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AN ITERATIVE METHOD FOR AMENABLE

SEMIGROUP AND INFINITE FAMILY OF NON

EXPANSIVE MAPPINGS IN HILBERT SPACES

H. PIRI ∗ AND H. VAEZI

Communicated by Mohammad Sal Moslehian

Abstract. We introduce an iterative method for amenable semi-
group of non expansive mappings and infinite family of non ex-
pansive mappings in the frame work of Hilbert spaces. We prove
the strong convergence of the proposed iterative algorithm to the
unique solution of a variational inequality, which is the optimality
condition for a minimization problem. The results presented here
mainly extend the corresponding results announced by Qin et al.
and several others.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex
subset of H. Recall that a mapping T of C into itself is called non-
expansive if ‖ Tx − Ty ‖≤‖ x − y ‖, for all x, y ∈ C. By Fix(T ), we
denote the set of fixed points of T, i.e., Fix(T ) = {x ∈ H : Tx = x}.
It is well known that Fix(T ) is closed convex. Recall also that a self-
mapping f : C → C is a contraction on C if there is a constant α ∈ (0, 1)
such that

‖ f(x)− f(y) ‖≤ α ‖ x− y ‖, ∀x, y ∈ C.
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Assume A is strongly positive, that is, there is a constant γ > 0 with
the property

〈Ax, x〉 ≥ γ ‖ x ‖2, ∀x ∈ H.

Iterative methods for non-expansive mappings have recently been ap-
plied to solve convex minimization problems (see [6, 12, 19, 22, 28] and
the references therein). A typical problem is to minimize a quadratic
function over the set of fixed points of a non-expansive mapping on a
Hilbert space H:

min
x∈D

1

2
〈Ax, x〉 − 〈x, b〉,

where D is the fixed point set of a non-expansive mapping T and b is a
given point in H.

Mann [11] introduced an iteration procedure for approximation of
fixed points of a non-expansive mapping T on a Hilbert space as follows.
Let x0 ∈ H and

xn+1 = (1− αn)Txn + αnxn, n ≥ 0,

where {αn} is a sequence in (0, 1). See also Halpern [7].
On the other hand, Moudafi [13] introduced the viscosity approximation
method for fixed points of non-expansive mappings (see [25] for further
developments in both Hilbert and Banach spaces). Starting with an
arbitrary initial x0 ∈ H, define a sequence {xn} recursively by

xn+1 = (1− αn)Txn + αnf(xn), n ≥ 0,(1.1)

where {αn} is a sequence in (0, 1). It is proved in [13, 25] that, under
appropriate conditions imposed on αn, the sequence {xn}, generated
by (1.1), converges strongly to the unique solution x∗ in Fix(T ) of the
variational inequality

〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ Fix(T ).

In [25] (see also [26]), it is proved that the sequence {xn} defined by the
iterative method below, with the initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I − αnA)Txn + αnu, n ≥ 0,(1.2)
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converges strongly to the unique solution of the minimization problem

min
x∈Fix(T )

1

2
〈Ax, x〉 − 〈x, u〉,

provided that the sequence {αn} satisfies certain conditions. Marino and
Xu [12] combined the iterative (1.2) with the viscosity approximation
method (1.1) and considered the following general iterative methods:

x0 ∈ H, xn+1 = (I − αnA)Txn + αnγf(xn), n ≥ 0,(1.3)

where 0 < γ < γ
α . They proved that if {αn} is a sequence in (0, 1)

satisfying certain conditions, then the sequence {xn} generated by (1.3)
converges strongly, as n→∞, to the unique solution of the variational
inequality

〈(A− γf)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T ),

which is the optimality condition for the minimization problem

min
x∈Fix(T )

1

2
〈Ax, x〉 − h(x),(1.4)

where h is a potential function for γf (i.e., h′(x) = γf(x), for all x ∈ H).

In 2005, Kim and Xu [8] introduced the following iterative process:

(1.5)

 x0 ∈ C, arbitrarily chosen,
yn = βnxn + (1− βn)Txn,
xn+1 = αnu+ (1− αn)yn, n ≥ 0,

where C is a nonempty closed convex subset of H, T is a non-expansive
mapping of C into itself, and u ∈ C is a given point. They proved that
the sequence {xn} defined by (1.5) converges strongly to a fixed point of
T provided that the control sequences {αn} and {βn} satisfy appropriate
conditions.

A family of non-expansive mappings has been considered by many
authors (see [2, 4, 5, 6, 7, 17, 19, 22, 27, 28] and references therein).
Recently, Shang et al. [19] improved the results of Kim and Xu [8] from
a single mapping to a finite family of mappings in the framework of
Hilbert spaces. Let {Ti}∞i=1 be a sequence of non-expansive mappings of
C into itself and let {λi}∞i=1 be a sequence of nonnegative real numbers
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in [0, 1]. For each n ≥ 1, define a mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1− λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1− λn−1)I,

.

.(1.6)

.

Un,k = λkTkUn,k+1 + (1− λk)I,
Un,k−1 = λk−1Tk−1Un,k + (1− λk−1)I,

.

