ON RICKART MODULES

N. AGAYEV, S. HALICIOGLU* AND A. HARMANCI

Communicated by Omid Ali S. Karamzadeh

Abstract

We investigate some properties of Rickart modules defined by Rizvi and Roman. Let R be an arbitrary ring with identity and M be a right R-module with $S=\operatorname{End}_{R}(M)$. A module M is called to be Rickart if for any $f \in S, r_{M}(f)=S e$, for some $e^{2}=e \in S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.

1. Introduction

Throughout this paper, R denotes an associative ring with identity, and modules will be unitary right R-modules. For a module $M, S=$ $\operatorname{End}_{R}(M)$ denotes the ring of right R-module endomorphisms of M. Then, M is a left S-module, right R-module and (S, R)-bimodule. In this work, for any rings S and R and any (S, R)-bimodule $M, r_{R}($. and $l_{M}($.$) denote the right annihilator of a subset of M$ in R and the left annihilator of a subset of R in M, respectively. Similarly, $l_{S}($.$) and r_{M}($. will be the left annihilator of a subset of M in S and the right annihilator of a subset of S in M, respectively. A ring R is said to be reduced if it has no nonzero nilpotent elements. Recently, the reduced ring concept was extended to modules by Lee and Zhou, [12], that is, a module M is called reduced if, for any $m \in M$ and any $a \in R$, ma=0 implies

[^0]$m R \cap M a=0$. According to Lambek [11], a ring R is called symmetric if $a, b, c \in R$ satisfy $a b c=0$, then we have $b a c=0$. This is generalized to modules in [11] and [14]. A module M is called symmetric if $a, b \in R$, $m \in M$ satisfy $m a b=0$, then we have $m b a=0$. Symmetric modules are also studied in [1] and [15]. A ring R is called semicommutative if for any $a, b \in R, a b=0$ implies $a R b=0$. A module M is called semicommutative [5] if, for any $m \in M$ and any $a \in R$, $m a=0$ implies $m R a=0$. Baer rings [9] are introduced as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. A ring R is said to be quasi-Baer if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. A ring R is called right principally quasi-Baer if the right annihilator of a principal right ideal of R is generated by an idempotent. Finally, a ring R is called right (or left) principally projective if every principal right (or left) ideal of R is a projective right (or left) R-module [4]. Baer property is considered in [18] by utilizing the endomorphism ring of a module. A module M is called Baer if for all R-submodules N of $M, l_{S}(N)=S e$ with $e^{2}=e \in S$. A submodule N of M is said to be fully invariant if it is also left S submodule of M. The module M is said to be quasi-Baer if for all fully invariant R-submodules N of $M, l_{S}(N)=S e$ with $e^{2}=e \in S$, or equivalently, the right annihilator of a two-sided ideal is generated, as a right ideal, by an idempotent. In what follows, by $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{Z}_{n}$ and $\mathbb{Z} / n \mathbb{Z}$, we mean, respectively, integers, rational numbers, real numbers, the ring of integers modulo n and the \mathbb{Z}-module of integers modulo n.

2. Rickart modules

Let M be a right R-module with $S=\operatorname{End}_{R}(M)$. In [19], the module M is called Rickart if for any $f \in S, r_{M}(f)=r_{M}(S f)=e M$, for some $e^{2}=e \in S$. The ring R is called right Rickart if R_{R} is a Rickart module, that is, the right annihilator of any element is generated by an idempotent. Left Rickart rings are defined in a symmetric way. It is obvious that the module R_{R} is Rickart if and only if the ring R is right principally projective. This concept provides a generalization of a right principally projective ring to module theoretic setting. It is clear that every semisimple, Baer module is a Rickart module.

We now give an example for illustration.

