A NEW FAMILY IN THE STABLE HOMOTOPY GROUPS OF SPHERES

X. LIU* AND K. MA

Communicated by Jean-Louis Cathelineau

Abstract

Let p be a prime number greater than three. Here, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $\pi_{*}(S)$ which is represented by $h_{n} h_{m} \tilde{\beta}_{s+2} \in \operatorname{Ext}_{A}^{s+4, q\left[p^{n}+p^{m}+(s+2) p+(s+1)\right]+s}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ up to a nonzero scalar in the Adams spectral sequence, where $n \geq m+2>5,0 \leq$ $s<p-2, q=2(p-1)$ and $\tilde{\beta}_{s+2} \in \operatorname{Ext}_{A}^{s+2, q[(s+2) p+(s+1)]+s}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ as defined by Wang and Zheng.

1. Introduction

Throughout the paper, we fix a prime $p \geq 5$, and put $q=2(p-1)$. Let M be the Moore spectrum modulo the prime p given by the cofibration

$$
S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{j} \Sigma S,
$$

where S is the sphere spectrum localized at the prime p. Let $\alpha: \Sigma^{q} M \rightarrow$ M be the Adams map and $V(1)$ be its cofibre given by the cofibration

$$
\Sigma^{q} M \xrightarrow{\alpha} M \xrightarrow{i^{\prime}} V(1) \xrightarrow{j^{\prime}} \Sigma^{q+1} M
$$

[^0]This spectrum $V(1)$ is known to be the Toda-Smith spectrum. Let $V(2)$ be the cofibre of the v_{2}-map $\beta: \Sigma^{(p+1) q} V(1) \rightarrow V(1)$, given by the cofibration

$$
\Sigma^{(p+1) q} V(1) \xrightarrow{\beta} V(1) \xrightarrow{\bar{i}} V(2) \xrightarrow{\bar{j}} \Sigma^{(p+1) q+1} V(1) .
$$

Recall that there exists the β-family $\beta_{t} \in \pi_{q(t p+t-1)-2}(S)$, for $t \geq 1$, where $\beta_{t}=j j^{\prime} \beta^{t} i^{\prime} i$. The β-family β_{t} was defined by Smith $[7]$, and was detected in the Adams-Novikov spectral sequence for BP-cohomology in [5].

In [8], the second Greek letter family, denoted by $\tilde{\beta}_{s}$, was first defined. Wang and Zheng proved the following results.
Theorem 1.1. (1)[8, Theorem 2] When $p \geq 5,2 \leq s<p, \tilde{\beta}_{s}$ represents the β-family β_{s} in the Adams spectral sequence (ASS).
(2)[8, Theorem 3] For $p \geq 5,2 \leq s<p, k \geq 2, \tilde{\beta}_{s} h_{0} h_{k+1}$ survives to E_{∞}.

Recently, Liu [2, 3] got some results about $\tilde{\beta}_{s}$.
Theorem 1.2. (1)[2, Theorem 1.1] For $p \geq 5, n \geq 3,2 \leq s<p-1$, $b_{0} h_{n} \tilde{\beta}_{s}$ represents a nontrivial homotopy element in $\pi_{*} S$ in the Adams spectral sequence.
(1)[3, Theorem 1.4] For $p \geq 5, n \geq 3,2 \leq s<p-2, b_{0} h_{0} h_{n} \tilde{\beta}_{s}$ represents a nontrivial homotopy element in $\pi_{*} S$ in the Adams spectral sequence.

In [1], Lin detected a new element in the stable homotopy groups of $V(1)$.

Theorem 1.3. [1, Theorem 4.1] Let $p \geq 5, n \geq 0$ and
$h_{n} \in \operatorname{Ext}_{A}^{1, p^{n} q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Then, $\left(i^{\prime} i\right)_{*}\left(h_{n}\right) \in \operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} V(1), \mathbb{Z}_{p}\right)$ is a permanent cycle in the ASS and converges to a nontrivial element $\varrho_{n} \in$ $\pi_{p^{n} q-1}(V(1))$.

Here, we will make use of the above theorem to detect a ϱ_{n}-related homotopy element in $\pi_{*} S$.