.

.

Un,2 = λ2T2Un,3 + (1− λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1− λ1)I.

Such a mappingWn is called theW−mapping generated by T1, T2, · · · , Tn
and λ1, λ2, · · · , λn. Then, Qin et al. [16] proved the following strong
convergence theorem.

Theorem 1.1. Let H be a real Hilbert space and f be a contraction
on H with coefficient α ∈ (0, 1). Let A be a strongly positive linear
bounded self-adjoint operator on H with coefficient γ > 0 and {Ti}∞i=1
be a sequence of non-expansive mappings of H into itself. Assume that
0 < γ < γ

α and F =
⋂∞
i=1 Fix(Ti) 6= ∅. Let {xn} be a sequence generated

by the composite iteration process:

(1.7)


x1 = x ∈ H, arbitrarily chosen,
zn = γnxn + (1− γn)Wnxn,
yn = βnγf(zn) + (I − βnA)zn,
xn+1 = αnxn + (1− αn)yn, n ≥ 1,

where {Wn} is a sequence defined by (1.6), {αn}, {βn} and {γn} are
three sequences in [0, 1]. If the conditions

(A1) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,
(A2)

∑∞
n=0 βn =∞, limn→∞ βn = 0,

(A3) limn→∞ | γn+1 − γn |= 0,
(A4) there exists a constant λ ∈ [0, 1) such that γn ≤ λ for all n ≥ 1,
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are satisfied, then the sequence {xn} converges strongly to x∗ ∈ F , which
also uniquely solves the variational inequality

〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ F .

Here, motivated and inspired by Kim and Xu [8], Qin et al. [16],
Atsushiha and Takahashi [1], Lau et al. [9], Marino and Xu [12] and
Saeidi [18], we introduce a composite iteration scheme as follows:

(1.8)


x1 = x ∈ H, arbitrarily chosen,
zn = γnxn + (1− γn)TµnWnxn,
yn = βnγf(zn) + (I − βnA)zn,
xn+1 = αnxn + (1− αn)yn, n ≥ 1,

where {Wn} is a sequence defined by (1.6), f is a contraction on H with
coefficient α ∈ (0, 1), A is a strongly positive linear bounded self-adjoint
operator on H with coefficient γ > 0, γ is a positive real number such
that 0 < γ < γ

α , ϕ = {Tt : t ∈ S} is a non-expansive semigroup on H
such that Fix(ϕ) =

⋂
t∈S Fix(Tt) 6= ∅, X is a subspace of the space of

all bounded real valued functions defined on S such that 1 ∈ X the map-
ping t→ 〈Tt(x), y〉 is an element of X for each x, y ∈ H, and {µn} is a
sequence of means on X. Our purpose here is to introduce this general
iterative algorithm for approximating the common fixed points of left
amenable semigroup of non-expansive mappings and an infinite family
of non-expansive mappings which also solve some variational inequali-
ties, while being the optimality conditions for the convex minimization
problem (1.4). Our results improve and extend the corresponding ones
announced by Qin et al. [16] and many others.

2. Preliminaries

Let S be a semigroup and let B(S) be the space of all bounded real
valued functions defined on S with the supremum norm. For s ∈ S and
f ∈ B(S), we define elements lsf and rsf in B(S) by

(lsf)(t) = f(st), (rsf)(t) = f(ts), ∀t ∈ S.
Let X be a subspace of B(S) containing 1 and let X∗ be its dual. An
element µ in X∗ is said to be a mean on X if ‖ µ ‖= µ(1) = 1. We often
write µt(f(t)) instead of µ(f), for µ ∈ X∗ and f ∈ X. Let X be left
invariant (resp., right invariant), i.e., ls(X) ⊂ X (resp., rs(X) ⊂ X),
for each s ∈ S. A mean µ on X is said to be left invariant (resp., right
invariant) if µ(lsf) = µ(f) (resp., µ(rsf) = µ(f)), for each s ∈ S and
f ∈ X. X is said to be left (resp., right) amenable if X has a left
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(resp., right) invariant mean. X is amenable if X is both left and right
amenable. As is well known, B(S) is amenable when S is a commutative
semigroup; see [10]. A net {µα} of means on X is said to be strongly
left regular if

lim
α
‖ ls∗µα − µα ‖= 0,

for each s ∈ S, where l∗s is the adjoint operator of ls.
Let C be a nonempty closed and convex subset of a reflexive Banach

space E. A family ϕ = {Tt : t ∈ S} of mappings from C into itself is
said to be a non-expansive semigroup on C if Tt is non-expansive and
Tts = TtTs, for each t, s ∈ S. We denote by Fix(ϕ) the set of common
fixed points of ϕ, i.e.,

Fix(ϕ) =
⋂
t∈S
{x ∈ C : Tt(x) = x}.

