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RIORDAN GROUP APPROACHES IN MATRIX

FACTORIZATIONS

E. KILIÇ∗, N. OMUR AND G. TATAR

Communicated by Jamshid Moori

Abstract. We consider an arbitrary binary polynomial sequence
{An} and then give a lower triangular matrix representation of the
sequence. As a result, we obtain a factorization of the infinite gen-
eralized Pascal matrix in terms of this new matrix, using a Riordan
group approach. Furthermore, some interesting results and appli-
cations are given.

1. Introduction

For n > 0, the n×n Pascal matrix Pn = [pij ] is defined as follows [7]:

pij =

{ (
i−1
j−1

)
, if i ≥ j,

0, otherwise.

Matrix representations of the Pascal triangle are first given in [3]. In
[15], for a nonzero real x, the Pascal matrices Pn [x] = [Pn (x; i, j)] and
Qn [x] = [Qn (x; i, j)] are generalized as follows:

Pn (x; i, j) =

{ (
i−1
j−1

)
xi−j , if i ≥ j,

0, otherwise,
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and

Qn (x; i, j) =

{ (
i−1
j−1

)
xi+j−2, if i ≥ j,

0, otherwise.

For more details about the Pascal matrices, see [1, 2, 12]. In [16], the
Pascal matrices Pn [x] and Qn [x] for two nonzero real numbers x and y
are generalized as follows:

ϕ [x, y]ij =

{ (
i−1
j−1

)
xi−jyi+j−2, if i ≥ j,

0, otherwise.

The Fibonacci and Lucas sequences have been discussed in so many stud-
ies. Besides, various generalizations and matrix representations of these
sequences have also been introduced and investigated. For nonnegative
integers A and B such that A2 + 4B 6= 0 and n > 0, the generalized
Fibonacci and Lucas type sequences {Un (A,B)} and {Vn (A,B)} are
defined by

Un+1 (A,B) = AUn (A,B) +BUn−1 (A,B) ,

Vn+1 (A,B) = AVn (A,B) +BVn−1 (A,B) ,

where U0 (A,B) = 0, U1 (A,B) = 1 and V0 (A,B) = 2, V1 (A,B) = A.
For example, Un (1, 1) = Fn (nth Fibonacci number) and Vn (1, 1) = Ln

(nth Lucas number).
For the polynomial versions of generalized Fibonacci and Lucas num-

bers, we refer to [4]. Furthermore, general cases of these polynomials
were considered in [6], where authors defined the polynomial sequence
{An (a, b; p, q) (x)} (briefly {An (x)}) satisfying

An+1 (x) = p (x)An (x)− q (x)An−1 (x) ,

with A0 (x) = a (x) and A1 (x) = b (x), where a, b, p, q are polynomials
of x with real coefficients. In [6], it is shown that for n > 0, any integer k
and n ≡ c (mod |k|), the sequence {An} satisfies the following recursion:

Ap(n+1,k,c) = skAp(n,k,c) − zkAp(n−1,k,c),

where sk = αk + βk, zk = qk, p (n, k, c) = nk + c (c a constant) and

α, β =
(
p±

√
p2 − 4q

)
/2.

Furthermore, in [8], the n× n Fibonacci matrix Fn = [fij ] is defined
in the form

[fij ] =

{
Fi−j+1, if i− j + 1 ≥ 0,

0, otherwise,
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where Fn is the nth Fibonacci number. This is generalized in [9], where

the n × n generalized Fibonacci matrix F [x, y]n =
[
f [x, y]ij

]
is intro-

duced as follows:

f [x, y]ij =

{
Fi−j+1x

i−jyi+j−2, if i ≥ j,
0, otherwise.

The infinite generalized Fibonacci matrix is defined in the form

F [x, y] =


1 0 0 ...
xy y2 0 ...

2x2y2 xy3 y4 ...
...

...
...

. . .

 ,
and the infinite generalized Pell matrix is defined by

S [x, y] =


1 0 0 ...

2xy y2 0 ...
5x2y2 2xy3 y4 ...

...
...

...
. . .

