RIORDAN GROUP APPROACHES IN MATRIX FACTORIZATIONS

E. KILIÇ*, N. OMUR AND G. TATAR

Communicated by Jamshid Moori

Abstract

We consider an arbitrary binary polynomial sequence $\left\{A_{n}\right\}$ and then give a lower triangular matrix representation of the sequence. As a result, we obtain a factorization of the infinite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Furthermore, some interesting results and applications are given.

1. Introduction

For $n>0$, the $n \times n$ Pascal matrix $P_{n}=\left[p_{i j}\right]$ is defined as follows [7]:

$$
p_{i j}=\left\{\begin{array}{cl}
\binom{i-1}{j-1}, & \text { if } i \geq j, \\
0, & \text { otherwise } .
\end{array}\right.
$$

Matrix representations of the Pascal triangle are first given in [3]. In [15], for a nonzero real x, the Pascal matrices $P_{n}[x]=\left[P_{n}(x ; i, j)\right]$ and $Q_{n}[x]=\left[Q_{n}(x ; i, j)\right]$ are generalized as follows:

$$
P_{n}(x ; i, j)= \begin{cases}\binom{i-1}{j-1} x^{i-j}, & \text { if } i \geq j, \\ 0, & \text { otherwise },\end{cases}
$$

[^0]and
\[

Q_{n}(x ; i, j)= $$
\begin{cases}\binom{i-1}{j-1} x^{i+j-2}, & \text { if } i \geq j \\ 0, & \text { otherwise }\end{cases}
$$
\]

For more details about the Pascal matrices, see [1, 2, 12]. In [16], the Pascal matrices $P_{n}[x]$ and $Q_{n}[x]$ for two nonzero real numbers x and y are generalized as follows:

$$
\varphi[x, y]_{i j}=\left\{\begin{array}{cl}
\binom{i-1}{j-1} x^{i-j} y^{i+j-2}, & \text { if } i \geq j \\
0, & \text { otherwise }
\end{array}\right.
$$

The Fibonacci and Lucas sequences have been discussed in so many studies. Besides, various generalizations and matrix representations of these sequences have also been introduced and investigated. For nonnegative integers A and B such that $A^{2}+4 B \neq 0$ and $n>0$, the generalized Fibonacci and Lucas type sequences $\left\{U_{n}(A, B)\right\}$ and $\left\{V_{n}(A, B)\right\}$ are defined by

$$
\begin{aligned}
& U_{n+1}(A, B)=A U_{n}(A, B)+B U_{n-1}(A, B) \\
& V_{n+1}(A, B)=A V_{n}(A, B)+B V_{n-1}(A, B)
\end{aligned}
$$

where $U_{0}(A, B)=0, U_{1}(A, B)=1$ and $V_{0}(A, B)=2, V_{1}(A, B)=A$. For example, $U_{n}(1,1)=F_{n}\left(n\right.$th Fibonacci number) and $V_{n}(1,1)=L_{n}$ (nth Lucas number).

For the polynomial versions of generalized Fibonacci and Lucas numbers, we refer to [4]. Furthermore, general cases of these polynomials were considered in [6], where authors defined the polynomial sequence $\left\{A_{n}(a, b ; p, q)(x)\right\}$ (briefly $\left.\left\{A_{n}(x)\right\}\right)$ satisfying

$$
A_{n+1}(x)=p(x) A_{n}(x)-q(x) A_{n-1}(x),
$$

with $A_{0}(x)=a(x)$ and $A_{1}(x)=b(x)$, where a, b, p, q are polynomials of x with real coefficients. In [6], it is shown that for $n>0$, any integer k and $n \equiv c(\bmod |k|)$, the sequence $\left\{A_{n}\right\}$ satisfies the following recursion:

$$
A_{p(n+1, k, c)}=s_{k} A_{p(n, k, c)}-z_{k} A_{p(n-1, k, c)}
$$

where $s_{k}=\alpha^{k}+\beta^{k}, z_{k}=q^{k}, p(n, k, c)=n k+c(c$ a constant $)$ and $\alpha, \beta=\left(p \pm \sqrt{p^{2}-4 q}\right) / 2$.

Furthermore, in [8], the $n \times n$ Fibonacci matrix $\mathcal{F}_{n}=\left[f_{i j}\right]$ is defined in the form

$$
\left[f_{i j}\right]=\left\{\begin{array}{cl}
F_{i-j+1}, & \text { if } i-j+1 \geq 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

where F_{n} is the nth Fibonacci number. This is generalized in [9], where the $n \times n$ generalized Fibonacci matrix $\mathcal{F}[x, y]_{n}=\left[f[x, y]_{i j}\right]$ is introduced as follows:

$$
f[x, y]_{i j}=\left\{\begin{array}{cl}
F_{i-j+1} x^{i-j} y^{i+j-2}, & \text { if } i \geq j, \\
0, & \text { otherwise } .
\end{array}\right.
$$

