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RIORDAN GROUP APPROACHES IN MATRIX
FACTORIZATIONS

E. KILIC*, N. OMUR AND G. TATAR

Communicated by Jamshid Moori

ABSTRACT. We consider an arbitrary binary polynomial sequence
{A,} and then give a lower triangular matrix representation of the
sequence. As a result, we obtain a factorization of the infinite gen-
eralized Pascal matrix in terms of this new matrix, using a Riordan
group approach. Furthermore, some interesting results and appli-
cations are given.

1. Introduction

For n > 0, the n x n Pascal matrix P,, = [p;;] is defined as follows [7]:
G, iz
big = 0, otherwise.

Matrix representations of the Pascal triangle are first given in [3]. In
[15], for a nonzero real x, the Pascal matrices P, [z] = [P, (z;1,j)] and

Qn [z] = [Qn (x;1, )] are generalized as follows:
TNt it >
P, A (j—l)x ) =7
n (@34,7) { 0, otherwise,
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and
(C)a 2 i i >
I B L if i > j,
@n (34,7 { 0, otherwise.
For more details about the Pascal matrices, see [1, 2, 12]. In [16], the
Pascal matrices P, [x] and @, [z] for two nonzero real numbers x and y

are generalized as follows:

st — § (D, iz
’ 0, otherwise.

The Fibonacci and Lucas sequences have been discussed in so many stud-
ies. Besides, various generalizations and matrix representations of these
sequences have also been introduced and investigated. For nonnegative
integers A and B such that A% + 4B # 0 and n > 0, the generalized
Fibonacci and Lucas type sequences {U, (A, B)} and {V, (A, B)} are
defined by

Uns1 (A, B) = AU, (A, B) + BU,_1 (A, B),

) =
where Uy (A, B) = 0, U; (A,B) =1 and Vp (A4, B) = 2, Vl(A, B)
For example, U, (1,1) = F,, (nth Fibonacci number) and Vo (1,1) =
(nth Lucas number).
For the polynomial versions of generalized Fibonacci and Lucas num-
bers, we refer to [4]. Furthermore, general cases of these polynomials
were considered in [6], where authors defined the polynomial sequence

{An (a,b;p,q) (x)} (briefly {An (2)}) satisfying
Any1(z) =p(2) An (z) — ¢ (x) An—1 (2) ,

with Ag (z) = a(x) and Ay (z) = b(x), where a, b, p, q are polynomials
of z with real coefficients. In [6], it is shown that for n > 0, any integer k
and n = ¢ (mod |k|), the sequence {A,,} satisfies the following recursion:

A.
L

n

Ap(n—i—l,k,c) = SkAp(n,k,c) - zkAp(n—l,k,c),

where s = of + 8%, 2z = ¢*, p(n,k,¢) = nk + ¢ (c a constant) and

a,f = (pi \/M) /2.

Furthermore, in [8], the n x n Fibonacci matrix F, = [f;;] is defined
in the form
1 E—j+17 le—j+120,
] = 0, otherwise,
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where F,, is the nth Fibonacci number. This is generalized in [9], where

the n x n generalized Fibonacci matrix F [z,y],, = [ Iz, y]m} is intro-
duced as follows:

| Bty i > g,
Floyly; = { 0, otherwise.

The infinite generalized Fibonacci matrix is defined in the form

1 0 O
2
Ty Y 0o ..
Flz,y) = 2222 wyd oyt L |

and the infinite generalized Pell matrix is defined by

1 0 0
2xy y? 0
Slzyl = | 5222 2xy® o

Similarly, the infinite matrices L [z,y] = [l [z, Y] Z-]} and

M [z, y] = [m [x,y]ij] are given as follows:

el = (G0 = G2 = (o) ) oo/,
and
_ ((i—1 i—2 i3\ i—j, j—i
mlz,yl;; = ((j—l) - 2(j—1) - (j—l)) oy
It is also shown that the matrices F [z,y], L[z,y], S [z,y] and M [z, y]

satisfy @ [x,y] = F [z, y]* L [z,y] and ® [z,y] = S [z, y] * M [z, y], where
® [z, y] is the infinite generalized Pascal matrix defined by

1 0 0
2
Ty Y 0
D[z, y] = 222 2793 ot

The n x n matrix R,, = [r; ;] is given in [17], where

rij = (1) — (59 = (7))
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which is used to show that P, = R,F, and the following factorization

() = Farni+(n—2)Fyr+3(n°—5n+2)Fry
n—3
"‘Z (Zj) [2 — % %} Fy_ry1,
k=r

where F,, and P, are defined as before. Stanica [11] looks at a more
general case of the results of [8, 17]: he considers the n x m matrix
Uy, = (ui;) in terms of the sequence {U,, (A, B)}, where

wr — 4 Uimjr1s i 27,
Y0, otherwise.