Theorem 1.4. Let $p \geq 5$, and $n \geq m+2>5$, and $0 \leq s<p-2$. Then, the product $h_{n} h_{m} \tilde{\beta}_{s+2} \in \operatorname{Ext}_{A}^{s+4, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is a permanent cycle in the ASS and converges to a nontrivial homotopy element in $\pi_{t(s)-s-4}(S)$, where $t(s)=q\left[p^{n}+p^{m}+(s+2) p+(s+1)\right]+s$.

The proof of Theorem 1.4 is similar to that of Theorem 1.2. From the conditions on the indices n, m and s in Theorem 1.4, we easily see that Theorem 1.4 can not be obtained from published papers.

The reminder of our work is arranged as follows: after giving some results on the May spectral sequence (MSS) in Section 2, we will make use of the MSS and the ASS to prove Theorem 1.4 in Section 3.

2. Some results on the MSS

For computing the stable homotopy groups of spheres $\pi_{*}(S)$ with the ASS, we must compute the Adams E_{2}-term, $\operatorname{Ext}_{A}^{* * *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. From [4], $\operatorname{Ext}_{A}^{1, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, has \mathbb{Z}_{p}-basis consisting of $a_{0} \in \operatorname{Ext}_{A}^{1,1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right), h_{i} \in$ $\operatorname{Ext}_{A}^{1, p^{i} q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, for all $i \geq 0$, and $\operatorname{Ext}_{A}^{2, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has \mathbb{Z}_{p}-basis consisting of $\alpha_{2}, a_{0}^{2}, a_{0} h_{i}(i>0), g_{i}(i \geq 0), k_{i}(i \geq 0), b_{i}(i \geq 0)$, and $h_{i} h_{j}(j \geq$ $i+2, i \geq 0$), whose internal degrees are $2 q+1,2, p^{i} q+1, p^{i+1} q+2 p^{i} q$, $2 p^{i+1} q+p^{i} q, p^{i+1} q$ and $p^{i} q+p^{j} q$, respectively.

As we know, the most successful method for computing Ext ${ }_{A}^{* *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is the MSS. From [6, Theorem 3.2.5], there is a May spectral sequence (MSS) $\left\{E_{r}^{s, t, *}, d_{r}\right\}$ which converges to $\operatorname{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ with E_{1}-term,

$$
\begin{equation*}
E_{1}^{*, *, *}=E\left(h_{m, i} \mid m>0, i \geq 0\right) \otimes P\left(b_{m, i} \mid m>0, i \geq 0\right) \otimes P\left(a_{n} \mid n \geq 0\right) \tag{2.1}
\end{equation*}
$$

where E is the exterior algebra, P is the polynomial algebra, and
$h_{m, i} \in E_{1}^{1,2\left(p^{m}-1\right) p^{i}, 2 m-1}, b_{m, i} \in E_{1}^{2,2\left(p^{m}-1\right) p^{i+1}, p(2 m-1)}, a_{n} \in E_{1}^{1,2 p^{n}-1,2 n+1}$.
By the knowledge on the p-adic expression in number theory, each integer $t \geq 0$ can be expressed uniquely as