The infinite generalized Fibonacci matrix is defined in the form

$$
\mathcal{F}[x, y]=\left[\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
x y & y^{2} & 0 & \ldots \\
2 x^{2} y^{2} & x y^{3} & y^{4} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

and the infinite generalized Pell matrix is defined by

$$
S[x, y]=\left[\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
2 x y & y^{2} & 0 & \ldots \\
5 x^{2} y^{2} & 2 x y^{3} & y^{4} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Similarly, the infinite matrices $L[x, y]=\left[l[x, y]_{i j}\right]$ and $M[x, y]=\left[m[x, y]_{i j}\right]$ are given as follows:

$$
l[x, y]_{i j}=\left(\binom{i-1}{j-1}-\binom{i-2}{j-1}-\binom{i-3}{j-1}\right) x^{i-j} y^{j-i}
$$

and

$$
m[x, y]_{i j}=\left(\binom{i-1}{j-1}-2\binom{i-2}{j-1}-\binom{i-3}{j-1}\right) x^{i-j} y^{j-i} .
$$

It is also shown that the matrices $\mathcal{F}[x, y], L[x, y], S[x, y]$ and $M[x, y]$ satisfy $\Phi[x, y]=\mathcal{F}[x, y] * L[x, y]$ and $\Phi[x, y]=S[x, y] * M[x, y]$, where $\Phi[x, y]$ is the infinite generalized Pascal matrix defined by

$$
\Phi[x, y]=\left[\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
x y & y^{2} & 0 & \cdots \\
x^{2} y^{2} & 2 x y^{3} & y^{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

The $n \times n$ matrix $R_{n}=\left[r_{i, j}\right]$ is given in [17], where

$$
r_{i j}=\binom{i-1}{j-1}-\binom{i-1}{j}-\binom{i-1}{j+1},
$$

which is used to show that $P_{n}=R_{n} \mathcal{F}_{n}$ and the following factorization

$$
\begin{aligned}
\binom{n-1}{r-1}= & F_{n-r+1}+(n-2) F_{n-r}+\frac{1}{2}\left(n^{2}-5 n+2\right) F_{n-r-1} \\
& +\sum_{k=r}^{n-3}\binom{n-1}{k-1}\left[2-\frac{n}{k}-\frac{(n-k)(n-k-1)}{k(k+1)}\right] F_{k-r+1},
\end{aligned}
$$

where \mathcal{F}_{n} and P_{n} are defined as before. Stănică [11] looks at a more general case of the results of [8, 17]: he considers the $n \times n$ matrix $\mathcal{U}_{n}=\left(u_{i j}\right)$ in terms of the sequence $\left\{U_{n}(A, B)\right\}$, where

$$
u_{i j}= \begin{cases}U_{i-j+1}, & \text { if } i \geq j \\ 0, & \text { otherwise }\end{cases}
$$

Then, he gives the factorization of any matrix in terms of the matrix \mathcal{U}_{n}. In [10], the Riordan group is defined as follows:
Let $R=\left[r_{i j}\right]_{i, j \geq 0}$ be an infinite matrix whose entries are complex numbers and $c_{i}(t)=\sum_{n \geq 0}^{\infty} r_{n, i} t^{n}$ is the generating function of the i th column of R. If $c_{i}(t)=g(t)[f(t)]^{i}$, where

$$
g(t)=1+g_{1} t+g_{2} t^{2}+g_{3} t^{3}+\cdots, \text { and } f(t)=t+f_{2} t^{2}+f_{3} t^{3}+\cdots,
$$

then R is a Riordan matrix. When \Re denotes the set of Riordan matrices, the set \Re is a group under matrix multiplication $*$, with the following properties:
$\left(\mathrm{R}_{1}\right)(g(t), f(t)) *(h(t), l(t))=(g(t) h(f(t)), l(f(t)))$.
$\left(\mathrm{R}_{2}\right) I=(1, t)$ is the identity element.
$\left(\mathrm{R}_{3}\right)$ The inverse of R is given by $R^{-1}=\left(\frac{1}{g(\bar{f}(t))}, \bar{f}(t)\right)$, where $\bar{f}(t)$ is the compositional inverse of $f(t)$, i.e., $f(\bar{f}(t))=\bar{f}(f(t))=t$.
$\left(\mathrm{R}_{4}\right)$ If $\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T}$ is a column vector with generating function $A(t)$, then multiplying $R=(g(t), f(t))$ on the right by this column vector yields a column vector with generating function $B(t)=g(t) A(f(t))$.
In [8], the infinite Pascal, Fibonacci and Pell matrices are generalized and the factorizations of the infinite generalized Pascal matrix are given by using the Riordan method. Let $R_{n}=\left[r_{i, j}\right]$ be the $n \times n$ matrix given as before. In [13], using the equations $P_{n}=R_{n} \mathcal{F}_{n}$ and $P_{n} E_{n}=R_{n} \mathcal{F}_{n} E_{n}$ for the $n \times n$ Fibonacci matrix $\mathcal{F}_{n}=\left[f_{i j}\right]$, the $n \times n$ Pascal matrix
$P_{n}=\left[p_{i j}\right]$ and the $n \times 1$ matrix $E_{n}=(1,1, \ldots, 1)^{T}$, it is shown that

$$
n+1=\sum_{l=1}^{n} \frac{(n-1)!}{(l+1)!(n-l)!}\left[l^{2}+(n+1) l-n^{2}\right] F_{l+2}
$$

where $1 \leq i, j \leq n$ and F_{n} is the nth Fibonacci number. Here, we consider the arbitrary binary polynomial sequence $\left\{A_{n}\right\}$ and then give a lower triangular matrix representation of this sequence. By the definition of Riordan matrices, we obtain a factorization of the infinite generalized Pascal matrix in terms of this new matrix. Furthermore, some interesting results and applications are given.