 .
Similarly, the infinite matrices L [x, y] =

[
l [x, y]ij

]
and

M [x, y] =
[
m [x, y]ij

]
are given as follows:

l [x, y]ij =
((

i−1
j−1

)
−
(
i−2
j−1

)
−
(
i−3
j−1

))
xi−jyj−i,

and

m [x, y]ij =
((

i−1
j−1

)
− 2
(
i−2
j−1

)
−
(
i−3
j−1

))
xi−jyj−i.

It is also shown that the matrices F [x, y] , L [x, y] , S [x, y] and M [x, y]
satisfy Φ [x, y] = F [x, y] ∗L [x, y] and Φ [x, y] = S [x, y] ∗M [x, y] , where
Φ [x, y] is the infinite generalized Pascal matrix defined by

Φ [x, y] =


1 0 0 ...
xy y2 0 ...
x2y2 2xy3 y4 ...

...
...

...
. . .

 .
The n× n matrix Rn = [ri,j ] is given in [17], where

rij =
(
i−1
j−1

)
−
(
i−1
j

)
−
(
i−1
j+1

)
,
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which is used to show that Pn = RnFn and the following factorization(
n−1
r−1

)
= Fn−r+1 + (n− 2)Fn−r + 1

2

(
n2 − 5n+ 2

)
Fn−r−1

+
n−3∑
k=r

(
n−1
k−1

) [
2− n

k −
(n−k)(n−k−1)

k(k+1)

]
Fk−r+1,

where Fn and Pn are defined as before. Stănică [11] looks at a more
general case of the results of [8, 17]: he considers the n × n matrix
Un = (uij) in terms of the sequence {Un (A,B)}, where

uij =

{
Ui−j+1, if i ≥ j,
0, otherwise.

Then, he gives the factorization of any matrix in terms of the matrix Un.
In [10], the Riordan group is defined as follows:
Let R = [rij ]i,j≥0 be an infinite matrix whose entries are complex num-

bers and ci (t) =
∑∞

n≥0 rn,it
n is the generating function of the ith column

of R. If ci (t) = g (t) [f (t)]i, where

g (t) = 1 + g1t+ g2t
2 + g3t

3 + · · · , and f (t) = t+ f2t
2 + f3t

3 + · · · ,

thenR is a Riordan matrix. When < denotes the set of Riordan matrices,
the set < is a group under matrix multiplication ∗, with the following
properties:

(R1) (g (t) , f (t)) ∗ (h (t) , l (t)) = (g (t)h (f (t)) , l (f (t))) .
(R2) I = (1, t) is the identity element.

(R3) The inverse of R is given by R−1 =

(
1

g(f(t))
, f (t)

)
, where f (t)

is the compositional inverse of f (t) , i.e., f
(
f (t)

)
= f (f (t)) = t.

(R4) If (a0, a1, a2, ...)
T is a column vector with generating function

A (t) , then multiplying R = (g (t) , f (t)) on the right by this
column vector yields a column vector with generating function
B (t) = g (t)A (f (t)) .

In [8], the infinite Pascal, Fibonacci and Pell matrices are generalized
and the factorizations of the infinite generalized Pascal matrix are given
by using the Riordan method. LetRn = [ri,j ] be the n×nmatrix given as
before. In [13], using the equations Pn = RnFn and PnEn = RnFnEn

for the n × n Fibonacci matrix Fn = [fij ] , the n × n Pascal matrix
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Pn = [pij ] and the n× 1 matrix En = (1, 1, ..., 1)T , it is shown that

n+ 1 =
n∑

l=1

(n−1)!
(l+1)!(n−l)!

[
l2 + (n+ 1) l − n2

]
Fl+2,

where 1 ≤ i, j ≤ n and Fn is the nth Fibonacci number. Here, we
consider the arbitrary binary polynomial sequence {An} and then give
a lower triangular matrix representation of this sequence. By the def-
inition of Riordan matrices, we obtain a factorization of the infinite
generalized Pascal matrix in terms of this new matrix. Furthermore,
some interesting results and applications are given.