$$
t=q\left(c_{n} p^{n}+c_{n-1} p^{n-1}+\cdots+c_{1} p+c_{0}\right)+e
$$

where $0 \leq c_{i}<p(0 \leq i<n), 0<c_{n}<p, 0 \leq e<q$. Let s be a given positive integer. Suppose that a generator of the May E_{1}-term $E_{1}^{s, t, *}$ is of the form $h=x_{1} \cdots x_{m}$, where x_{i} is one of $a_{k}, h_{r, j}$ or $b_{u, z}, 0 \leq k \leq n+1$, $0<r+j \leq n+1,0<u+z \leq n, r>0, j \geq 0, u>0, z \geq 0$. Assume that, for any $1 \leq i \leq m, \operatorname{deg} x_{i}=q\left(c_{i, n} p^{n}+\cdots+c_{i, 1} p+c_{i, 0}\right)+e_{i}$, where $c_{i, j}=0$ or 1 , for $0 \leq j \leq n, e_{i}=1$ if $x_{i}=a_{k_{i}}$, or $e_{i}=0$. Then,
$\operatorname{dim} h=\sum_{i=1}^{m} \operatorname{dim} x_{i}=s$ and
$\operatorname{deg} h=\sum_{i=1}^{m} \operatorname{deg} x_{i}=q\left[\left(\sum_{i=1}^{m} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{m} c_{i, 1}\right) p+\left(\sum_{i=1}^{m} c_{i, 0}\right)\right]+\left(\sum_{i=1}^{m} e_{i}\right)$.
For convenience, we denote $\sum_{i=1}^{m} c_{i, j}$ and $\sum_{i=1}^{m} e_{i}$ by \tilde{c}_{j} and \tilde{e}, respectively.
Proposition 2.1. With the notation as above, we have the following consequences.
(1) Suppose that there exist three integers $0 \leq n_{1}<n_{2}<n_{3} \leq n$ such that $m=\tilde{c}_{n_{3}} \geq \tilde{c}_{n_{1}}>\tilde{c}_{n_{2}}$ or $m=\tilde{c}_{n_{1}} \geq \tilde{c}_{n_{3}}>\tilde{c}_{n_{2}}$. Then, the generator h of the form cannot exist.
(2) Suppose that there exist two integers $0 \leq n_{1}<n_{2} \leq n$ such that $m=\tilde{c}_{n_{2}} \geq \tilde{e}>\tilde{c}_{n_{1}}$ or $m=\tilde{e} \geq \tilde{c}_{n_{2}}>\tilde{c}_{n_{1}}$. Then, the generator h of the form cannot exist.
Proof. The second part is [3, Lemma 2.3]. The proof of (1) is similar to that of (2).
Proposition 2.2. With the notation as above, let s^{\prime} be a given positive integer. Then, we have the following consequences.
(1) If there exists an integer $0 \leq i^{\prime} \leq n$ such that $c_{i^{\prime}}>s^{\prime}$, then the May E_{1}-term $E_{1}^{s^{\prime}, t, *}=0$.
(2) If $e>s^{\prime}$, then, the May E_{1}-term $E_{1}^{s^{\prime}, t, *}=0$.

Proof. The first part is [2, Lemma 2.1]. The proof of (2) is similar to that of (1).

3. Two Adams E_{2}-terms and proof of Theorem 1.4

In this section, we make use of the MSS to determine two Adams E_{2}-terms which will be used in the proof of Theorem 1.4.
Lemma 3.1. Let $p \geq 5, n \geq m+2>5,0 \leq s<p-2$ and $r \geq 1$. Then, the May E_{1}-term

$$
E_{1}^{s+4-r, t(s)+1-r, *}=0,
$$

where $t(s)=q\left[p^{n}+p^{m}+(s+2) p+(s+1)\right]+s$.
Proof. Obviously, when $r \geq s+4$, the May E_{1}-term $E_{1}^{s+4-r, t(s)+1-r, *}=$ 0 . Thus, in the rest of the proof, we assume that $1 \leq r<s+4$.

Consider $h=x_{1} x_{2} \cdots x_{l} \in E_{1}^{s+4-r, t(s)-r+1, *}$ in the MSS, where x_{i} is one of $a_{k}, h_{r, j}$ or $b_{u, z}, 0 \leq k \leq n+1,0 \leq r+j \leq n+1,0 \leq u+z \leq n$, $r>0, j \geq 0, u>0, z \geq 0$. Assume that, for any $1 \leq i \leq l, \operatorname{deg} x_{i}=$ $q\left(c_{i, n} p^{n}+\cdots+c_{i, 1} p+c_{i, 0}\right)+e_{i}$, where $c_{i, j}=0$ or 1 , for $0 \leq j \leq n, e_{i}=1$ if $x_{i}=a_{k_{i}}$, or $e_{i}=0$. It follows that $\operatorname{dim} h=\sum_{i=1}^{l} \operatorname{dim} x_{i}=s+4-r$ and

$$
\begin{align*}
\operatorname{deg} h & =\sum_{i=1}^{l} \operatorname{deg} x_{i} \tag{3.1}\\
& =q\left[\left(\sum_{i=1}^{l} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{l} c_{i, 1}\right) p+\left(\sum_{i=1}^{l} c_{i, 0}\right)\right]+\left(\sum_{i=1}^{l} e_{i}\right) \\
& =q\left[p^{n}+p^{m}+(s+2) p+(s+1)\right]+(s+1-r) .
\end{align*}
$$

Note that $\operatorname{dim} h_{i, j}=\operatorname{dim} a_{i}=1, \operatorname{dim} b_{i, j}=2$ and $0 \leq s<p-2$. From $\operatorname{dim} h=\sum_{i=1}^{l} \operatorname{dim} x_{i}=s+4-r$, we can have $l \leq s+4-r<$ $p-2+4-r=p+2-r \leq p+1$.