2. A Factorization of the generalized Pascal matrix

For any two nonzero real variables x and y, an infinite matrix $H[x, y]=$ $\left[h[x, y]_{i j}\right]$ is defined as follows:

$$
h[x, y]_{i j}= \begin{cases}A_{p(i-j+1, k, c)} x^{i-j} y^{i+j-2}, & \text { if } i \geq j \\ 0, & \text { otherwise }\end{cases}
$$

where $\left\{A_{p(n+1, k, c)}\right\}$ and $p(n+1, k, c)$ are defined as before. Clearly, the matrix $H[x, y]$ is of the form

$$
H[x, y]=\left[\begin{array}{cccc}
A_{p(1, k, c)} & 0 & 0 & \cdots \\
A_{p(2, k, c)} x y & A_{p(1, k, c)} y^{2} & 0 & \cdots \\
A_{p(3, k, c)} x^{2} y^{2} & A_{p(2, k, c)} x y^{3} & A_{p(1, k, c)} y^{4} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Now, we give the Riordan representation of the infinite matrix $H[x, y]$. Let the Riordan representation of $H[x, y]$ be $\left(g_{H}(t), f_{H}(t)\right)$. Here, the generating function of the j th column of $H[x, y]$ is $c_{j}(t)=g_{H}(t)\left[f_{H}(t)\right]^{j}$ Since the first column vector of $H[x, y]$ is

$$
\left(A_{p(1, k, c)}, A_{p(2, k, c)} x y, A_{p(3, k, c)} x^{2} y^{2}, \ldots\right)^{T}
$$

we can write

$$
\begin{aligned}
& g_{H}(t)=A_{p(1, k, c)}+A_{p(2, k, c)} x y t+A_{p(3, k, c)} x^{2} y^{2} t^{2}+\ldots \\
& -s_{k} x y t g_{H}(t)=-s_{k} A_{p(1, k, c)} x y t-s_{k} A_{p(2, k, c)} x^{2} y^{2} t^{2}-s_{k} A_{p(3, k, c)} x^{3} y^{3} t^{3} \\
& -\ldots \\
& z_{k} x^{2} y^{2} t^{2} g_{H}(t)=z_{k} A_{p(1, k, c)} x^{2} y^{2} t^{2}+z_{k} A_{p(2, k, c)} x^{3} y^{3} t^{3}+z_{k} A_{p(3, k, c)} x^{3} y^{3} t^{3} \\
& +\ldots
\end{aligned}
$$

By summing the above equalities side by side, we get

$$
g_{H}(t)=\frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c} x y t}{1-s_{k} x y t+z_{k}(x y t)^{2}} .
$$

Since $h[x, y]_{i j}=y^{2} h[x, y]_{i-1, j-1}$, for $j \geq 2$, we have that $c_{j}(t)=$ $y^{2} t c_{j-1}(t)$ and $g_{H}(t)\left[f_{H}(t)\right]^{j}=y^{2} \operatorname{tg}_{H}(t)\left[f_{H}(t)\right]^{j-1}$. Hence, we get $f_{H}(t)=y^{2} t$. Consequently, the Riordan representation of $H[x, y]$ is given by

$$
H[x, y]=\left(\frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y t}{1-s_{k} x y t+z_{k}(x y t)^{2}}, y^{2} t\right) .
$$

For two nonzero real numbers x and y, let us define the infinite matrix $C[x, y]=\left[c[x, y]_{i j}\right]$ by

$$
\begin{aligned}
c[x, y]_{i j}= & \left(\frac{1}{A_{p(1, k, c)}}\binom{i-1}{j-1}-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}^{2}}\binom{i-2}{j-1}\right. \\
& -z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{3}}\right)\binom{i-3}{j-1} \\
& -z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{3}}\right) \\
& \left.\times\left(\sum_{m=1}^{i-3}\binom{i-m-3}{j-1}\left(\frac{z_{k} A_{p(0, k, c)}}{A_{p(1, k, c)}}\right)^{m}\right)\right) x^{i-j} y^{j-i},
\end{aligned}
$$

if $i \geq j$, and 0 otherwise. We now give the following result.