2. A Factorization of the generalized Pascal matrix

For any two nonzero real variables x and y, an infinite matrixH [x, y] =[
h [x, y]ij

]
is defined as follows:

h [x, y]ij =

{
Ap(i−j+1,k,c)x

i−jyi+j−2, if i ≥ j,
0, otherwise,

where
{
Ap(n+1,k,c)

}
and p (n+ 1, k, c) are defined as before. Clearly, the

matrix H [x, y] is of the form

H [x, y] =


Ap(1,k,c) 0 0 ...
Ap(2,k,c)xy Ap(1,k,c)y

2 0 ...
Ap(3,k,c)x

2y2 Ap(2,k,c)xy
3 Ap(1,k,c)y

4 ...
...

...
...

. . .

 .
Now, we give the Riordan representation of the infinite matrix H [x, y] .
Let the Riordan representation of H [x, y] be (gH (t) , fH (t)) . Here, the

generating function of the jth column ofH [x, y] is cj (t) = gH (t) [fH (t)]j

Since the first column vector of H [x, y] is(
Ap(1,k,c), Ap(2,k,c)xy,Ap(3,k,c)x

2y2, ...
)T
,

we can write

gH (t) = Ap(1,k,c)+Ap(2,k,c)xyt+Ap(3,k,c)x
2y2t2+ . . . .

−skxytgH (t) = −skAp(1,k,c)xyt− skAp(2,k,c)x
2y2t2−skAp(3,k,c)x

3y3t3

− . . .
zkx

2y2t2gH (t) = zkAp(1,k,c)x
2y2t2+zkAp(2,k,c)x

3y3t3+zkAp(3,k,c)x
3y3t3

+ . . . .
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By summing the above equalities side by side, we get

gH (t) =
Ap(1,k,c) − zkAp(0,k,c)xyt

1− skxyt+ zk (xyt)2 .

Since h [x, y]ij = y2h [x, y]i−1,j−1 , for j ≥ 2, we have that cj (t) =

y2tcj−1 (t) and gH (t) [fH (t)]j = y2tgH (t) [fH (t)]j−1 . Hence, we get
fH (t) = y2t. Consequently, the Riordan representation of H [x, y] is
given by

H [x, y] =

(
Ap(1,k,c) − zkAp(0,k,c)xyt

1− skxyt+ zk (xyt)2 , y2t

)
.

For two nonzero real numbers x and y, let us define the infinite matrix

C [x, y] =
[
c [x, y]ij

]
by

c [x, y]ij =

(
1

Ap(1,k,c)

(
i− 1

j − 1

)
−
Ap(2,k,c)

A2
p(1,k,c)

(
i− 2

j − 1

)
− zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A3
p(1,k,c)

)(
i− 3

j − 1

)
−zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A3
p(1,k,c)

)
×

(
i−3∑
m=1

(
i−m− 3

j − 1

)(
zkAp(0,k,c)

Ap(1,k,c)

)m
))

xi−jyj−i,

if i ≥ j, and 0 otherwise. We now give the following result.

Theorem 2.1.

Φ [x, y] = H [x, y] ∗ C [x, y] .
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Proof. Since C [x, y] is a Riordan matrix, we write C [x, y] = (gC (t) , fC (t)) .
Considering the first column vector of C [x, y] , we get

gC (t)

= 1
Ap(1,k,c)

+

(
1

Ap(1,k,c)
− Ap(2,k,c)

A2
p(1,k,c)

)
xy−1t+

(
1

Ap(1,k,c)
− Ap(2,k,c)

A2
p(1,k,c)

− zk
(

Ap(0,k,c)Ap(2,k,c)−A2
p(1,k,c)

A3
p(1,k,c)

))(
xy−1t

)2
+(

1
Ap(1,k,c)

− Ap(2,k,c)

A2
p(1,k,c)

− zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A3
p(1,k,c)

))(
xy−1t

)3
+ · · ·

=
(

1 + xy−1t+
(
xy−1t

)2
+ · · ·

)(
1

Ap(1,k,c)
− Ap(2,k,c)

A2
p(1,k,c)

xy−1t

)
−

zk

(
1 + xy−1t+

(
xy−1t

)2
+ · · ·

)(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A3
p(1,k,c)

)
×
(
xy−1t

)2 (
1+
(
zkAp(0,k,c)

Ap(1,k,c)

)
xy−1t +

(
z2kA

2
p(0,k,c)

A2
p(1,k,c)

)(
xy−1t

)2
+ · · ·

)
=

(
1

1−xy−1t

)(
1−skxy−1t+zk(xy−1t)

2

(Ap(1,k,c)−zkAp(0,k,c)xy
−1t)

)
.