We claim that $s+1-r \geq 0$. Otherwise, by $1 \leq r<s+4$ and $p \geq 5$, we would have that $\sum_{i=1}^{l} e_{i}=(s-r+1)+q>q-3 \geq p$. Meanwhile, by $e_{i}=0$ or 1 , we would also have that $\sum_{i=1}^{l} e_{i} \leq l \leq p$. This yields a contradiction. Thus, the claim is proved.

Using $0 \leq s+2, s+1, s+1-r<p$ and the knowledge in number theory, from (3.1), we have

From $e_{i}=0$ or $1, c_{i, j}=0$ or 1 , and $l \leq p$, we easily have that $\left(\lambda_{-1}, \lambda_{0}, \lambda_{1}\right)=(0,0,0)$. Consider the fourth equality of (3.2), $\sum_{i=1}^{l} c_{i, 2}=$ $\lambda_{2} p$. By $c_{i, 2}=0$ or 1 and $l \leq p, \lambda_{2}$ may equal 0 or 1 .

Case $1 \lambda_{2}=0$. We claim that in this case λ_{3} must equal 0 . Otherwise, $\lambda_{3}=1$, and then we would have $\sum_{i=1}^{l} c_{i, 2}=0$ and $\sum_{i=1}^{l} c_{i, 3}=p$. Noting that $l \leq p$ and $c_{i, 3}=0$ or 1 , it would follow that l must equal p. By Proposition 2.1, h is impossible to exist. Hence, $\lambda_{3}=0$. The claim is proved.

By induction on j, we have that

$$
\lambda_{j}=0(3 \leq j \leq m-1) .
$$

Consider the $(m+2)$-th equality $\sum_{i=1}^{l} c_{i, m}=1+\lambda_{m} p$. By $l \leq p$ and $c_{i, m}=0$ or 1 , we get

$$
\lambda_{m}=0 .
$$

Similarly, it is easy to obtain that $\lambda_{j}=0(m+1 \leq j \leq n-1)$. By $\lambda_{j}=0$, for $-1 \leq j \leq n-1$, from (3.2) we have the following four possibilities.

Subcase 1.1 There are two factors $h_{1, n}$ and $h_{1, m}$ in h. Then, up to a sign, $h=h_{1, n} h_{1, m} h^{\prime}$ with $h^{\prime} \in E_{1}^{s+2-r, q[(s+2) p+(s+1)]+(s+1-r), *}$. By Proposition 2.2, $E_{1}^{s+2-r, q[(s+2) p+(s+1)]+(s+1-r), *}=0$. Thus, in this case h cannot exist.

Similarly, by Proposition 2.2 we can show the followings:
Subcase 1.2 There cannot exist two factors $h_{1, n}$ and $b_{1, m-1}$ in h.
Subcase 1.3 There cannot exist two factors $b_{1, n-1}$ and $h_{1, m}$ in h.
Subcase 1.4 There cannot exist two factors $b_{1, n-1}$ and $b_{1, m-1}$ in h.
Case $2 \quad \lambda_{2}=1$. In this case, we easily get that l must equal p. It follows that in this case $s=p-3$ and $r=1$. Thus, we have that $h=x_{1} \cdots x_{p} \in E_{1}^{p, t(p-3), *}$. From the fifth equality of (3.2), $\sum_{i=1}^{p} c_{i, 3}+1=$ $0+\lambda_{3} p$ and $0 \leq \sum_{i=1}^{p} c_{i, 3} \leq p$, one can easily deduce that

$$
\lambda_{3}=1 .
$$

By induction on j, we have

$$
\lambda_{j}=1(4 \leq j \leq m-1) .
$$

Now consider the $(\mathrm{m}+2)$-th equality of (3.2), $\sum_{i=1}^{p} c_{i, m}+1=1+\lambda_{m} p$.
Noting that $0 \leq \sum_{i=1}^{p} c_{i, m} \leq p$, we have that $\lambda_{m}=0$ or 1 .
Subcase 2.1 $\lambda_{m}=1$. It follows that $\sum_{i=1}^{p} c_{i, m}=p$. Note that in this case $\sum_{i=1}^{p} c_{i, 2}=p$ and $\sum_{i=1}^{p} c_{i, j}=p-1$ for $3 \leq j \leq m-1$. By Proposition 2.1, h is impossible to exist.