Then, he gives the factorization of any matrix in terms of the matrix U,,.
In [10], the Riordan group is defined as follows:

Let R = [rij]; ;5 be an infinite matrix whose entries are complex num-
bers and ¢; (t) = Y % rn,it" is the generating function of the ith column

of R.If ¢; (t) = g (t) [f (¢)]*, where
gt) =1+ gt +got®> +g3t> +---, and f(t) =t + fot> + fst> + - -,

then R is a Riordan matrix. When R denotes the set of Riordan matrices,
the set R is a group under matrix multiplication *, with the following
properties:

(R1) (g (), f (@)= (h(t),L(t) = (g (&) h(f (), L(f(?))).
(R2) I =(1,t) is the identity element.
(R3) The inverse of R is given by R™! = <g(f1(t)) ,f(t)> , where f (t)
is the compositional inverse of f (t), i.e., f (f(¢)) = F(f (t)) =t.
(Ry) If (ag,ay,az,...)" is a column vector with generating function
A (t), then multiplying R = (g (¢), f(¢)) on the right by this
column vector yields a column vector with generating function
B(t)=g@)A(f ().
In [8], the infinite Pascal, Fibonacci and Pell matrices are generalized
and the factorizations of the infinite generalized Pascal matrix are given
by using the Riordan method. Let R,, = [r; ;] be the nxn matrix given as
before. In [13], using the equations P, = R,F, and P,E, = R, F,E,
for the n x n Fibonacci matrix F,, = [fi;], the n x n Pascal matrix
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P, = [pi;] and the n x 1 matrix E, = (1,1, ..., l)T, it is shown that

n

—1! 2 2

=1
where 1 < 4,57 < n and F,, is the nth Fibonacci number. Here, we
consider the arbitrary binary polynomial sequence {4, } and then give
a lower triangular matrix representation of this sequence. By the def-
inition of Riordan matrices, we obtain a factorization of the infinite
generalized Pascal matrix in terms of this new matrix. Furthermore,
some interesting results and applications are given.

2. A Factorization of the generalized Pascal matrix

For any two nonzero real variables = and y, an infinite matrix H [z, y] =
[h [z, y]; ]} is defined as follows:

hiz,yl., = Apijrree@ Iy i i > g,
Y 0, otherwise,

where {Ap(nJrl,k’C)} and p (n + 1, k, ¢) are defined as before. Clearly, the
matrix H [z,y] is of the form

Ap(l,k:,c) 0 0
Apokory Ay pey’ 0

H [{L‘,y] = Ap(37k7c)«'172y2 Ap(2,k,c)xy3 Ap(l,k,c)yél

Now, we give the Riordan representation of the infinite matrix H [z, y].
Let the Riordan representation of H [z,y]| be (gu (t), fu (t)) . Here, the
generating function of the jth column of H [z, y] is ¢; (t) = gu (¢t) [fu (1))
Since the first column vector of H [z, y] is

T
(Ap(l,k:,c)v Ap(Q,k,c)xya Ap(S,k,c)$2y2a ) )
we can write

9H (t) = Ap(l,k,c)+Ap(2,k,c)xyt + Ap(3,k,c)x2y2t2+ R
—spaytgp (1) = —skAp i)Yt — S Ap@ k0 T2 Y 12 =Sk Ap(3 o) T Y 1

22yt
S

91 () = 2k A1 ko P Y P+ 28 Ap ko) TP+ 20 Apes o) 22y 1
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By summing the above equalities side by side, we get

Ap(Lke) — 2 Ap(0 k0 TY
1— spayt + 25 (xyt)?

gu (t) =

Since h[z,y]; = y2h[x,y]i71’j71, for j > 2, we have that ¢; (t) =

y*tej 1 (t) and gy (t) [fu () = yPtgm (t) [fu (1)~ Hence, we get
fu (t) = y*t. Consequently, the Riordan representation of H [z,3] is
given by

At e — 2 A oo Tyl
H[x,y]=( plLke) — Ty 0k ey 2t>.