Theorem 2.1.

$$
\Phi[x, y]=H[x, y] * C[x, y] .
$$

Proof. Since $C[x, y]$ is a Riordan matrix, we write $C[x, y]=\left(g_{C}(t), f_{C}(t)\right)$. Considering the first column vector of $C[x, y]$, we get

$$
\begin{aligned}
& g_{C}(t) \\
= & \frac{1}{A_{p(1, k, c)}}+\left(\frac{1}{A_{p(1, k, c)}}-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}^{2}}\right) x y^{-1} t+\left(\frac{1}{A_{p(1, k, c)}}-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}^{2}}\right. \\
& \left.-z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{3}}\right)\right)\left(x y^{-1} t\right)^{2}+ \\
& \left(\frac{1}{A_{p(1, k, c)}}-\frac{A_{p(2, k, c)}^{2}}{A_{p(1, k, c)}^{2}}-z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{3}}\right)\right)\left(x y^{-1} t\right)^{3}+\cdots \\
= & \left(1+x y^{-1} t+\left(x y^{-1} t\right)^{2}+\cdots\right)\left(\frac{1}{A_{p(1, k, c)}}-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}^{2}} x y^{-1} t\right)- \\
& z_{k}\left(1+x y^{-1} t+\left(x y^{-1} t\right)^{2}+\cdots\right)\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{3}}\right) \\
& \times\left(x y^{-1} t\right)^{2}\left(1+\left(\frac{z_{k} A_{p(0, k, c)}}{A_{p(1, k, c)}}\right) x y^{-1} t+\left(\frac{z_{k}^{2} A_{p(0, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right)\left(x y^{-1} t\right)^{2}+\cdots\right) \\
= & \left(\frac{1}{1-x y^{-1} t}\right)\left(\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)}\right) .
\end{aligned}
$$

Let the generating function of the j th column of $C[x, y]$ be

$$
c_{j}(t)=g_{C}(t)\left[f_{C}(t)\right]^{j} .
$$

Considering

$$
c[x, y]_{i j}=c[x, y]_{i-1, j-1}+x y^{-1} c[x, y]_{i-1, j}
$$

for $j \geq 2$, we obtain

$$
c_{j}(t)=t c_{j-1}(t)+x y^{-1} t c_{j}(t)
$$

and

$$
g_{C}(t)\left[f_{C}(t)\right]^{j}=t g_{C}(t)\left[f_{C}(t)\right]^{j-1}+x y^{-1} t g_{C}(t)\left[f_{C}(t)\right]^{j}
$$

Hence, we have $f_{C}(t)=\frac{t}{1-x y^{-1} t}$. Finally, the Riordan representation of the matrix $C[x, y]$ is

$$
C[x, y]=\left(\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)\left(1-x y^{-1} t\right)}, \frac{t}{1-x y^{-1} t}\right) .
$$

From [9], we have that $\Phi[x, y]=\left(\frac{1}{1-x y t}, \frac{y^{2} t}{1-x y t}\right)$. Moreover,

$$
\begin{aligned}
& H[x, y] * C[x, y] \\
= & \left(\frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y t}{1-s_{k} x y t+z_{k}(x y t)^{2}}, y^{2} t\right) \\
& *\left(\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)\left(1-x y^{-1} t\right)}, \frac{t}{1-x y^{-1} t}\right) \\
= & \left(\frac{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y t\right)\left(1-s_{k} x y^{-1} y^{2} t+z_{k}\left(x y^{-1} y^{2} t\right)^{2}\right)}{\left(1-s_{k} x y t+z_{k}(x y t)^{2}\right)\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} y^{2} t\right)\left(1-x y^{-1} y^{2} t\right)},\right. \\
& \left.\frac{y^{2} t}{1-x y^{-1} y^{2} t}\right) \\
= & \left(\frac{1}{1-x y t}, \frac{y^{2} t}{1-x y t}\right)=\Phi[x, y] .
\end{aligned}
$$

Thus, the proof is complete.

Now, we consider some special cases. When $k=1, p=1, q=-1$ and $c=0$, the matrix $H[x, y]$ is reduced to the Fibonacci matrix $\mathcal{F}[x, y]$. In Theorem 2.1, taking $\mathcal{F}[x, y]$ instead of $H[x, y]$, we find the matrix $L[x, y]$ such that $\Phi[x, y]=\mathcal{F}[x, y] * L[x, y]$, from [9]. Thus, the matrix $L[x, y]$ is a special case of $C[x, y]$. When $k=1, p=2, q=-1$ and $c=0$, the matrix $H[x, y]$ is reduced to the Pell matrix $S[x, y]$, defined in [9]. Also, taking $S[x, y]$, instead of $H[x, y]$, we get the matrix $M[x, y]$ such that $\Phi[x, y]=S[x, y] * M[x, y]$, given in [9]. The matrix $M[x, y]$ is a special case of the matrix $C[x, y]$.