Subcase 2.2 $\lambda_{m}=0$. It follows that $\sum_{i=1}^{p} c_{i, m}=0$. By Proposition 2.1, we can easily prove that $\lambda_{m+1}=0$, i.e., $\sum_{i=1}^{p} c_{i, m+1}=0$. Otherwise,
$\lambda_{m+1}=1$, then $\sum_{i=1}^{p} c_{i, m+1}=p$. From $\sum_{i=1}^{p} c_{i, 2}=p, \sum_{i=1}^{p} c_{i, m}=0$ and $\sum_{i=1}^{p} c_{i, m+1}=p$, we have h cannot exist by Proposition 2.1.

By induction on j, we have $\lambda_{j}=0(m+1 \leq j \leq n-1)$. Hence, we have $\sum_{i=1}^{p} c_{i, n}=1$. Note that $\sum_{i=1}^{p} c_{i, 2}=p$ and $\sum_{i=1}^{p} c_{i, j}=0$, for $m \leq j \leq n-1$. By Proposition 2.1, h cannot exist either.

Combining cases 1 and 2, we complete the proof of Lemma 3.1.
Theorem 3.2. Let $p \geq 5, n \geq m+2>5,0 \leq s<p-2$. Then,

$$
h_{n} h_{m} \tilde{\beta}_{s+2} \neq 0 \in \operatorname{Ext}_{A}^{s+4, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

where $t(s)=q\left[p^{n}+p^{m}+(s+3) p^{2}+(s+2) p+(s+2)\right]+s$.
Proof. Since $h_{1, i}, a_{2}^{s} h_{2,0} h_{1,1} \in E_{1}^{*, *, *}$ are permanent cycles in the MSS and converge nontrivially to $h_{i}, \tilde{\beta}_{s+2} \in \operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, for $i \geq 0$ and $0 \leq s<p-2$, respectively (cf. [2, Theorem 2.2]),

$$
h_{1, n} h_{1, m} a_{2}^{s} h_{2,0} h_{1,1} \in E_{1}^{s+4, t(s), *}
$$

is a permanent cycle in the MSS and converges to

$$
h_{n} h_{m} \tilde{\beta}_{s+2} \in \operatorname{Ext}_{A}^{s+4, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

From the case when $r=1$ in Lemma 3.1, we have the May E_{1}-term

$$
E_{1}^{s+3, t(s), *}=0
$$

Then,

$$
E_{r}^{s+3, t(s), *}=0,
$$

for $r \geq 1$. Thus, $h_{1, n} h_{1, m} a_{2}^{s} h_{2,0} h_{1,1} \in E_{r}^{s+4, t(s), *}$ does not bound and converges nontrivially to $h_{n} h_{m} \tilde{\beta}_{s+2} \in \operatorname{Ext}_{A}^{s+4, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the MSS. Then, the desired result follows.
Theorem 3.3. Let $p \geq 5, n \geq m+2>5,0 \leq s<p-2$ and $r \geq 2$. Then,

$$
\operatorname{Ext}_{A}^{s+4-r, t(s)-r+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0
$$

Proof. By Lemma 3.1, in this case the May E_{1}-term

$$
E_{1}^{s+4-r, t(s)-r+1, *}=0 .
$$

By the MSS, the desired result follows.
Now, we give the proof of Theorem 1.4.

Proof of Theorem 1.4. From Theorem 1.3,

$$
\left(i^{\prime} i\right)_{*}\left(h_{n}\right) \in \operatorname{Ext}_{A}^{1, p^{n} q}\left(H^{*} V(1), \mathbb{Z}_{p}\right)
$$

is a permanent cycle in the ASS and converges to a nontrivial element $\varrho_{n} \in \pi_{p^{n} q-1}(V(1))$. Since $V(1)$ is a ring spectrum,

$$
\left(i^{\prime} i\right)_{*}\left(h_{n} h_{m}\right) \in \operatorname{Ext}_{A}^{2, q\left(p^{n}+p^{m}\right)}\left(H^{*} V(1), \mathbb{Z}_{p}\right)
$$

is also a permanent cycle in the ASS and converges to a homotopy element in $\pi_{q\left(p^{n}+p^{m}\right)-2}(V(1))$, denoted by $\rho_{n, m}$.