1 — syt + 2, (zyt)?

For two nonzero real numbers x and y, let us define the infinite matrix

Clayl = [elayl,y] by

Co (o (i Aveke (-2
C [1‘7 y]zj - (Ap(Lk,c) (J — 1> A}%(l kC) <.] - 1>

Ap0,k,0) Ap2e) Ao ko) \ (13
— Rk A3 .
p(1,k,¢) Jj—1

e (Ap(O,k,c>Ap(2,k,c>—Aiu,k,c)>

Afy(l,k:,c)
1—3 . m
i—m—3 ZkAp(o,k,c)) i—j i
X . — xr -y,
(;( j—1 ) < Ap(ike)

if 1 > j, and 0 otherwise. We now give the following result.

Theorem 2.1.

P [z,y] = H [z,y] * C [z,y] .
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Proof. Since C [x,y] is a Riordan matrix, we write C' [z, y] = (gc (t) , fo (t)) .
Considering the first column vector of C [z, y], we get

ge (t)
_ 1 1 Ap(2,k,c) —1 1 Ap(z,k,c)
= + - Ty i+ —
Ap(1k.e) Aprke) AT ke y Ap(ike) AT

A A —A2
p(0,k,c)“*p(2,k,c) 1,k,c —1,\2
— Zk ( B )>) (azy t) +

3
p(1,k,c)
A A — A2
1 Ap2,k,0) P(0,k,0) Ap(2,k,¢) ™ p(1,k,c) —14)3
_ -z . xy t) +---
(Ap(lyk,C) Ai(l,k,c) < Az(lvkvc) )) ( Y )
_ 1,02 A -1

= (1+ay e+ (zy 't +> eyt ) -

( Y ( Yy ) Ap(1,k,c) A?)(l,k,c) 4

Aok Ana oy —A2
2k (1 +ay M+ (xy_lt)2 + .. ) < P(0,k,¢) j@»kv ) p(l,k,C)>

3
p(1,k,c)
—1,\2 ZkAp(o,k,c)> —1 22 A2 0,10 102,
x (xy t) (11L < Ap(Lka) Ty bt AZ(l,k,c) (:Cy t) +
N < 1 ) 1—skxy_1t+zk(xy_1t)2
T \l-ayTi (Ap(a k) =26 Ap(o, k) 2y~ 1) )
Let the generating function of the jth column of C'[z,y] be
¢; (t)=gc () [fo (D)) .

Considering
cla,yly=cla,yli 1, 1 +ay~ele,yl 5,
for j > 2, we obtain
¢ (t)=tej_1 (t) +ay e (t)
and
go (t) [fo ) = tge (O) [fo O +ay~tge (t) [fo @) .

Hence, we have fc (t) :#y—lt‘ Finally, the Riordan representation of
the matrix C [z, y] is

Cley] = <( 1—say~ -tz (ay~t)’ . > .

Ap(1,k,0)— 2k Ap(0,k,c) Ty~ 1t ) (1—ay—1t) 1—wy~ 't
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From [9], we have that ® [z,y] = (1_lxyt, lfify» . Moreover,

H [z, y] +C [z, y]
_ (Apu,k,c)—ZkAp(o,k,cht 2t>
- 1—spzyt+z, (zyt)®

N < l—skmy’lt—l—zk(;ry’lt)Q t >

(Ap(1k,0) =28 Ap(o,e,c) 2y~ t) (L—ay=1t) " 1=2y~ 1t

(Ap(1,k,0) =2k Ap(0,k,c)TUL ) (1—8kxy’1y2t+2k (xy’1y2t)2)
(1=spayt+ze(@yt)?) (Ap(1,k,0)— 2k Ap(0,k,) Ty~ 192t ) (1—zy~192t)’

y*t
1—xzy—1y2t
_ 1 Y2t ) _
- <l—myt’ 1—xyt> = [x?y] :

Thus, the proof is complete. ]