Lemma 2.1. [10, 15] Let f be a function of semigroup S into a reflexive
Banach space E such that the weak closure of {f(t) : t ∈ E} is weakly
compact and let X be a subspace of B(S) containing all functions t →
〈f(t), x∗〉 with x∗ ∈ E∗. Then, for any µ ∈ X∗, there exists a unique
element fµ in E such that

〈fµ, x∗〉 = µt〈f(t), x∗〉,

for all x∗ ∈ E∗. Moreover, if µ is a mean on X, then∫
f(t)dµ(t) ∈ co{f(t) : t ∈ S}.

We can write fµ by
∫
f(t)dµ(t).

Lemma 2.2. [10, 15] Let C be a closed convex subset of a Hilbert space
H, ϕ = {Tt : t ∈ S} be semigroup from C into C such that F (ϕ) 6= ∅
and the mapping t → 〈Tt(x), y〉 be an element of X for each x ∈ C
and y ∈ H, and µ be a mean on X. If we write Tµ(x), instead of∫
Tt(x)dµ(t), then the followings hold:

(i) Tµ is non-expansive mapping from C into C.
(ii) Tµ(x) = x, for each x ∈ Fix(ϕ).
(iii) Tµ(x) ∈ co{Tt(x) : t ∈ S}, for each x ∈ C.
(iv) If µ is left invariant, then Tµ is a non-expansive retraction from

C onto Fix(ϕ).
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Let C be a nonempty subset of a Hilbert space H and T : C → H be
a mapping. T is said to be demiclosed at v ∈ H if, for any sequence
{xn} in C, the following implication holds:

xn ⇀ u ∈ C and Txn → v imply Tu = v,

where → (respectively ⇀ ) denotes strong (respectively, weak) conver-
gence.

Lemma 2.3. [15] Let C be a nonempty closed convex subset of a Hilbert
space H and suppose that T : C → H is non-expansive. Then, the map-
ping I − T is semiclosed at zero.

Let C be a nonempty subset of a normed space E and let x ∈ E. An
element y0 ∈ C is said to be the best approximation to x if

‖ x− y0 ‖= d(x,C),

where d(x,C) = infy∈C ‖ x − y ‖. The number d(x,C) is called the
distance from x to C or the error in approximating x by C. The (possibly
empty) set of all best approximations from x to C is denoted by

PC(x) = {y ∈ C :‖ x− y ‖= d(x,C)}.

This defines a mapping PC from X into 2C and is called metric (nearest
point) projection onto C. It is well-known that PC is a non-expansive
mapping of H onto C.

Lemma 2.4. [27] Let C be a nonempty convex subset of a Hilbert space
H and PC be the metric projection mapping from H onto C. Let x ∈ H
and y ∈ C. Then, the followings are equivalent:

(i) y = PC(x).
(ii) 〈x− y, y − z)〉 ≥ 0, ∀z ∈ C.

Lemma 2.5. [21] Let {xn} and {yn} be bounded sequences in a Ba-
nach space E and let {αn} be a sequence in [0, 1] with 0 < lim inf

n→∞
αn ≤

lim sup
n→∞

αn < 1. Suppose xn+1 = αnxn + (1 − αn)yn, for all integers

n ≥ 0, and

lim sup
n→∞

(‖ yn+1 − yn ‖ − ‖ xn+1 − xn ‖) ≤ 0.

Then, lim
n→∞

‖ yn − xn ‖= 0.

The following lemma is well known.
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Lemma 2.6. Let H be a real Hilbert space. Then, for all x, y ∈ H,
‖ x− y ‖2≤‖ x ‖2 +2〈y, x+ y〉.

Let {Ti}∞i=1 be a sequence of non-expansive mappings of C into itself,
where C is a nonempty closed convex subset of a real Hilbert space H.
Given a sequence {λi}∞i=1 in [0, 1], we define a sequence {Wn}∞n=1 of self
mappings on C by (1.6). Then, we have the following results.

Lemma 2.7. [20] Let C be a nonempty closed convex subset of a Hilbert
space H, {Ti : C → C} be an infinite family of non-expansive mappings
with

⋂∞
i=1 Fix(Ti) 6= ∅, {λi} be a real sequence such that 0 < λi ≤ b <

1, ∀i ≥ 1. Then,

(1) Wn is non-expansive and Fix(Wn) =
⋂n
i=1 Fix(Ti) for each n ≥

1,
(2) for each x ∈ C and for each positive integer j, limn→∞ Un,jx

exists.
(3) The mapping W : C → C, defined by

Wx := lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈ C,

is a non-expansive mapping satisfying Fix(W ) =
⋂∞
i=1 Fix(Ti) and is

called the W-mapping generated by T1, T2, · · · and λ1, λ2, · · · .

Lemma 2.8. [29] Let C be a nonempty closed convex subset of a Hilbert
space H, {Ti : C → C} be a countable family of non-expansive mappings
with

⋂∞
i=1 Fix(Ti) 6= ∅, {λi} be a real sequence such that 0 < λi ≤ b <

1, ∀i ≥ 1. If D is any bounded subset of C, then

lim
n→∞

sup
x∈D
‖Wx−Wnx ‖= 0.