Let the generating function of the jth column of C [x, y] be

cj (t) = gC (t) [fC (t)]j .

Considering

c [x, y]ij =c [x, y]i−1,j−1 +xy−1c [x, y]i−1,j ,

for j ≥ 2, we obtain

cj (t) = tcj−1 (t) +xy−1tcj (t)

and

gC (t) [fC (t)]j = tgC (t) [fC (t)]j−1 +xy−1tgC (t) [fC (t)]j .

Hence, we have fC (t) = t
1−xy−1t

. Finally, the Riordan representation of

the matrix C [x, y] is

C [x, y] =

(
1−skxy−1t+zk(xy−1t)

2

(Ap(1,k,c)−zkAp(0,k,c)xy
−1t)(1−xy−1t)

, t
1−xy−1t

)
.
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From [9], we have that Φ [x, y] =
(

1
1−xyt ,

y2t
1−xyt

)
. Moreover,

H [x, y] ∗C [x, y]

=
(
Ap(1,k,c)−zkAp(0,k,c)xyt

1−skxyt+zk(xyt)2
, y2t

)
∗
(

1−skxy−1t+zk(xy−1t)
2

(Ap(1,k,c)−zkAp(0,k,c)xy
−1t)(1−xy−1t)

, t
1−xy−1t

)
=

(
(Ap(1,k,c)−zkAp(0,k,c)xyt)

(
1−skxy−1y2t+zk(xy−1y2t)

2
)

(1−skxyt+zk(xyt)2)(Ap(1,k,c)−zkAp(0,k,c)xy
−1y2t)(1−xy−1y2t)

,

y2t
1−xy−1y2t

)
=

(
1

1−xyt ,
y2t

1−xyt

)
= Φ [x, y] .

Thus, the proof is complete. �

Now, we consider some special cases. When k = 1, p = 1, q = −1 and
c = 0, the matrix H [x, y] is reduced to the Fibonacci matrix F [x, y].
In Theorem 2.1, taking F [x, y] instead of H [x, y] , we find the matrix
L [x, y] such that Φ [x, y] = F [x, y] ∗L [x, y] , from [9]. Thus, the matrix
L [x, y] is a special case of C [x, y] . When k = 1, p = 2, q = −1 and c = 0,
the matrix H [x, y] is reduced to the Pell matrix S [x, y], defined in [9].
Also, taking S [x, y] , instead of H [x, y] , we get the matrix M [x, y] such
that Φ [x, y] = S [x, y] ∗M [x, y] , given in [9]. The matrix M [x, y] is a
special case of the matrix C [x, y] .

Corollary 2.2. For i, j = 1, 2, ..., n, we have

i∑
r=1

(
i− 1

r − 1

)
xi−ryi+r−2 =

i∑
j=1

(
Ap(i−j+1,k,c)x

i−jyi+j−2

(
j∑

m=1

cim

))
,

where cim is the (i,m) th element of Cn [x, y] .

Proof. Considering the n × n Pascal matrix Φn [x, y] and Φ [x, y] =
H [x, y] ∗ C [x, y] in Theorem 2.1, we have Φn [x, y] = Hn [x, y]Cn [x, y]

and Φn [x, y]En = Hn [x, y]Cn [x, y]En, where En = (1, 1, ..., 1)T . There-
fore, we obtain the desired result. �
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Corollary 2.3. For n > 0 and j = 1, 2, ..., n, we have

(
n− 1

r − 1

)
=

n∑
j=r

(
Ap(n−j+1,k,c)

Ap(1,k,c)

)((
j − 1

r − 1

)
−
Ap(2,k,c)

Ap(1,k,c)

(
j − 2

r − 1

)

−zk
(

Ap(0,k,c)Ap(2,k,c)−A2
p(1,k,c)

A2
p(1,k,c)

)(
j − 3

r − 1

)
−zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A2
p(1,k,c)

)
×

(
n−3∑
m=1

(
n−m− 3

r − 1

)(
zkAp(0,k,c)

Ap(1,k,c)

)m
))

.