Example 2.1. Consider the \mathbb{Z}-module $M=\mathbb{Z} \oplus \mathbb{Q}$. Then, endomorphism ring of M is $S=\left[\begin{array}{ll}\mathbb{Z} & 0 \\ \mathbb{Q} & \mathbb{Q}\end{array}\right]$. It is easy to check that, for any $f \in S$, there exists an idempotent e in S such that $r_{M}(f)=e M$. Indeed, let namely $f=\left[\begin{array}{ll}0 & 0 \\ b & c\end{array}\right]$, where $0 \neq b, 0 \neq c \in \mathbb{Q}$, and $m=\left[\begin{array}{l}x \\ y\end{array}\right] \in r_{M}(f)$. Then, $b x+y c=0$ and $e=\left[\begin{array}{cc}1 & 0 \\ -b / c & 0\end{array}\right]$ is an idempotent in S and $e M \leq r_{M}(f)$, since $f e M=0$. Let $m \in r_{M}(f)$. Then, $m=e m$. Hence, $r_{M}(\bar{f}) \leq e M$. Thus, $r_{M}(f)=e M$. The other possibilities for the picture of f give rise to an idempotent e such that $r_{M}(f)=e M$.

Proposition 2.2. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a Rickart module, then S is a right Rickart ring.

Proof. Let $\varphi \in S$. By the hypothesis, we have $r_{M}(\varphi)=e M$, where $e^{2}=e \in S$. We claim that $r_{S}(\varphi)=e S$. Since $0=\varphi e M=\varphi e S M$, $e S \subseteq r_{S}(\varphi)$. For any $0 \neq f \in r_{S}(\varphi)$, we have $f M \subseteq r_{M}(\varphi)$, and so $f=e f$. Then, $f \in e S$. Therefore, $r_{S}(\varphi)=e S$.

Proposition 2.3 is well known. We give a proof for the sake of completeness.

Proposition 2.3. Let R be a right Rickart ring and $e^{2}=e \in R$. Then, e Re is a right Rickart ring.

Proof. Let $a \in e R e$ and $r_{R}(a)=f R$, for some $f^{2}=f \in R$. Then, $1-e \in$ $f R$ and $r_{e R e}(a)=(e R e) \cap r_{R}(a)$. Multiplying $1-e$ from the left by f, we obtain $f-f e=1-e$, and so $e f=e f e$ by multiplying $f-f e$ from the left by e. Set $g=e f$. Then, $g \in e R e$, and $g^{2}=e f e f=e f^{2}=e f=g$. We prove $(e R e) \cap r_{R}(a)=g(e R e)$. Let $t \in(e R e) \cap r_{R}(a)$. Since $t=e t e$ and $t \in f R, t=f r$, for some $r \in R$. Multiplying $t=f r$ from the left by f, we have $t=f t=f$ fete. Again, multiplying $t=f t=f$ fete from the left by e, we obtain $t=e t=e f e t e=$ gete $\in g(e R e)$. So, $(e R e) \cap r_{R}(a) \leq g(e R e)$. For the converse inclusion, let gete $\in g(e R e)$. Then, gete $=e f e t e \in e R e$. On the other hand, agete $=$ aefete $=$ afete $=0$ implies gete $\in r_{R}(a)$. Hence, $g(e R e) \leq(e R e) \cap r_{R}(a)$. Therefore, $g(e R e)=(e R e) \cap r_{R}(a)$.

Proposition 2.4. Let M be a Rickart module. Then, every direct summand N of M is a Rickart module.

Proof. Let $M=N \oplus P$. Let $S^{\prime}=\operatorname{End}_{R}(N)$. Then, for any $\varphi^{\prime} \in S^{\prime}$, there exists $\varphi \in S$, defined by $\varphi=\varphi^{\prime} \oplus 0_{\left.\right|_{P}}$. By the hypothesis, $r_{M}(\varphi)$ is a direct summand of M. Let $M=r_{M}(\varphi) \oplus Q$. Since $P \subseteq r_{M}(\varphi)$, there exists $L \leq r_{M}(\varphi)$ such that $r_{M}(\varphi)=P \oplus L$. So, we have $M=$ $r_{M}(\varphi) \oplus Q=P \oplus L \oplus Q$. Let $\pi_{N}: M \rightarrow N$ be the projection of M onto N. Then, $\left.\pi_{N}\right|_{Q \oplus L}: Q \oplus L \rightarrow N$ is an isomorphism. Hence, $N=$ $\pi_{N}(Q) \oplus \pi_{N}(L)$. We will show that $r_{N}\left(\varphi^{\prime}\right)=\pi_{N}(L)$. Since $\varphi(P \oplus L)=0$, we get $\varphi(L)=0$. But, for all $l \in L, l=\pi_{N}(l)+\pi_{P}(l)$. Since $\varphi \pi_{P}(l)=0$, we have $\varphi^{\prime}\left(\pi_{N}(L)\right)=0$. So, $\pi_{N}(L) \subseteq r_{N}\left(\varphi^{\prime}\right)$.