Lemma 2.9. [23] Let {an} be a sequence of nonnegative real numbers
such that

an+1 ≤ (1− bn)an + bncn, n ≥ 0,

where {bn} and {cn} are sequences of real numbers satisfying the follow-
ing conditions:

(i) {bn} ⊂ [0, 1],
∞∑
n=0

bn =∞,

(ii) either lim sup
n→∞

cn ≤ 0 or
∞∑
n=0
|bncn| <∞.

Then, lim
n→∞

an = 0.
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Lemma 2.10. [12] Assume that A is a strongly positive linear bounded
operator on a Hilbert space H with the coefficient γ > 0 and
0 < ρ <‖ A ‖−1. Then, ‖ I − ρA ‖≤ 1− ργ.

Lemma 2.11. [14] Let (E, 〈., .〉) be an inner product space. Then, for
all x, y, z ∈ E and α, β, γ ∈ [0, 1] such that α+ β + γ = 1, we have

‖ αx+ βy + γz ‖2

= α ‖ x ‖2 +β ‖ y ‖2 +γ ‖ z ‖2

−αβ ‖ x− y ‖2 −αγ ‖ x− z ‖2 −βγ ‖ y − z ‖2 .

Notation Throughout the rest of this paper, the open ball of radius
r centered at 0 is denoted by Br. For a subset A of H, we denote by
coA the closed convex hull of A. For ε > 0 and a mapping T : D → H,
we let Fε(T ;D) be the set of ε−approximate fixed points of T , i.e.,
Fε(T ;D) = {x ∈ D :‖ x − Tx ‖≤ ε}. Weak convergence is denoted by
⇀ and strong convergence is denoted by →.

3. Strong convergence

Now, we are ready to give our main results.

Theorem 3.1. Let H be a real Hilbert space and f be a contraction
on H with coefficient α ∈ (0, 1). Let A be a strongly positive linear
bounded self-adjoint operator on H with coefficient γ > 0. Let S be a
semigroup and ϕ = {Tt : t ∈ S} be a non-expansive semigroup from H
into H such that Fix(ϕ) =

⋂
t∈S Fix(Tt) 6= ∅. Let X be a left invariant

subspace of B(S) such that 1 ∈ X, and the function t → 〈Ttx, y〉 be an
element of X for each x, y ∈ H. Let {µn} be a left regular sequence
of means on X such that limn→∞ ‖ µn+1 − µn ‖= 0. Let {Ti}∞i=1 be
a sequence of non-expansive mappings of H into itself such that F =⋂∞
i=1 Fix(Ti)

⋂
Fix(ϕ) 6= ∅ and Ti(Fix(ϕ)) ⊂ Fix(ϕ), for all i ∈ N.

Let {xn} be a sequence generated by the composite iteration process

(3.1)


x1 = x ∈ H, arbitrarily chosen,
zn = γnxn + (1− γn)TµnWnxn,
yn = βnγf(zn) + (I − βnA)zn,
xn+1 = αnxn + (1− αn)yn, n ≥ 1,

where {Wn} is a sequence defined by (1.6), {αn}, {βn} and {γn} are
three sequences in [0, 1]. If the conditions

(A1) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,
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(A2)
∑∞

n=0 βn =∞, limn→∞ βn = 0,
(A3) limn→∞ | γn+1 − γn |= 0,
(A4) there exists a constant λ ∈ [0, 1) such that γn ≤ λ, for all n ≥ 1,

are satisfied, then the sequence {xn} converges strongly to x∗ ∈ F , which
also uniquely solves the variational inequality

〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ F .(3.2)

Proof. We shall divide the proof into several steps.
Step 1. The sequence {xn} is bounded.
Proof of Step 1. Let x∗ ∈ F . Using Lemma 2.2, we have

‖ zn − x∗ ‖ ≤ γn ‖ xn − x∗ ‖ +(1− γn) ‖ TµnWnxn − x∗ ‖
≤ γn ‖ xn − x∗ ‖ +(1− γn) ‖ xn − x∗ ‖=‖ xn − x∗ ‖ .(3.3)

From the condition (A1), we may assume, with no loss of generality, that
βn <‖ A ‖−1, for all n ≥ 1. From Lemma 2.10, we know that

‖ yn − x∗ ‖
=‖ βn(γf(zn)−Ax∗) + (I − βnA)(zn − x∗) ‖
≤ βn ‖ γf(zn)−Ax∗ ‖ + ‖ I − βnA ‖‖ zn − x∗ ‖
≤ βnγ ‖ f(zn)− f(x∗) ‖ +βn ‖ γf(x∗)−Ax∗ ‖

+ (1− βnγ) ‖ zn − x∗ ‖
≤ [1− βn(γ − γα)] ‖ xn − x∗ ‖ +βn ‖ γf(x∗)−Ax∗ ‖ .

It follows that

‖ xn+1 − x∗ ‖
≤ αn ‖ xn − x∗ ‖ +(1− αn) ‖ yn − x∗ ‖
≤ αn ‖ xn − x∗ ‖ +(1− αn)[(1− βn(γ − γα)) ‖ xn − x∗ ‖

+ βn ‖ γf(x∗)−Ax∗ ‖]
= [1− βn(γ − γα)(1− αn)] ‖ xn − x∗ ‖ +βn(1− αn) ‖ γf(x∗)−Ax∗ ‖.