Consider the composite

$$
\varphi_{m, n, s}=j j^{\prime} \beta^{s+2} \rho_{m, n} .
$$

Since $\rho_{m, n}$ is represented by $\left(i^{\prime} i\right)_{*}\left(h_{n} h_{m}\right) \in \operatorname{Ext}_{A}^{2, q\left(p^{n}+p^{m}\right)}\left(H^{*} V(1), \mathbb{Z}_{p}\right)$ in the ASS, the above $\varphi_{m, n, s}$ is represented in the ASS by $\bar{c}=\left(j j^{\prime} \beta^{s+2} i^{\prime} i\right)_{*}$ $\left(h_{n} h_{m}\right)$. By Theorem 1.1 and the knowledge of Yoneda products, we know that the composite

$$
\begin{gathered}
\left(j_{0} j_{1} \beta^{s+2} i_{1} i_{0}\right)_{*}: \operatorname{Ext}_{A}^{0, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \xrightarrow{\left(i_{1} i_{0}\right)_{*}} \operatorname{Ext}_{A}^{0, *}\left(H^{*} V(1), \mathbb{Z}_{p}\right) \\
\xrightarrow{\left(j_{0} j_{1} \beta^{s+2}\right)_{*}} \operatorname{Ext}_{A}^{s+2, *+(s+2) p q+(s+1) q+s}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
\end{gathered}
$$

is a multiplication up to a nonzero scalar by

$$
\tilde{\beta}_{s+2} \in \operatorname{Ext}_{A}^{s+2, q[(s+2) p+(s+1)]+s}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

Hence, $\varphi_{m, n, s}$ is represented up to a nonzero scalar by $h_{n} h_{m} \tilde{\beta}_{s+2}$ in the ASS (cf. Theorem 3.2). Moreover, from Theorem 3.3, $h_{n} h_{m} \tilde{\beta}_{s+2}$ cannot be hit by any differential in the ASS. Consequently, the corresponding homotopy element $\varphi_{m, n, s}$ is nontrivial. This completes the proof.

Acknowledgments

We express our deep thanks to the referee. He read carefully the manuscript and provided many helpful comments and suggestions. Some proofs in this version were shortened thanks to the referee's suggestions. The first author was partially supported by the National Natural Science Foundation of China (No. 11171161), the Fundamental Research Funds for the Central Universities and SRF for ROCS, SEM. The second author was partially supported by the National Natural Science Foundation of China (No.10971050).

References

[1] J. Lin, Third periodicity families in the stable homotopy of spheres, JP J. Geom. Topol. 3 (2003), no. 3, 179-219.
[2] X. Liu, A nontrivial product of filtration s+5 in the stable homotopy of spheres, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 3, 385-392.
[3] X. Liu, Some infinite elements in the Adams spectral sequence for the sphere spectrum, J. Math. Kyoto Univ. 48 (2008), no. 3, 617-629.
[4] A. Liulevicius, The factorizations of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962), 112 pp.
[5] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), no. 3, 469-516.
[6] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Orlando: Academic Press, 1986.
[7] L. Smith, On realizing complex cobordism modules. Applications to the stable homotopy of spheres, Amer. J. Math. 92 (1970), 793-856.
[8] X. Wang and Q. Zheng, The convergence of $\tilde{\alpha}_{s}^{(n)} h_{0} h_{k}$, Sci. China Ser. A 41 (1998), no. 6, 622-628.

Xiugui Liu

School of Mathematical Sciences and LPMC, Nankai University, 300071, Tianjin, People's Republic of China
Email: xgliu@nankai.edu.cn

Kai Ma

Mathematics and Information Science College, Hebei Normal University, 050016, Shijiazhuang, People's Republic of China
Email: kai_ma@163.com

[^0]: MSC(2010): Primary: 55Q45; Secondary: 55T15.
 Keywords: Stable homotopy groups of spheres, Adams spectral sequence, May spectral sequence.
 Received: 19 January 2010, Accepted: 4 December 2010.
 *Corresponding author
 (c) 2012 Iranian Mathematical Society.