Proof. We take x = y = 1 in the equality Φn [x, y] = Hn [x, y] ∗Cn [x, y].
�

If we take r = 1 in the previous corollary, we have

n∑
j=1

(
Ap(n−j+1,k,c)

Ap(1,k,c)

)
1−

Ap(2,k,c)

Ap(1,k,c)
− zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A2
p(1,k,c)

)

−zk
(

Ap(0,k,c)Ap(2,k,c)−A2
p(1,k,c)

A2
p(1,k,c)

)(n−3∑
m=1

(
zkAp(0,k,c)

Ap(1,k,c)

)m
)

= 1.

For example, when k = 3, p = 1, q = −1 and c = 0, the sequence{
Ap(n,k,c)

}
is reduced to the Fibonacci subsequence {F3n}. By Corollary

2.3, we obtain

(
n− 1

r − 1

)
=

n∑
j=r

(
F3(n−j+1)

F3

)((
j − 1

r − 1

)
− F6

F3

(
j − 2

r − 1

)
−
(
j − 3

r − 1

))
.

Now, we give another factorization of the generalized Pascal matrix with
a matrix associated with the sequence

{
Ap(n,k,c)

}
. First, for two nonzero

real numbers x and y, we define the infinite matrix C ′ [x, y] =
[
c′ [x, y]ij

]
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with

c′ [x, y]ij =

(
1

Ap(1,k,c)

(
i− 1

j − 1

)
−
Ap(2,k,c)

A2
p(1,k,c)

(
i− 1

j

)
−zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A3
p(1,k,c)

)(
i− 1

j + 1

)
−zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A3
p(1,k,c)

)
×

(
i−3∑
m=1

(
i− 1

j +m+ 1

)(
zkAp(0,k,c)

Ap(1,k,c)

)m
))

xi−jyi+j−2,

if i ≥ j, and 0 otherwise. Secondly, we define the infinite matrix

H ′ [x, y] =
[
h′ [x, y]ij

]
with h′ [x, y]ij = Ap(i−j+1,k,c)x

i−jyj−i, if i ≥ j,

and 0 otherwise. Then, we can give the following result.

Theorem 2.4.

Φ [x, y] = C ′ [x, y] ∗H ′ [x, y] .

Proof. From Theorem 2.1, the Riordan representation of the matrix
C [x, y] is known. Thus, we get the Riordan representations of C ′ [x, y]
and H ′ [x, y] as follows:

C ′ [x, y] =

(
1−(2+sk)xyt+(1+sk+zk)(xyt)2

(Ap(1,k,c)−(Ap(1,k,c)+zkAp(0,k,c))xyt)(1−xyt)2 ,
y2t

1−xyt

)

and

H ′ [x, y] =

(
Ap(1,k,c) − zkAp(0,k,c)xy

−1t

1− skxy−1t+ zk (xy−1t)2 , t

)
.
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From property (R1), we have

C ′ [x, y] ∗H ′ [x, y]

=

(
1−(2+sk)xyt+(1+sk+zk)(xyt)2

(Ap(1,k,c)−(Ap(1,k,c)+zkAp(0,k,c))xyt)(1−xyt)2 ,
y2t

1−xyt

)
∗
(
Ap(1,k,c)−zkAp(0,k,c)xy

−1t

1−skxy−1t+zk(xy−1t)2
, t
)

=



(
1− (2 + sk)xyt+ (1 + sk + zk) (xyt)2

)(
Ap(1,k,c) − zkAp(0,k,c)xy

−1 y2t
1−xyt

)
(
Ap(1,k,c) −

(
Ap(1,k,c) + zkAp(0,k,c)

)
xyt
)

(1− xyt)2(
1− skxy−1 y2t

1−xyt + zk

(
xy−1 y2t

1−xyt

)2
) , y2t

1−xyt


=

(
1

1−xyt ,
y2t

1−xyt

)
= Φ [x, y] .

Thus, the proof is complete. �

Corollary 2.5. For i, j = 1, 2, ..., n, we have

i∑
r=1

(
i− 1

r − 1

)
xi−ryi+r−2 =

i∑
j=1

(
c′ij

(
j∑

m=1

Ap(m,k,c)x
m−1y1−m

))
,

where c′ij is the (i, j)th element of C ′n [x, y] .