By a simple induction, we have

‖ xn − x∗ ‖≤ max

{
‖ x1 − x∗ ‖,

1

γ − γα
‖ γf(x∗)−Ax∗ ‖

}
= M0,

which gives that the sequence {xn} is bounded and also that {zn} and
{yn} are bounded.
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Step 2. limn→∞ ‖ xn−TµnWnxn ‖= 0 and limn→∞ ‖ yn−TµnWnyn ‖= 0.
Proof of Step 2. It follows from (3.1) that

zn+1 − zn
= γn+1[xn+1 − xn] + (1− γn+1)[Tµn+1Wn+1xn+1 − TµnWnxn]

+ (γn+1 − γn)[xn − TµnWnxn].

This implies that

‖ zn+1 − zn ‖
= γn+1 ‖ xn+1 − xn ‖ + | γn+1 − γn |‖ xn − TµnWnxn ‖

+ (1− γn+1) ‖ Tµn+1Wn+1xn+1 − TµnWnxn ‖ .(3.4)

Since Wn and Tµn are non-expansive, we have

‖ Tµn+1Wn+1xn+1 − TµnWnxn ‖
≤‖ Tµn+1Wn+1xn+1 − Tµn+1Wnxn ‖

+ ‖ Tµn+1Wnxn − TµnWnxn ‖
≤‖Wn+1xn+1 −Wnxn ‖ + ‖ Tµn+1Wnxn − TµnWnxn ‖
≤‖Wn+1xn+1 −Wn+1xn ‖ + ‖Wn+1xn −Wnxn ‖

+ ‖ Tµn+1Wnxn − TµnWnxn ‖
≤‖ xn+1 − xn ‖ + ‖Wn+1xn −Wnxn ‖

+ ‖ Tµn+1Wnxn − TµnWnxn ‖ .

Since Ti and Un,i are non-expansive, from (1.6), we have

‖Wn+1xn −Wnxn ‖
=‖ λ1T1Un+1,2xn + (1− λ1)xn − λ1T1Un,2xn − (1− λ1)xn ‖
≤ λ1 ‖ Un+1,2xn − Un,2xn ‖
= λ1 ‖ λ2T2Un+1,3xn + (1− λ2)xn − λ2T2Un,3yn − (1− λ2)xn ‖
≤ λ1λ2 ‖ Un+1,3xn − Un,3xn ‖
≤ λ1λ2 · · ·λn ‖ Un+1,n+1xn − Un,n+1xn ‖

≤M1

n∏
i=1

λi,
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where M1 ≥ 0 is an appropriate constant such that
‖ Un+1,n+1xn − Un,n+1xn ‖≤M1 for all n ≥ 1. Therefore, we have

‖ Tµn+1Wn+1xn+1 − TµnWnxn ‖

≤‖ xn+1 − xn ‖ +M1

n∏
i=1

λi+ ‖ Tµn+1Wnxn − TµnWnxn ‖ .(3.5)

Substituting (3.5) into (3.4), we have

‖ zn+1 − zn ‖
≤‖ xn+1 − xn ‖ + | γn+1 − γn |‖ xn − TµnWnxn ‖

+ (1− γn+1)[M1

n∏
i=1

λi+ ‖ Tµn+1Wnxn − TµnWnxn ‖].(3.6)

On other the hand, we have

‖ yn+1 − yn ‖
=‖ βn+1γ[f(zn+1)− f(zn)] + (I − βn+1A)(zn+1 − zn)

+ (βn+1 − βn)[γf(zn)−Azn] ‖
≤ [1− βn+1(γ − γα)] ‖ zn+1 − zn ‖

+ | βn+1 − βn | [γ ‖ f(zn) ‖ + ‖ Azn ‖]
≤‖ zn+1 − zn ‖ + | βn+1 − βn |M2,(3.7)

where M2 is an appropriate constant such that
M2 ≥ supn≥1[γ ‖ f(zn) ‖ + ‖ Azn ‖]. Substituting (3.7) into (3.6),
yields:

‖ yn+1 − yn ‖ − ‖ xn+1 − xn ‖
≤| βn+1 − βn |M2+ | γn+1 − γn |‖ xn − TµnWnxn ‖

+ (1− γn+1)[M1

n∏
i=1

λi+ ‖ Tµn+1Wnxn − TµnWnxn ‖].

Using the conditions (A2), (A3) and noting that 0 < λi ≤ b < 1, for all
i ≥ 1, we have

lim sup
n→∞

[‖ yn+1 − yn ‖ − ‖ xn+1 − xn ‖] ≤ 0.

By virtue of Lemma 2.5, we have

lim
n→∞

‖ yn − xn ‖= 0.(3.8)
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Noticing that

‖ xn − zn ‖
≤‖ xn − yn ‖ + ‖ yn − zn ‖
≤‖ xn − yn ‖ +βn[γ ‖ f(zn) ‖ + ‖ Azn ‖]
≤‖ xn − yn ‖ +βnM2,

it follows from (3.8) and the condition (A2) that

lim
n→∞

‖ xn − zn ‖= 0.(3.9)

On the other hand, we have

‖ xn − TµnWnxn ‖
≤‖ xn − zn ‖ + ‖ zn − TµnWnxn ‖
=‖ xn − zn ‖ +γn ‖ xn − TµnWnxn ‖ .