Corollary 2.2. For $i, j=1,2, \ldots, n$, we have

$$
\sum_{r=1}^{i}\binom{i-1}{r-1} x^{i-r} y^{i+r-2}=\sum_{j=1}^{i}\left(A_{p(i-j+1, k, c)} x^{i-j} y^{i+j-2}\left(\sum_{m=1}^{j} c_{i m}\right)\right)
$$

where $c_{i m}$ is the (i, m) th element of $C_{n}[x, y]$.
Proof. Considering the $n \times n$ Pascal matrix $\Phi_{n}[x, y]$ and $\Phi[x, y]=$ $H[x, y] * C[x, y]$ in Theorem 2.1, we have $\Phi_{n}[x, y]=H_{n}[x, y] C_{n}[x, y]$ and $\Phi_{n}[x, y] E_{n}=H_{n}[x, y] C_{n}[x, y] E_{n}$, where $E_{n}=(1,1, \ldots, 1)^{T}$. Therefore, we obtain the desired result.

Corollary 2.3. For $n>0$ and $j=1,2, \ldots, n$, we have

$$
\begin{aligned}
& \binom{n-1}{r-1}=\sum_{j=r}^{n}\left(\frac{A_{p(n-j+1, k, c)}}{A_{p(1, k, c)}}\right)\left(\binom{j-1}{r-1}-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}}\binom{j-2}{r-1}\right. \\
& -z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right)\binom{j-3}{r-1} \\
& -z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right) \\
& \left.\times\left(\sum_{m=1}^{n-3}\binom{n-m-3}{r-1}\left(\frac{z_{k} A_{p(0, k, c)}}{A_{p(1, k, c)}}\right)^{m}\right)\right) .
\end{aligned}
$$

Proof. We take $x=y=1$ in the equality $\Phi_{n}[x, y]=H_{n}[x, y] * C_{n}[x, y]$.

If we take $r=1$ in the previous corollary, we have

$$
\begin{aligned}
\sum_{j=1}^{n} & \left(\frac{A_{p(n-j+1, k, c)}}{A_{p(1, k, c)}}\right) 1-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}}-z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right) \\
& -z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right)\left(\sum_{m=1}^{n-3}\left(\frac{z_{k} A_{p(0, k, c)}}{A_{p(1, k, c)}}\right)^{m}\right)=1 .
\end{aligned}
$$

For example, when $k=3, p=1, q=-1$ and $c=0$, the sequence $\left\{A_{p(n, k, c)}\right\}$ is reduced to the Fibonacci subsequence $\left\{F_{3 n}\right\}$. By Corollary 2.3, we obtain

$$
\binom{n-1}{r-1}=\sum_{j=r}^{n}\left(\frac{F_{3(n-j+1)}}{F_{3}}\right)\left(\binom{j-1}{r-1}-\frac{F_{6}}{F_{3}}\binom{j-2}{r-1}-\binom{j-3}{r-1}\right) .
$$

Now, we give another factorization of the generalized Pascal matrix with a matrix associated with the sequence $\left\{A_{p(n, k, c)}\right\}$. First, for two nonzero real numbers x and y, we define the infinite matrix $C^{\prime}[x, y]=\left[c^{\prime}[x, y]_{i j}\right]$
with

$$
\begin{aligned}
c^{\prime}[x, y]_{i j}= & \left(\frac{1}{A_{p(1, k, c)}}\binom{i-1}{j-1}-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}^{2}}\binom{i-1}{j}\right. \\
& -z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{3}}\right)\binom{i-1}{j+1} \\
& -z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{3}}\right) \\
& \left.\times\left(\sum_{m=1}^{i-3}\binom{i-1}{j+m+1}\left(\frac{z_{k} A_{p(0, k, c)}}{A_{p(1, k, c)}}\right)^{m}\right)\right) x^{i-j} y^{i+j-2}
\end{aligned}
$$

if $i \geq j$, and 0 otherwise. Secondly, we define the infinite matrix $H^{\prime}[x, y]=\left[h^{\prime}[x, y]_{i j}\right]$ with $h^{\prime}[x, y]_{i j}=A_{p(i-j+1, k, c)} x^{i-j} y^{j-i}$, if $i \geq j$, and 0 otherwise. Then, we can give the following result.

Theorem 2.4.

$$
\Phi[x, y]=C^{\prime}[x, y] * H^{\prime}[x, y]
$$

Proof. From Theorem 2.1, the Riordan representation of the matrix $C[x, y]$ is known. Thus, we get the Riordan representations of $C^{\prime}[x, y]$ and $H^{\prime}[x, y]$ as follows:

$$
C^{\prime}[x, y]=\left(\frac{1-\left(2+s_{k}\right) x y t+\left(1+s_{k}+z_{k}\right)(x y t)^{2}}{\left(A_{p(1, k, c)}-\left(A_{p(1, k, c)}+z_{k} A_{p(0, k, c)}\right) x y t\right)(1-x y t)^{2}}, \frac{y^{2} t}{1-x y t}\right)
$$

and

$$
H^{\prime}[x, y]=\left(\frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t}{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}, t\right)
$$