Proof. Since Φ [x, y] = C ′ [x, y] ∗H ′ [x, y] in Theorem 2.4, we have

Φn [x, y] = C ′n [x, y]H ′n [x, y] ,Φn [x, y]En = C ′n [x, y]H ′n [x, y]En,

where En = (1, 1, ..., 1)T . Thus, we obtain the desired result. �

Corollary 2.6. For n > 0 and i, j = 1, 2, ..., n, we have(
n− 1

r − 1

)
=

n∑
j=r

((
n− 1

j − 1

)
−
Ap(2,k,c)

Ap(1,k,c)

(
n− 1

j

)

−zk
(

Ap(0,k,c)Ap(2,k,c)−A2
p(1,k,c)

A2
p(1,k,c)

)
×(

n− 1

j + 1

)
− zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A2
p(1,k,c)

)
×(

n−3∑
m=1

(
n− 1

j +m+ 1

)(
zkAp(0,k,c)

Ap(1,k,c)

)m
)
Ap(j−r+1,k,c)

Ap(1,k,c)
.
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Proof. By taking x = y = 1 in Φ [x, y] = C ′ [x, y] ∗H ′ [x, y] , we have the
result. �

Particularly, if we take r = 1 in Corollary 2.6, we get

n∑
j=1

((
n− 1

j − 1

)
−
Ap(2,k,c)

Ap(1,k,c)

(
n− 1

j

)
− zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A2
p(1,k,c)

)

×
(
n− 1

j + 1

)
− zk

(
Ap(0,k,c)Ap(2,k,c)−A2

p(1,k,c)

A2
p(1,k,c)

)
×

n−3∑
m=1

(
n− 1

j +m+ 1

) (
zkAp(0,k,c)

Ap(1,k,c)

)m−1
)
Ap(j,k,c)

Ap(1,k,c)
= 1.

As an example, when k = 2, p = 2, q = −1 and c = 0, the sequence{
Ap(n,k,c)

}
is reduced to the Pell subsequence {P2n} . By Corollary 2.6,

we obtain (
n− 1

r − 1

)
=

n∑
j=r

(
n− 1

j − 1

)
−
Ap(2,2,0)

Ap(1,2,0)

(
n− 1

j

)

−z2

(
Ap(0,2,0)Ap(2,2,0) −A2

p(1,2,0)

A2
p(1,2,0)

)
×
(
n− 1

j + 1

)

−z2

(
n−3∑
m=1

(
n− 1

j +m+ 1

)(
z2Ap(0,2,0)

Ap(1,2,2)

)m
)
Ap(j−r+1,2,0)

Ap(1,2,0)

=
n∑

j=r

((
n− 1

j − 1

)
− P4

P2

(
n− 1

j

)
+

(
n− 1

j + 1

))
P2(j−r+1)

P2
.

From property (R3), we can find the inverses of H [x, y] , C [x, y] and
C ′ [x, y] . Using the computation of the inverse of Φ [x, y] in [9], we can
give the next two results.

Lemma 2.7. The inverses of matrices H [x, y] , C [x, y] , C ′ [x, y] and
H ′ [x, y] are respectively given by

H [x, y]−1 =

(
1− skxy−1t+ zk

(
xy−1t

)2(
Ap(1,k,c) − zkAp(0,k,c)xy−1t

) , y−2t

)
,
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C [x, y]−1 =

(
Ap(1,k,c) +

(
Ap(1,k,c) − zkAp(0,k,c)

)
xy−1t

1 + (2− sk)xy−1t+ (1− sk + zk) (xy−1t)2 ,

t

1 + xy−1t

)
,

C ′ [x, y]−1 =

 Ap(1,k,c) − zkAp(0,k,c)xy
−1t(

1− skxy−1t+ zk (xy−1t)2
)

(1 + xy−1t)
,

t

y2 + xyt

 ,

and

H ′ [x, y]−1 =

(
1− skxy−1t+ zk

(
xy−1t

)2(
Ap(1,k,c) − zkAp(0,k,c)xy−1t

) , t) .
Proof. Firstly, we cosider the matrix H [x, y] . Since fH (t) = y2t, we get

fH (t) = y−2t. Substituting fH (t) in
(
gH
(
fH (t)

))−1
, we obtain

1

gH
(
fH (t)

) =
1− skxy−1t+ zk

(
xy−1t

)2(
Ap(1,k,c) − zkAp(0,k,c)xy−1t

)
(1− xy−1t)

,

and hence the Riordan representation of H [x, y]−1 is

H [x, y]−1 =

(
1− skxy−1t+ zk

(
xy−1t

)2(
Ap(1,k,c) − zkAp(0,k,c)xy−1t

) , y−2t

)
.