Therefore,

‖ xn − TµnWnxn ‖≤
1

1− γn
‖ xn − zn ‖ .(3.10)

It follows from (3.9) and condition (A4) that

lim
n→∞

‖ xn − TµnWnxn ‖= 0.(3.11)

Using Lemma 2.2, we have

‖ yn − TµnWnyn ‖
≤‖ yn − xn ‖ + ‖ xn − TµnWnxn ‖ + ‖ TµnWnxn − TµnWnyn ‖
≤ 2 ‖ yn − xn ‖ + ‖ xn − TµnWnxn ‖ .

From (3.8) and (3.11), we get

lim
n→∞

‖ yn − TµnWnyn ‖= 0.

Step 3. limn→∞ ‖ yn − Ttyn ‖= 0, for all t ∈ S.
Proof of Step 3. Let x∗ ∈ F and D = {y ∈ H :‖ y − x∗ ‖≤ M0}. We
point out that D is a bounded closed convex set, {xn}, {yn} ⊂ D being
invariant under ϕ and Wn, for all n ∈ N. We will show that

lim sup
n→∞

sup
y∈D
‖ Tµny − TtTµny ‖= 0, ∀t ∈ S.(3.12)

Let ε > 0. By [3, Theorem 1.2], there exists δ > 0 such that

coFδ(Tt;D) +Bδ ⊂ Fε(Tt;D), ∀t ∈ S.(3.13)



382 Piri and Vaezi

Also by [3, Corollary 1.1], there exists a natural number N such that

(3.14) ‖ 1

N + 1

N∑
i=0

Ttisy − Tt

(
1

N + 1

N∑
i=0

Ttisy

)
‖≤ δ,

for all t, s ∈ S and y ∈ D. Let t ∈ S. Since {µn} is strongly left regular,
there exists N0 ∈ N such that ‖ µn − l∗tiµn ‖≤

δ
(M0+‖x∗‖ ) , for n ≥ N0

and i = 1, 2, · · · , N . Then, we have

sup
y∈D
‖ Tµny −

∫
1

N + 1

N∑
i=0

Ttisydµn(s) ‖

= sup
y∈D

sup
‖z‖=1

| 〈Tµny, z〉 − 〈
∫

1

N + 1

N∑
i=0

Ttisydµn(s), z〉 |

= sup
y∈D

sup
‖z‖=1

| 1

N + 1

N∑
i=0

(µn)s〈Tsy, z〉 −
1

N + 1

N∑
i=0

(µn)s〈Ttisy, z〉 |

≤ 1

N + 1

N∑
i=0

sup
y∈D

sup
‖z‖=1

| (µn)s〈Tsy, z〉 − (l∗tiµn)s〈Tsy, z〉 |

≤ max
i=1,2,··· ,N

‖ µn − l∗tiµn ‖ (M0+ ‖ x∗ ‖) ≤ δ, ∀n ≥ N0.
(3.15)

By Lemma 2.2, we have∫
1

N + 1

N∑
i=0

Ttisydµn(s) ∈ co

{
1

N + 1

N∑
i=0

Tti(Tsy) : s ∈ S

}
.(3.16)

It follows from (3.13), (3.14), (3.15) and (3.16) that

Tµny ∈ co

{
1

N + 1

N∑
i=0

Ttisy : s ∈ S

}
+Bδ

⊂ coFδ(Tt;D) +Bδ ⊂ Fε(Tt;D),

for all y ∈ D and n ≥ N0. Therefore,

lim sup
n→∞

sup
y∈D
‖ Tt(Tµny)− Tµny ‖≤ ε.

Since ε > 0 is arbitrary, we get (3.12).
Let t ∈ S and ε > 0. Then, there exists δ > 0, which satisfies (3.13).
From (3.8), (3.12), condition (A2) and Step 2, there exists N1 ∈ N such
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that ‖ xn − zn ‖< δ
3 , Tµny ∈ Fδ(Tt;D), for all y ∈ D, βn <

δ
3M2

and

‖ xn − TµnWnxn ‖< δ
3 , for all n ≥ N1. We note that

βn ‖ (1− αn)γf(zn)− (1− αn)Azn ‖
≤ βn[(1− αn)γ ‖ f(zn) ‖ +(1− αn) ‖ Azn ‖]

≤ βn[γ ‖ f(zn) ‖ + ‖ Azn ‖] ≤ βnM2 ≤
δ

3
,

for all n ≥ N1. Therefore, we have

xn+1 = αnxn + (1− αn)[βnγf(zn) + (I − βnA)zn]

= TµnWnxn + βn[(1− αn)γf(zn)− (1− αn)Azn]

+ αn(xn − zn) + γn(xn − TµnWnxn)

∈ Fδ(Tt;D) +B δ
3

+B δ
3

+B δ
3
⊂ Fδ(Tt;D) +Bδ ⊂ Fε(Tt;D),

for all n ≥ N1. This show that

‖ xn − Ttxn ‖≤ ε, ∀n ≥ N1.

