1, then
p∑

i=1
ci,m+1 = p. From

p∑
i=1

ci,2 = p,
p∑

i=1
ci,m = 0 and

p∑
i=1

ci,m+1 = p, we have h cannot exist by Proposition 2.1.

By induction on j, we have λj = 0 (m+1 ≤ j ≤ n−1). Hence, we have
p∑

i=1
ci,n = 1. Note that

p∑
i=1

ci,2 = p and
p∑

i=1
ci,j = 0, for m ≤ j ≤ n − 1.

By Proposition 2.1, h cannot exist either.
Combining cases 1 and 2, we complete the proof of Lemma 3.1. �

Theorem 3.2. Let p ≥ 5, n ≥ m + 2 > 5, 0 ≤ s < p− 2. Then,

hnhmβ̃s+2 6= 0 ∈ Exts+4,t(s)
A (Zp, Zp),

where t(s) = q[pn + pm + (s + 3)p2 + (s + 2)p + (s + 2)] + s.

Proof. Since h1,i, a
s
2h2,0h1,1 ∈ E∗,∗,∗

1 are permanent cycles in the MSS
and converge nontrivially to hi, β̃s+2 ∈ Ext∗,∗A (Zp, Zp), for i ≥ 0 and
0 ≤ s < p− 2, respectively (cf. [2, Theorem 2.2]),

h1,nh1,mas
2h2,0h1,1 ∈ E

s+4,t(s),∗
1

is a permanent cycle in the MSS and converges to

hnhmβ̃s+2 ∈ Exts+4,t(s)
A (Zp, Zp).

From the case when r = 1 in Lemma 3.1, we have the May E1-term

E
s+3,t(s),∗
1 = 0.

Then,
Es+3,t(s),∗

r = 0,

for r ≥ 1. Thus, h1,nh1,mas
2h2,0h1,1 ∈ E

s+4,t(s),∗
r does not bound and

converges nontrivially to hnhmβ̃s+2 ∈ Exts+4,t(s)
A (Zp, Zp) in the MSS.

Then, the desired result follows. �

Theorem 3.3. Let p ≥ 5, n ≥ m + 2 > 5, 0 ≤ s < p − 2 and r ≥ 2.
Then,

Exts+4−r,t(s)−r+1
A (Zp, Zp) = 0.

Proof. By Lemma 3.1, in this case the May E1-term

E
s+4−r,t(s)−r+1,∗
1 = 0.

By the MSS, the desired result follows. �

Now, we give the proof of Theorem 1.4.
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Proof of Theorem 1.4. From Theorem 1.3,

(i′i)∗(hn) ∈ Ext1,pnq
A (H∗V (1), Zp)

is a permanent cycle in the ASS and converges to a nontrivial element
%n ∈ πpnq−1(V (1)). Since V (1) is a ring spectrum,

(i′i)∗(hnhm) ∈ Ext2,q(pn+pm)
A (H∗V (1), Zp)

is also a permanent cycle in the ASS and converges to a homotopy
element in πq(pn+pm)−2(V (1)), denoted by ρn,m.

Consider the composite

ϕm,n,s = jj′βs+2ρm,n.

Since ρm,n is represented by (i′i)∗(hnhm) ∈ Ext2,q(pn+pm)
A (H∗V (1), Zp) in

the ASS, the above ϕm,n,s is represented in the ASS by c̄ = (jj′βs+2i′i)∗
(hnhm). By Theorem 1.1 and the knowledge of Yoneda products, we
know that the composite

(j0j1β
s+2i1i0)∗ : Ext0,∗

A (Zp, Zp)
(i1i0)∗−−−−→ Ext0,∗

A (H∗V (1), Zp)
(j0j1βs+2)∗−−−−−−−→ Exts+2,∗+(s+2)pq+(s+1)q+s

A (Zp, Zp)

is a multiplication up to a nonzero scalar by

β̃s+2 ∈ Exts+2,q[(s+2)p+(s+1)]+s
A (Zp, Zp).

Hence, ϕm,n,s is represented up to a nonzero scalar by hnhmβ̃s+2 in the
ASS (cf. Theorem 3.2). Moreover, from Theorem 3.3, hnhmβ̃s+2 cannot
be hit by any differential in the ASS. Consequently, the corresponding
homotopy element ϕm,n,s is nontrivial. This completes the proof. �
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