Secondly, since fC (t) = t
1−xy−1t

, for the matrix C [x, y] we get fC (t) =

t
(
1 + xy−1t

)−1
and

1

gC
(
fC (t)

) =
Ap(1,k,c) +

(
Ap(1,k,c) − zkAp(0,k,c)

)
xy−1t

1 + (2− sk)xy−1t+ (1− sk + zk) (xy−1t)2 .

Thus, the Riordan representation of C [x, y]−1 is

C [x, y]−1 =

(
Ap(1,k,c) +

(
Ap(1,k,c) − zkAp(0,k,c)

)
xy−1t

1 + (2− sk)xy−1t+ (1− sk + zk) (xy−1t)2

,
t

1 + xy−1t

)
.
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Thirdly, since fC′ (t) = y2t
1−xyt , for the matrix C ′ [x, y] we get fC′ (t) =

t
(
y2 + xyt

)−1
and

1

gC′
(
fC′ (t)

) =
Ap(1,k,c) − zkAp(0,k,c)xy

−1t(
1− skxy−1t+ zk (xy−1t)2

)
(1 + xy−1t)

.

Thus the Riordan representation of C ′ [x, y]−1 is

C ′ [x, y]−1 =

 Ap(1,k,c) − zkAp(0,k,c)xy
−1t(

1− skxy−1t+ zk (xy−1t)2
)

(1 + xy−1t)
,

t

y2 + xyt

 .

Finally, since fH′ (t) = t, for the matrix H ′ [x, y] we get fH′ (t) = t and

1

gH′
(
fH′ (t)

) =
1− skxy−1t+ zk

(
xy−1t

)2(
Ap(1,k,c) − zkAp(0,k,c)xy−1t

) .
Thus, the Riordan representation of C ′ [x, y]−1 is

H ′ [x, y]−1 =

(
1− skxy−1t+ zk

(
xy−1t

)2(
Ap(1,k,c) − zkAp(0,k,c)xy−1t

) , t) .
�

When k = 1, p = 1, q = −1 and c = 0, the inverses of H [x, y]
and C [x, y] are the inverses of the infinite generalized Fibonacci matrix
F [x, y] and the matrix L [x, y] , respectively. Moreover, when k = 1,
p = 2, q = −1 and c = 0, the inverses of H [x, y] and C [x, y] are the
inverses of the generalized Pell matrix S [x, y] and the matrix M [x, y] ,
respectively.

Corollary 2.8. For the generalized Pascal matrix Φ [x, y] , we have

Φ [x, y]−1 = C [x, y]−1 ∗H [x, y]−1

and

Φ [x, y]−1 = H ′ [x, y]−1 ∗ C ′ [x, y]−1 .

Proof. From [9], we have the inverse of Φ [x, y] as

Φ [x, y]−1 =

(
1

1 + xy−1t
,

t

y2 + xyt

)
.

From theorems 2.1 and 2.4, we know that Φ [x, y] = H [x, y] ∗ C [x, y] ,
Φ [x, y] = C ′ [x, y] ∗H ′ [x, y] , respectively. Thus, the proof is complete.

�



Riordan group approaches in matrix factorizations 505

Corollary 2.9. For n ≥ 1, we have

(i)H [x, y]n =

(
n∏

m=1

Ap(1,k,c) − zkAp(0,k,c)xy
2m−1t

1− skxy2m−1t+ zk (xy2m−1t)2 , y
2nt

)
,

(ii)H [x, y]−n =

(
n∏

m=1

1− skxy−2m+1t+ zk
(
xy−2m+1t

)2
Ap(1,k,c) − zkAp(0,k,c)xy−2m+1t

, y−2nt

)
.

Proof. The desired result follow from induction and the use of Riordan
representations of H [x, y] and H [x, y]−1 . �
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