Since ε > 0 is arbitrary, we get

lim
n→∞

‖ xn − Ttxn ‖= 0.(3.17)

Observe that

‖ yn − Ttyn ‖ ≤‖ yn − xn ‖ + ‖ xn − Ttxn ‖ + ‖ Ttxn − Ttyn ‖
≤ 2 ‖ yn − xn ‖ + ‖ xn − Ttxn ‖ .

It follows from (3.8) and (3.17) that

lim
n→∞

‖ yn − Ttyn ‖= 0.

Step 4. There exists a unique x∗ ∈ F such that
lim supn→∞〈γf(x∗)−Ax∗, yn − x∗〉 ≤ 0.
Proof of Step 4. PF (I − A + γf) is a contraction of H into itself. In
fact, we see that

‖ PF (I −A+ γf)x− PF (I −A+ γf)y ‖
≤‖ (I −A+ γf)x− (I −A+ γf)y ‖
≤‖ I −A ‖‖ x− y ‖ +γα ‖ x− y ‖
≤ (1− (γ − γα)) ‖ x− y ‖,

and hence PF (I−A+γf) is a contraction due to (1− (γ−γα)) ∈ (0, 1).
Therefore, by the Banach contraction principal, PF (I − A + γf) has a
unique fixed point x∗ ∈ F . Then, using Lemma 2.4 , we have
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(3.18) 〈γf(x∗)−Ax∗, y − x∗〉 ≤ 0, ∀y ∈ F .

We can choose a subsequence {ynk} of {yn} such that

n→∞〈γf(x∗)−Ax∗, yn − x∗〉 = lim
k→∞
〈γf(x∗)−Ax∗, ynk − x

∗〉.

Since {yn} is bounded, without loss of generality, we may assume that
ynk ⇀ z. It follows from Step 3 and Lemma 2.3 that z ∈ Fix(ϕ).
Moreover, from Lemma 2.7 it follows that

⋂∞
i=1 Fix(Ti) = Fix(W ).

Assume that z /∈ Fix(W ). Then, z 6= Wz. Since z ∈ Fix(ϕ), by our
assumption, we have Tiz ∈ Fix(ϕ), for all i ∈ N and thenWnz ∈ Fix(ϕ),
for all n ∈ N. Hence, TµnWnz = Wnz, ∀n ∈ N. Now, by Step 2 and
using Opial’s property of a Hilbert space, we have

lim inf
n→∞

‖ ynk − z ‖ < lim inf
n→∞

‖ ynk −Wz ‖

≤ lim inf
n→∞

[‖ ynk − TµnkWnkynk ‖

+ ‖ TµnkWnkynk − TµnkWnkz ‖
+ ‖ TµnkWnkz −Wz ‖]
≤ lim inf

n→∞
[‖ ynk − TµnkWnkynk ‖

+ ‖ ynk − z ‖ + ‖Wnkz −Wz ‖]
= lim inf

n→∞
‖ ynk − z ‖ .

This is a contradiction. Therefore, z must belong to⋂∞
i=1 Fix(Ti) = Fix(W ). It follows that z ∈ F , and so noticing (3.18),

lim sup
n→∞

〈γf(x∗)−Ax∗, yn − x∗〉 ≤ 0.

Step 5. The sequence {xn} converges strongly to x∗.
Proof of Step 5. From (3.3) and Lemma 2.6, we have

‖ yn − x∗ ‖2

=‖ (I − βnA)(zn − x∗) + βn(γf(zn)−Ax∗) ‖2

≤‖ (I − βnA)(zn − x∗) ‖2 +2βn〈γf(zn)−Ax∗, yn − x∗〉
≤ (1− βnγ)2 ‖ xn − x∗ ‖2

+ βnγα(‖ xn − x∗ ‖2 + ‖ yn − x∗ ‖2)

+ 2βn〈γf(x∗)−Ax∗, yn − x∗〉,
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which implies that

‖ yn − x∗ ‖2

≤ (1− βnγ)2 + βnγα

1− βnγα
‖ xn − x∗ ‖2

+
2βn

1− βnγα
〈γf(x∗)−Ax∗, yn − x∗〉

≤ [1− 2βn(γ − γα)

1− βnγα
] ‖ xn − x∗ ‖2

+
2βn(γ − γα)

1− βnγα
[

1

γ − γα
〈γf(x∗)−Ax∗, yn − x∗〉

+
βnγ

2

2(γ − γα)
M4],(3.19)

where M4 is an appropriate constant such that M4 ≥ supn≥1 ‖ xn−x∗ ‖.
On the other hand, using Lemma 2.11, we have

‖ xn+1 − x∗ ‖2≤ αn ‖ xn − x∗ ‖2 +(1− αn) ‖ yn − x∗ ‖2 .(3.20)

Substituting (3.19) into (3.20) yields:

‖ xn+1 − x∗ ‖2

≤ [1− (1− αn)
2βn(γ − γα)

1− βnγα
] ‖ xn − x∗ ‖2

+ (1− αn)
2βn(γ − γα)

1− βnγα
[

1

γ − γα
〈γf(x∗)−Ax∗, yn − x∗〉

+
βnγ

2

2(γ − γα)
M4].(3.21)

Putting ζn = (1− αn)2βn(γ−γα)
1−βnγα and noting

ηn =
1

γ − γα
〈γf(x∗)−Ax∗, yn − x∗〉+

βnγ
2

2(γ − γα)
M4,

it follows from (3.21) that

‖ xn+1 − x∗ ‖2≤ (1− ζn) ‖ xn − x∗ ‖2 +ζnηn.(3.22)

From the condition (A2) and Step 4, we have
∑∞

n=1 ζn =∞ and
lim supn→∞ ηn ≤ 0. Applying Lemma 2.9 to (3.22), we obtain xn → x∗,
as n→∞. This completes the proof. �
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Corollary 3.2. (See Qin et al. [16]) Let H be a real Hilbert space and
f be a contraction on H with coefficient α ∈ (0, 1). Let A be a strongly
positive linear bounded self-adjoint operator on H with coefficient γ > 0
and {Ti}∞i=1 be a sequence of non-expansive mappings of H into itself.

Assume that 0 < γ < γ
α and F =

⋂∞
i=1 Fix(Ti) 6= ∅. Let {xn} be a

sequence generated by the composite iteration process
x1 = x ∈ H, arbitrarily chosen,
zn = γnxn + (1− γn)Wnxn,
yn = βnγf(zn) + (I − βnA)zn,
xn+1 = αnxn + (1− αn)yn, n ≥ 1,

where {Wn} is a sequence defined by (1.6), {αn}, {βn} and {γn} are
three sequences in [0, 1]. If the conditions

(A1) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,
(A2)

∑∞
n=0 βn =∞, limn→∞ βn = 0,

(A3) limn→∞ | γn+1 − γn |= 0,
(A4) there exists a constant λ ∈ [0, 1) such that γn ≤ λ for all n ≥ 1,

are satisfied, then the sequence {xn} converges strongly to x∗ ∈ F , which
also uniquely solves the variational inequality:

〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ F .

Proof. Take ϕ = {I} (the identity mapping) in Theorem 3.1. Then,
we have Tµn = I. So, from Theorem 3.1, the sequence {xn} converges
strongly to x∗ ∈ F , which also uniquely solves the variational inequality

〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ F .
�

Corollary 3.3. Let H be a real Hilbert space and f be a contraction
on H with coefficient α ∈ (0, 1). Let A be a strongly positive linear
bounded self-adjoint operator on H with coefficient γ > 0 and T be a
non-expansive mapping of H into itself. Assume that 0 < γ < γ

α and
Fix(T ) 6= ∅. Let {xn} be a sequence generated by the composite iteration
process 

x1 = x ∈ H, arbitrarily chosen,
zn = γnxn + (1− γn)Txn,
yn = βnγf(zn) + (I − βnA)zn,
xn+1 = αnxn + (1− αn)yn, n ≥ 1,

where {αn}, {βn} and {γn} are three sequences in [0, 1]. If the conditions

(A1) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,
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(A2)
∑∞

n=0 βn =∞, limn→∞ βn = 0,
(A3) limn→∞ | γn+1 − γn |= 0,
(A4) there exists a constant λ ∈ [0, 1) such that γn ≤ λ for all n ≥ 1,

are satisfied, then the sequence {xn} converges strongly to x∗ ∈ Fix(T ),
which also uniquely solves the variational inequality

〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ Fix(T ).

Proof. Take ϕ = {I} (the identity mapping) and Wn = T, for all n ∈ N,
in Theorem, 3.1. Then, we have Tµn = I. So from Theorem 3.1, the
sequence {xn} converges strongly to x∗ ∈ F , which also uniquely solves
the variational inequality

〈(γf −A)x∗, x− x∗〉 ≤ 0, ∀x ∈ F .
�

The following corollary is Theorem 3.1 of Kim and Xu [8] in the
frame work of Hilbert spaces.

Corollary 3.4. Let C be a nonempty closed convex subset of a real
Hilbert space, T : C → C be a non expansive mapping such that Fix(T ) 6=
∅. Let f : C → C be a contraction with coefficient α ∈ (0, 1). Let {xn}
be a sequence generated by the composite iteration process x1 = x ∈ C, arbitrarily chosen,

yn = βnf(zn) + (1− βn)Txn,
xn+1 = αnxn + (1− αn)yn, n ≥ 1,

where {αn} and {βn} are sequences in [0, 1], and the conditions

(A1) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1,
(A2)

∑∞
n=0 βn =∞, limn→∞ βn = 0,

(A3) limn→∞ | γn+1 − γn |= 0,

are satisfied, then the sequence {xn} converges strongly to x∗ = PFix(T )x
∗.

Proof. Take γn = 0, for all n ∈ N, γ = 1 and A = I in Corollary 3.3. �
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