From property $\left(\mathrm{R}_{1}\right)$, we have

$$
\left.\left.\begin{array}{rl}
& C^{\prime}[x, y] * H^{\prime}[x, y] \\
= & \left(\frac{1-\left(2+s_{k}\right) x y t+\left(1+s_{k}+z_{k}\right)(x y t)^{2}}{\left(A_{p(1, k, c)}-\left(A_{p(1, k, c)}+z_{k} A_{p(0, k, c)} x y t\right)(1-x y t)^{2}\right.}, \frac{y^{2} t}{1-x y t}\right) \\
& *\left(\frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c} x y^{-1} t}{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}, t\right) \\
= & \left(\begin{array}{c}
\left(1-\left(2+s_{k}\right) x y t+\left(1+s_{k}+z_{k}\right)(x y t)^{2}\right) \\
\frac{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} \frac{y^{2} t}{1-x y t}\right)}{} \\
\left(A_{p(1, k, c)}-\left(A_{p(1, k, c)}+z_{k} A_{p(0, k, c)}\right) x y t\right)(1-x y t)^{2}
\end{array}, \frac{y^{2} t}{1-x y t}\right. \\
\left(1-s_{k} x y^{-1} \frac{y^{2} t}{1-x y t}+z_{k}\left(x y^{-1} \frac{y^{2} t}{1-x y t}\right)^{2}\right.
\end{array}\right)\right) . \begin{gathered}
(x, y] .
\end{gathered}
$$

Thus, the proof is complete.
Corollary 2.5. For $i, j=1,2, \ldots, n$, we have

$$
\sum_{r=1}^{i}\binom{i-1}{r-1} x^{i-r} y^{i+r-2}=\sum_{j=1}^{i}\left(c_{i j}^{\prime}\left(\sum_{m=1}^{j} A_{p(m, k, c)} x^{m-1} y^{1-m}\right)\right)
$$

where $c_{i j}^{\prime}$ is the (i, j) th element of $C_{n}^{\prime}[x, y]$.
Proof. Since $\Phi[x, y]=C^{\prime}[x, y] * H^{\prime}[x, y]$ in Theorem 2.4, we have

$$
\Phi_{n}[x, y]=C_{n}^{\prime}[x, y] H_{n}^{\prime}[x, y], \Phi_{n}[x, y] E_{n}=C_{n}^{\prime}[x, y] H_{n}^{\prime}[x, y] E_{n}
$$

where $E_{n}=(1,1, \ldots, 1)^{T}$. Thus, we obtain the desired result.
Corollary 2.6. For $n>0$ and $i, j=1,2, \ldots, n$, we have

$$
\begin{aligned}
\binom{n-1}{r-1}= & \sum_{j=r}^{n}\left(\binom{n-1}{j-1}-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}}\binom{n-1}{j}\right. \\
& -z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right) \times \\
& \binom{n-1}{j+1}-z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right) \times \\
& \left(\sum_{m=1}^{n-3}\binom{n-1}{j+m+1}\left(\frac{z_{k} A_{p(0, k, c)}}{A_{p(1, k, c)}}\right)^{m}\right) \frac{A_{p(j-r+1, k, c)}}{A_{p(1, k, c)}} .
\end{aligned}
$$

Proof. By taking $x=y=1$ in $\Phi[x, y]=C^{\prime}[x, y] * H^{\prime}[x, y]$, we have the result.

Particularly, if we take $r=1$ in Corollary 2.6, we get

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(\binom{n-1}{j-1}-\frac{A_{p(2, k, c)}}{A_{p(1, k, c)}}\binom{n-1}{j}-z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right)\right. \\
& \times\binom{ n-1}{j+1}-z_{k}\left(\frac{A_{p(0, k, c)} A_{p(2, k, c)}-A_{p(1, k, c)}^{2}}{A_{p(1, k, c)}^{2}}\right) \times \\
& \left.\sum_{m=1}^{n-3}\binom{n-1}{j+m+1}\left(\frac{z_{k} A_{p(0, k, c)}}{A_{p(1, k, c)}}\right)^{m-1}\right) \frac{A_{p(j, k, c)}}{A_{p(1, k, c)}}=1 .
\end{aligned}
$$

As an example, when $k=2, p=2, q=-1$ and $c=0$, the sequence $\left\{A_{p(n, k, c)}\right\}$ is reduced to the Pell subsequence $\left\{P_{2 n}\right\}$. By Corollary 2.6, we obtain

$$
\begin{aligned}
& \binom{n-1}{r-1} \\
= & \sum_{j=r}^{n}\binom{n-1}{j-1}-\frac{A_{p(2,2,0)}}{A_{p(1,2,0)}}\binom{n-1}{j} \\
& -z_{2}\left(\frac{A_{p(0,2,0)} A_{p(2,2,0)}-A_{p(1,2,0)}^{2}}{A_{p(1,2,0)}^{2}}\right) \times\binom{ n-1}{j+1} \\
& -z_{2}\left(\sum_{m=1}^{n-3}\binom{n-1}{j+m+1}\left(\frac{z_{2} A_{p(0,2,0)}}{A_{p(1,2,2)}}\right)^{m}\right) \frac{A_{p(j-r+1,2,0)}}{A_{p(1,2,0)}} \\
= & \sum_{j=r}^{n}\left(\binom{n-1}{j-1}-\frac{P_{4}}{P_{2}}\binom{n-1}{j}+\binom{n-1}{j+1}\right) \frac{P_{2(j-r+1)}}{P_{2}} .
\end{aligned}
$$

From property $\left(\mathrm{R}_{3}\right)$, we can find the inverses of $H[x, y], C[x, y]$ and $C^{\prime}[x, y]$. Using the computation of the inverse of $\Phi[x, y]$ in [9], we can give the next two results.