Now, we consider some special cases. When k =1, p=1,¢= —1 and
¢ = 0, the matrix H [z,y] is reduced to the Fibonacci matrix F [z, y].
In Theorem 2.1, taking F [z,y] instead of H [z,y], we find the matrix
L [x,y] such that ® [z,y] = F [z,y] * L [x,y], from [9]. Thus, the matrix
L [x,y] is a special case of C' [z,y] . When k =1,p=2,¢g = —1 and ¢ = 0,
the matrix H [z,y] is reduced to the Pell matrix S [z, y], defined in [9].
Also, taking S [z,y], instead of H [z,y], we get the matrix M [z, y] such
that @ [x,y] = S[z,y] * M [z,y], given in [9]. The matrix M [z,y] is a
special case of the matrix C' [z, y].

Corollary 2.2. Fori,j7 =1,2,...,n, we have
=1\ . ‘ o I
> (r - 1> AT =) <Ap(i—j+1,k7c)$z_]yw_2 (Z Cm>> |
r=1 j=1 m=1
where ¢y, is the (i,m) th element of Cy, [x,y] .

Proof. Considering the n x n Pascal matrix ®,, [z,y] and @ [z,y] =
H [z,y] * C[z,y] in Theorem 2.1, we have &, [x,y] = H, [z,y] Cy [z, ]
and ®,, [x,y] E, = H, [z,y] Cy, [z,y] By, where E,, = (1,1, ..., 1)T. There-
fore, we obtain the desired result. ]
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Corollary 2.3. Forn >0 and j =1,2,...,n, we have

(7S () (07)-42207)
r—1 = Ap(l,k:,c) r—1 Ap(l,k,c) r—1

<0kc)A<2kc> A2 e\ (3
— 2k
p(lkc) r—1

— < p(0,k C)‘417(2 k,e)™ Ap(l k, c))

(l,k,c)
n—m—3\ [ 2Ap0.ke) > "
X —— .
(,nz::]_ ( r—1 > < Ap(1 k)
Proof. We take x = y = 1 in the equality ®,, [x,y] = Hy, [z, y] * Cy, [z, y].
g

If we take r = 1 in the previous corollary, we have

n
Z (Ap(n—j+1,k7c)> 1— Ap(zk,c) —u (Ap(O,k,c)Ap@’k,c)—Af,(l,k,c)>
2
j=1 Ap(l,k,c) Ap(l,k,c) Ap(UmC)

n—3 m
Ap(0,k,0)Ap(2,k,0) =A% (1 1 o 2k Ap(0,k.0) —1
—Zk A2 g Ai = 1.
p(L:k,c) — p(l,k’,C)

m=1

For example, when &k = 3, p =1, ¢ = —1 and ¢ = 0, the sequence
{Ap(n, ;m)} is reduced to the Fibonacci subsequence { F3,}. By Corollary
2.3, we obtain

(oS () -207)-(0))

Now, we give another factorization of the generalized Pascal matrix with
a matrix associated with the sequence {Ap(n,k,c)} . First, for two nonzero

real numbers z and y, we define the infinite matrix C’ [z, y] = [c’ [z, y]; j}
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with

: _ L (i1 Ak (i1
c [$7y]ij - (Apu,k,c) <j - 1) - A2(1k)< J >
p(L,R,c

_— AP(OykaC)AP(ZhC)7A129(1,k,c) i1—1
Atk j+1

2
2 <Ap(O,k,c>Ap(2,k,c>—Ap(l,k,q)

ALk o)
i—3 .
y ZZ < 1 —1 > (ZkAp(O,k,c)>m i—j itj—2
. r -y )

if ¢ > j, and 0 otherwise. Secondly, we define the infinite matrix
and 0 otherwise. Then, we can give the following result.

= Ap(ifjJrl,k,c)xz_JyJ_lv if i > Js

Theorem 2.4.

® [z,y] = C' [z,y] x H [z,y].