Let $n \in N \backslash \pi_{N}(L)$. Then, $n=n_{1}+n_{2}$, for some $n_{1} \in \pi_{N}(L)$ and some $0 \neq n_{2} \in \pi_{N}(Q)$. Since $\left.\pi_{N}\right|_{Q \oplus L}$ is an isomorphism, there exists a $\overline{n_{2}} \in Q$ such that $\pi_{N}\left(\overline{n_{2}}\right)=n_{2}$. Since $Q \cap r_{M}(\varphi)=0$, we have $\varphi\left(\overline{n_{2}}\right)=$ $\varphi^{\prime} \oplus 0_{\left.\right|_{P}}\left(\overline{n_{2}}\right) \neq 0$. Since $\overline{n_{2}}=\pi_{N}\left(\overline{n_{2}}\right)+\pi_{P}\left(\overline{n_{2}}\right)$, we get $\varphi^{\prime} \pi_{N}\left(\overline{n_{2}}\right) \neq 0$. So, $\varphi^{\prime}\left(\overline{n_{2}}\right) \neq 0$. This implies $n \notin r_{N}\left(\varphi^{\prime}\right)$. Therefore, $r_{N}\left(\varphi^{\prime}\right)=\pi_{N}(L)$.
Corollary 2.5. Let R be a right Rickart ring and let e be any idempotent in R. Then, $M=e R$ is a Rickart module.

Proposition 2.6. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If S is a von Neumann regular ring, then M is a Rickart module.
Proof. For any $\alpha \in S$, there exists $\beta \in S$ such that $\alpha=\alpha \beta \alpha$. Define $e=\beta \alpha$. Then, $e^{2}=e$ and $\alpha=\alpha e$. Hence, $r_{M}(\alpha)=r_{M}(e)=(1-e) M$. This completes the proof.

Recall that M is called a duo module if every submodule N of M is fully invariant, i.e., $f(N) \leq N$, for all $f \in S$, while M is said to be a weak duo module, if every direct summand of M is fully invariant. Every duo module is weak duo (see [13] for details).

Proposition 2.7. Let M be a quasi-Baer and weak duo module with $S=\operatorname{End}_{R}(M)$. Then, M is Rickart.
Proof. Let $f \in S$. By the hypothesis, there exists $e^{2}=e \in S$ such that $e M=r_{M}(S f S)$. Since $f \in S f \leq S f S, e M=r_{M}(S f S) \leq r_{M}(S f)=$ $r_{M}(f)$. There exists $K \leq M$ such that $r_{M}(f)=e M \oplus K$. Assume that $K \neq 0$ to reach a contradiction. Since K is fully invariant and $K \leq r_{M}(f)$, we have $S K \leq K \leq r_{M}(f)$. So, $f S K=0$ and $S f S K=0$. Therefore, $K \leq r_{M}(S f S)=e M$. This is the required contradiction. Thus, M is a Rickart module.

Let M be an R-module with $S=\operatorname{End}_{R}(M)$. Some properties of R-modules do not characterize the ring R, namely there are reduced
R-modules but R need not be reduced and there are abelian R-modules but R is not an abelian ring. Because of this, we are currently investigating the reduced, rigid, symmetric, semicommutative, Armendariz and abelian modules in terms of endomorphism ring S. In the sequel, we continue studying relations between reduced, rigid, symmetric, semicommutative, Armendariz and abelian modules by using Rickart modules.

Definition 2.8. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. A module M is called reduced if $f m=0$ implies $\operatorname{Im} f \cap S m=0$, for each $f \in S$, and $m \in M$.