Lemma 2.7. The inverses of matrices $H[x, y], C[x, y], C^{\prime}[x, y]$ and $H^{\prime}[x, y]$ are respectively given by

$$
H[x, y]^{-1}=\left(\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)}, y^{-2} t\right)
$$

$$
\begin{gathered}
C[x, y]^{-1}=\left(\frac{A_{p(1, k, c)}+\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)}\right) x y^{-1} t}{1+\left(2-s_{k}\right) x y^{-1} t+\left(1-s_{k}+z_{k}\right)\left(x y^{-1} t\right)^{2}}\right. \\
\left.\frac{t}{1+x y^{-1} t}\right) \\
C^{\prime}[x, y]^{-1}=\left(\frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t}{\left(1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}\right)\left(1+x y^{-1} t\right)}, \frac{t}{y^{2}+x y t}\right),
\end{gathered}
$$

and

$$
H^{\prime}[x, y]^{-1}=\left(\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)}, t\right)
$$

Proof. Firstly, we cosider the matrix $H[x, y]$. Since $f_{H}(t)=y^{2} t$, we get $\bar{f}_{H}(t)=y^{-2} t$. Substituting $\bar{f}_{H}(t)$ in $\left(g_{H}\left(\bar{f}_{H}(t)\right)\right)^{-1}$, we obtain

$$
\frac{1}{g_{H}\left(\bar{f}_{H}(t)\right)}=\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)\left(1-x y^{-1} t\right)}
$$

and hence the Riordan representation of $H[x, y]^{-1}$ is

$$
H[x, y]^{-1}=\left(\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)}, y^{-2} t\right)
$$

Secondly, since $f_{C}(t)=\frac{t}{1-x y^{-1} t}$, for the matrix $C[x, y]$ we get $\bar{f}_{C}(t)=$ $t\left(1+x y^{-1} t\right)^{-1}$ and

$$
\frac{1}{g_{C}\left(\bar{f}_{C}(t)\right)}=\frac{A_{p(1, k, c)}+\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)}\right) x y^{-1} t}{1+\left(2-s_{k}\right) x y^{-1} t+\left(1-s_{k}+z_{k}\right)\left(x y^{-1} t\right)^{2}}
$$

Thus, the Riordan representation of $C[x, y]^{-1}$ is

$$
\begin{aligned}
C[x, y]^{-1}= & \left(\frac{A_{p(1, k, c)}+\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)}\right) x y^{-1} t}{1+\left(2-s_{k}\right) x y^{-1} t+\left(1-s_{k}+z_{k}\right)\left(x y^{-1} t\right)^{2}}\right. \\
& \left., \frac{t}{1+x y^{-1} t}\right)
\end{aligned}
$$

Thirdly, since $f_{C^{\prime}}(t)=\frac{y^{2} t}{1-x y t}$, for the matrix $C^{\prime}[x, y]$ we get $\bar{f}_{C^{\prime}}(t)=$ $t\left(y^{2}+x y t\right)^{-1}$ and

$$
\frac{1}{g_{C^{\prime}}\left(\bar{f}_{C^{\prime}}(t)\right)}=\frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t}{\left(1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}\right)\left(1+x y^{-1} t\right)}
$$

Thus the Riordan representation of $C^{\prime}[x, y]^{-1}$ is

$$
C^{\prime}[x, y]^{-1}=\left(\frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c} x y^{-1} t}{\left(1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}\right)\left(1+x y^{-1} t\right)}, \frac{t}{y^{2}+x y t}\right)
$$

Finally, since $f_{H^{\prime}}(t)=t$, for the matrix $H^{\prime}[x, y]$ we get $\bar{f}_{H^{\prime}}(t)=t$ and

$$
\frac{1}{g_{H^{\prime}}\left(\bar{f}_{H^{\prime}}(t)\right)}=\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)}
$$

Thus, the Riordan representation of $C^{\prime}[x, y]^{-1}$ is

$$
H^{\prime}[x, y]^{-1}=\left(\frac{1-s_{k} x y^{-1} t+z_{k}\left(x y^{-1} t\right)^{2}}{\left(A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-1} t\right)}, t\right)
$$

When $k=1, p=1, q=-1$ and $c=0$, the inverses of $H[x, y]$ and $C[x, y]$ are the inverses of the infinite generalized Fibonacci matrix $\mathcal{F}[x, y]$ and the matrix $L[x, y]$, respectively. Moreover, when $k=1$, $p=2, q=-1$ and $c=0$, the inverses of $H[x, y]$ and $C[x, y]$ are the inverses of the generalized Pell matrix $S[x, y]$ and the matrix $M[x, y]$, respectively.
Corollary 2.8. For the generalized Pascal matrix $\Phi[x, y]$, we have

$$
\Phi[x, y]^{-1}=C[x, y]^{-1} * H[x, y]^{-1}
$$

and

$$
\Phi[x, y]^{-1}=H^{\prime}[x, y]^{-1} * C^{\prime}[x, y]^{-1}
$$

Proof. From [9], we have the inverse of $\Phi[x, y]$ as

$$
\Phi[x, y]^{-1}=\left(\frac{1}{1+x y^{-1} t}, \frac{t}{y^{2}+x y t}\right) .
$$

From theorems 2.1 and 2.4, we know that $\Phi[x, y]=H[x, y] * C[x, y]$, $\Phi[x, y]=C^{\prime}[x, y] * H^{\prime}[x, y]$, respectively. Thus, the proof is complete.