Proof. From Theorem 2.1, the Riordan representation of the matrix
C'[z,y] is known. Thus, we get the Riordan representations of C’ [z, y]
and H' [x,y] as follows:

C' [z, y] = 1= (s oyt (1) (ayt)’ 2t
’ (A1) = (Ap(1k,0) F2RAp(0 ko) )yt ) (L—ayt)” T 1=yt

and

A — A Yyt
Hl [x7 y] — p(lvkac) k p(07k‘76) y 5 ’t .
1 — spey=tt + z;, (wy~1t)
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From property (R;), we have
C' [w,y]+ H' [z, ]

_ 1—(2+sp)zyt+(1+sk+2p) (wyt)” y*t
(Apt,k,e)— (Aptk,e) F2uAp(0,k,0) Jryt) (1—zyt)?? =2yt

" Ap1,k,0) =2k Ap(0.k,0)TY t)
1—spzy =tz (wy—1t)%

(1 — (2+sK) zyt + (1 + sp + 25) ($yt)2)
— 2¢
(Ap(l,k:,c) - ZkAp(O,k,c)xy ! 1Exyt> y2t
(Ap(l,k,c) - (Ap(l,k: c) + ZkAp(O k,c)) xyt) (1 - xyt)Q Pyt

—1 3t —1 vyt
I —spxy 12 g + 2z, (my Toayt

_ 1 ’t
- (1—acyt’ lyzyt> o [CI}‘ y]

Thus, the proof is complete. O

Corollary 2.5. Fori,j =1,2,...,n, we have

i, i j
Z <i— 1>$iryi+r2 Z ( (Z A mk,c)$m1y1m>> ’
m=1

7=1

where c;; is the (i, j)th element of Cy, [z,y] .
Proof. Since ® [x,y] = C' [x,y] * H' [x,y] in Theorem 2.4, we have

O [2,y] = C), [v,yl H}, [2,y], @ [, y] En = C, [x,y] H, [x,y] En,
where E, = (1,1, ..., 1)T. Thus, we obtain the desired result. O
Corollary 2.6. Forn >0 andi,j =1,2,...,n, we have

(o) = (o) ()
r—1 ~_ j —1 Ap(l,k,c) ]

J=r

2
Ap(0,k,0) Ap(2,k,0) = Ay (1 1,0
—Zk ye X
p(1,k,c)

n—1 . Ap(O,k,C)Ap(Z,k’,C)_A;%(l,k,c) >
J+1 Ak

nz—g ( n—1 ) <ZkAp(0,k,c))m Ap(—rt1,k,0)
m=1 j+m+1 Ap(l,k:,c) Ap(l,k,c)
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Proof. By taking z =y =11in ® [x,y] = C' [z,y] « H' [z, y], we have the
result. O

Particularly, if we take » = 1 in Corollary 2.6, we get

zn: n— 1 - Ap(Q,k,C) n — 1 - Ap(O,k,c)Ap(Q,k,c)_AZQJ(L]C’C)
ji-1) A : o ZEn
j=1 p(1,k,c) J p(1,k,c)
n—1 Ap(0,k,0) Ap(2,k,0) = Ab 1 ko)
X —z Lk X
(j + 1) g ( Ao k)

-3 _

”z: ( n—1 ) <ZkAp(0,k,c))m N\ Avire _
As an example, when k£ = 2, p = 2, ¢ = —1 and ¢ = 0, the sequence
{Ap(n k) } is reduced to the Pell subsequence { Py, } . By Corollary 2.6,

we obtain
n—1
r—1
SR ()
=\ 1 Apa2,0 \ J
. (AP(O,ZO)A p(2,2,0) A;Qa(lz,o)) o <n - 1>
—2 .
Ap1.20) j+1
= < n—1 ) <Z2Ap(0,2,0)>m Ap(i—r41,2,0)
(Y (
me1 \J +m+1 Ap(172,2) Ap(1,270)

B RC)G)
& j—1 P\ j+1 P,

J=r

From property (R3), we can find the inverses of H [z,y], C'[z,y] and
C' [z,y]. Using the computation of the inverse of ® [x,y] in [9], we can
give the next two results.