Following the definition of reduced module in [12] and [15], M is a reduced module if and only if $f^{2} m=0$, implies $f S m=0$ for each $f \in S$, and $m \in M$. The ring R is called reduced if the right R-module R is reduced by considering $\operatorname{End}_{R}(R) \cong R$, that is, for any $a, b \in R$, $a b=0$ implies $a R \cap R b=0$, or equivalently R does not have any nonzero nilpotent elements.
Example 2.9. Let p be any prime integer and M denote the \mathbb{Z}-module $(\mathbb{Z} / p \mathbb{Z}) \oplus \mathbb{Q}$. Then, $S=\operatorname{End}_{R}(M)$ is isomorphic to the matrix ring $\left\{\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]: a \in \mathbb{Z}_{p}, b \in \mathbb{Q}\right\}$ and M is a reduced module.

In [10], Krempa introduced the notion of rigid ring. An endomorphism α of a ring R is said to be rigid if $a \alpha(a)=0$ implies $a=0$, for $a \in R$. According to Hong et al. [8], R is said to be an α-rigid ring if there exits a rigid endomorphism α of R. This "rigid ring" notion depends heavily on the endomorphism of the ring R. In the following, we redefine rigidness so that it will be independent of endomorphism and also will be extended to modules.

Proof of the Proposition 2.10 is obvious.
Proposition 2.10. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. For any $f \in S$, the followings are equivalent.
(1) $\operatorname{Kerf} \cap \operatorname{Imf}=0$.
(2) For $m \in M, f^{2} m=0$ if and only if $f m=0$.

A module M is called rigid if it satisfies Proposition 2.10 for every $f \in S$. The ring R is said to be rigid if the right R-module R is rigid by considering $\operatorname{End}_{R}(R) \cong R$, that is, for any $a, b \in R, a^{2} b=0$ implies $a b=0$.

Lemma 2.11. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a rigid module, then S is a reduced ring, and therefore idempotents in S are central.

Proof. Let $f, g \in S$ with $f g=0$ and $f g^{\prime}=f^{\prime} g$, for some $f^{\prime}, g^{\prime} \in S$. For any $m \in M,(g f)^{2} m=0$. By the hypothesis, $(g f) m=0$. Hence, $g f=0$. So, $g f g^{\prime}=g f^{\prime} g=0$. From what we have proved, we obtain $f^{\prime} g=0$. The rest is clear.

Recall that the module M is called extending if every submodule of M is essential in a direct summand of M. We have the following result.

Theorem 2.12. If M is a rigid and extending module, then M is a Rickart module.

Proof. Let $f \in S$ and $m \in \operatorname{Kerf}$. If $m R$ is essential in M, then Kerf is essential in M. Since M is rigid, i.e., $\operatorname{Ker}(f) \cap \operatorname{Im}(f)=0, f=0$. Assume that $m R$ is not essential in M. There exists a direct summand K of M such that $m R$ is essential in K and $M=K \oplus K^{\prime}$. Let π_{K} denote the canonical projection from M onto K. Then, the composition map $f \pi_{K}$ has kernel $m R+K^{\prime}$, that is an essential submodule of M. By assumption, $f \pi_{K}=0$. Hence, $f(K)=0$, and $\operatorname{Ker} f=K \oplus(\operatorname{Ker} f) \cap K^{\prime}$. Similarly, there exists a direct summand U of K^{\prime} containing (Kerf) $\cap K^{\prime}$ essentially so that $K^{\prime}=U \oplus U^{\prime}$. Let π_{U} denote the canonical projection from M onto U. Then, $\operatorname{Ker}\left(f \pi_{U}\right)$ is essential in M. Hence, $\operatorname{Ker}\left(f \pi_{U}\right)=0$. So, $f(U)=0$. Thus, $\operatorname{Ker} f=K \oplus U$. This is a direct summand of M.

Proposition 2.13. Let R be a ring. Then, the followings are equivalent.
(1) R is a reduced ring.
(2) R_{R} is a reduced module.
(3) R_{R} is a rigid module.