Corollary 2.9. For $n \geq 1$, we have

$$
\begin{gathered}
\text { (i) } H[x, y]^{n}=\left(\prod_{m=1}^{n} \frac{A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{2 m-1} t}{1-s_{k} x y^{2 m-1} t+z_{k}\left(x y^{2 m-1} t\right)^{2}}, y^{2 n} t\right) \\
\text { (ii) } H[x, y]^{-n}=\left(\prod_{m=1}^{n} \frac{1-s_{k} x y^{-2 m+1} t+z_{k}\left(x y^{-2 m+1} t\right)^{2}}{A_{p(1, k, c)}-z_{k} A_{p(0, k, c)} x y^{-2 m+1} t}, y^{-2 n} t\right) .
\end{gathered}
$$

Proof. The desired result follow from induction and the use of Riordan representations of $H[x, y]$ and $H[x, y]^{-1}$.

References

[1] L. Aceto and D. Trigiante, The matrices of Pascal and other greats, Amer. Math. Monthly 108 (2001), no. 3, 232-245.
[2] M. Bayat and H. Teimoori, The linear algebra of the generalized Pascal functional matrix, Linear Algebra Appl. 295 (1999), no. 1, 81-89.
[3] R. Brawer and M. Pirovino, The linear algebra of the Pascal matrices, Linear Algebra Appl. 174 (1992), 13-23.
[4] Jr. V. Hoggatt and C. Long, Divisibility properties of generalized Fibonacci polynomials, The Fibonacci Quart. 12 (1974), 113-120.
[5] E. Kiliç and P. Stănică, Factorizations and representations of second order linear recurrences with indices in arithmetic progressions, Bol. Soc. Mat. Mexicana. 15 (2009), no. 1, 23-35.
[6] E. Kiliç and P. Stănică, Factorizations and representations of binary polynomial recurrences by matrix methods, Rocky Mountain. J. Math. 41 (2011), no. 4, 1247-1264.
[7] G. H. Lawden, Pascal matrices, Mathematical Gazette, 56 (1972), no. 398, 325327.
[8] G. Y. Lee, J. S. Kim and S. G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, The Fibonacci Quart. 40 (2002), no. 3, 203211.
[9] G. Y. Lee and S. H. Cho, The generalized Pascal matrix via the generalized Fibonacci matrix and the generalized Pell matrix, J. Korean Math. Soc. 45 (2008), no. 2, 479-491.
[10] L. W. Shapiro, S. Getu, W. J. Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Math. 34 (1991), no. 1-3, 229-239.
[11] P. Stănică, Cholesky factorizations of matrices associated with r-order recurrent sequences, Integers 5 (2005), no. 2, A16, 11pp.
[12] L. Verde-Star, Groups of generalized Pascal matrices, Linear Algebra Appl. $\mathbf{3 8 2}$ (2004) 179-194.
[13] W. Wang and T. Wang, Identities via Bell matrix and Fibonacci matrix, Discrete Appl. Math. 156 (2008), no. 14, 2793-2803.
[14] W. A. Webb and E. A. Parberry, Divisibility properties of Fibonacci polynomials, The Fibonacci Quart. 7 (1969), no. 5, 457-463.
[15] Z. Zhizheng, The linear algebra of the generalized Pascal matrices, Linear Algebra Appl. 250 (1997), 51-60.
[16] Z. Zhizheng, M. Liu, An extension of the generalized Pascal matrix and its algebraic properties, Linear Algebra Appl. 271 (1998), 169-177.
[17] Z. Zhizheng and X. Wang, A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Appl. Math. 155 (2007), no. 17, 2371-2376.

Emrah Kiliç

Department of Mathematics, TOBB Economics and Technology University, 06560
Ankara, Turkey
Email: ekilic@etu.edu.tr

Nese Omur

Department of Mathematics, Kocaeli University, 41380, Kocaeli, Turkey
Email: neseomur@kocaeli.edu.tr

Gulfer Tatar

Department of Mathematics, Kocaeli University, 41380, Kocaeli, Turkey
Email: gulfera@kocaeli.edu.tr

[^0]: MSC(2010): Primary: 15A36; Secondary:11B37.
 Keywords: Riordan group, factorization, binary recurrences, Pascal matrix.
 Received: 7 August 2009, Accepted: 22 February 2011.
 *Corresponding author
 (c) 2012 Iranian Mathematical Society.