Lemma 2.7. The inverses of matrices H [z,y], C[z,y], C'[x,y] and
H' [z, y] are respectively given by

1— “ly —14)?
H [$7y]_1 - Ry * (l‘y )1 7y_2t )
(Ap(1ke) = 26 Ap(k,c)Ty 1)




Riordan group approaches in matrix factorizations 503

C [l‘ y]—l _ A;D(l,k,c) + (Ap(l,k,c) — ZkAp(O,k,c)) J/'y_lt
| L+ @ s oyt (L st 20) (g~ '1)°
ot
1+ay=1t)’
C' o,y = Ayt ko) — 2uAp(o.k,0) Tyt ;
(1 — Skxy—lt + 2 («Ty_lt)2> (1 + xy—lt) y2 + ayt
and

_ a2
2 [ac ]71_ 1 — spxy 1t—|—zk (my 1t) ’
T\ e — A 1))
(Ap1 k) = 2K Ap(0,k,0)TY ')

Proof. Firstly, we cosider the matrix H [x,y]. Since fy (t) = y*t, we get
fr (t) = y~2t. Substituting fz (t) in (g (fg (t)))_1 , we obtain

1 1-— skxy_lt + 2 (xy_lt)2

g (Fu @) (Apare — 2Aporery 't) (1 —ay=1t)’

and hence the Riordan representation of H [x,y] " is

1 — spzy 't —14)?
(Ap(l,k,c) - ZkAp(O,k,c)xy_ t)

Secondly, since fo (t) =
t (1 + a:yflt)fl and

#y_ltv for the matrix C [z, y] we get fo (t) =

1 _ Ap(l,k,c) + (Ap(l,k,c) - Zk’Ap(O,k:,c)) :Ey_lt
go (Ffe®) 1+ @2—sp)ayt+(1—sp+z) (zy~1t)°

Thus, the Riordan representation of C [z, y] ™" is

Cloyl = Ape) T (Ap ko) = 2Apope) Ty~ 't
’ L+ (2= sp) oyt + (1 — s + 2) (zy 1)

t
14ayit)
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Thirdly, since fer (t) = 122;“, for the matrix C’ [x,y] we get fov (t) =
t(y*+ :r:yt)_l and
1 Ap(1ee) = 2k Ap(0 ) TY 't

gcr (?C’ (t)) a (1 — spry it + 2 (a:y‘lt)2> (1+ 333/_175)'

Thus the Riordan representation of ' [z,y] ™" is

Ap(ke) = 21 Ap0 k) TY 't ¢

C'leyl™ = 5 S e
(1= syt + 2 (y=10)%) (1 ay~1e) VoY

Finally, since fg (t) = t, for the matrix H' [x,y] we get fp (t) =t and
1 1= syt + 2 (azy_lt)Q
g (Far ) (Api ko) — 2Apop.0zy )
Thus, the Riordan representation of C’ [z,y] ™" is

H 2,y = 1 — spzy~ 't + 2 (ar:y_lt)2 ny
(Ap(l,k,c) - ZkAp(O,k,c)xyilt)

O

When £ = 1, p = 1, ¢ = —1 and ¢ = 0, the inverses of H [z,y]
and C'[z,y] are the inverses of the infinite generalized Fibonacci matrix
F [z,y] and the matrix L [x,y], respectively. Moreover, when k = 1,
p =2,q¢=—1and ¢ = 0, the inverses of H [z,y] and C [z,y] are the
inverses of the generalized Pell matrix S [z,y] and the matrix M [z,y],
respectively.

Corollary 2.8. For the generalized Pascal matriz ® [z,y], we have
®lr,y] ™ = Clo,y] ™+ Ha,y) "
and
®la,y] ™ = H [x,y) 7 % O [a,y) "

Proof. From [9], we have the inverse of ® [z,y] as

1 t
® [,y ' = :
[ 9] <1—|—uvy_1t7 Y2 —i—a:yt)

From theorems 2.1 and 2.4, we know that ® [z,y] = H [z,y] x C [z, y],
@ [z,y] = C'[x,y] *x H [x,y], respectively. Thus, the proof is complete.
]
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Corollary 2.9. Forn > 1, we have

(id) H [, y] ™" =

Ap(1k,) = 2k Ap(o g Ty* "t
1 — spay?™ =1t + 2z (zy?>m—1t)

5,y

) ey = [ I]

m=1

D1 — spay T2t 4 o2 (my*2m+1t)2

—2n
—2m+1y Yy ¢

Apk,e) = 2k Ap0,k,e)TY

m=1

Proof. The desired result follow from induction and the use of Riordan

representations of H [z,y] and H [z,y] " ". O
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