Proof. Clear by definitions.
In the module case, Proposition 2.13 does not hold in general.
Proposition 2.14. If M is a reduced module, then M is a rigid module. The converse holds if M is a Rickart module.
Proof. For any $f \in S,(S K e r f) \cap \operatorname{Im} f=0$, by the hypothesis. Since $\operatorname{Ker} f \cap \operatorname{Im} f \subset(S k e r f) \cap \operatorname{Imf}, \operatorname{Ker} f \cap \operatorname{Im} f=0$. Then, M is a rigid module. Conversely, let M be a Rickart and rigid module. Assume that $f m=0$, for $f \in S$ and $m \in M$. Then, there exists $e^{2}=e \in S$ such that $r_{M}(f)=e M$. By Lemma 2.11, e is central in S. Then, $f e=e f=0$,
$m=e m$. Let $f m^{\prime}=g m \in f M \cap S m$. We multiply $f m^{\prime}=g m$ from the left by e to obtain efm ${ }^{\prime}=f e m^{\prime}=e g m=g e m=g m=0$. Therefore, M is a reduced module.

A ring R is called abelian if every idempotent is central, that is, $a e=$ $e a$, for any $e^{2}=e, a \in R$. Abelian modules are introduced in the context by Roos [20] and studied by Goodearl and Boyle [7], Rizvi and Roman [17]. A module M is called abelian if for any $f \in S, e^{2}=e \in S, m \in M$, we have fem $=$ efm. Note that M is an abelian module if and only if S is an abelian ring.

We mention some classes of abelian modules.
Examples 2.15. (1) Every weak duo module is abelian. In fact, let $e^{2}=e \in S, f \in S$. For any $m \in M$, write $m=e m+(1-e) m$. M Being weak duo, we have fem $\in e M$ and $f(1-e) m \in(1-e) M$. Multiplying $f m=f e m+f(1-e) m$ by e from the left, we have efm $=f e m$.
(2) Let M be a torsion \mathbb{Z}-module. Then, M is abelian if and only if $M=\bigoplus_{i=1}^{t} \mathbb{Z}_{p_{i} n_{i}}$ where the p_{i} are distinct prime integers and the $n_{i} \geq 1$ are integers.
(3) Cyclic \mathbb{Z}-modules are always abelian, but non-cyclic finitely generated torsion-free \mathbb{Z}-modules are not abelian.

Lemma 2.16. If M is a reduced module, then it is abelian. The converse is true if M is a Rickart module.

Proof. One way is clear. For the converse, assume that M is a Rickart and abelian module. Let $f \in S, m \in M$ with $f m=0$. We want to show that $f M \cap S m=0$. There exists $e^{2}=e \in S$ such that $m \in r_{M}(f)=e M$. Then, $e m=m$ and $f e=0$. Let $f m_{1}=g m \in f M \cap S m$, where $m_{1} \in M$, $g \in S$. Multiplying $f m_{1}=g m$ by e from the left. Then, we have $0=f e m_{1}=e f m_{1}=e g m=g e m=g m$. This completes the proof.

Recall that a ring R is symmetric if $a b c=0$, implies $a c b=0$, for any $a, b, c \in R$. For the module case, we have the following definition.

Definition 2.17. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. A module M is called symmetric if for any $m \in M$ and $f, g \in S$, fgm $=0$ implies $g \mathrm{fm}=0$.

Lemma 2.18. If M is a reduced module, then it is symmetric. The converse holds if M is a Rickart module.

Proof. Let $f g m=0, f, g \in S$. Then, $(f g)^{2}(m)=0$. By the hypothesis, $f g S m \leq(f g M) \cap S m=0$. So, $f g f m=0$ and $(g f)^{2} m=0$. Similarly, $g \mathrm{fSm}=0$, and so $g \mathrm{fm}=0$. Therefore, M is symmetric. For inverse implication, let $f \in S$ and $m \in M$ with $f m=0$. We prove that $f M \cap S m=0$. Let $f m_{1}=g m \in f M \cap S m$, where $m_{1} \in M, g \in S$. There exists a central idempotent $e \in S$ such that $r_{M}(f)=e M$. Then, $f e M=e f M=0$ and $e m=m$. Multiplying $f m_{1}=g m$ from the left by e, we have $0=e f m_{1}=e g m=g e m=g m$. This completes the proof.

The next example shows that the reverse implication of the first statement in Lemma 2.18 is not true, in general, i.e., there exists a symmetric module which is neither reduced nor Rickart.

Example 2.19. Let \mathbb{Z} denote the ring of integers. Consider the ring
$R=\left\{\left[\begin{array}{ll}a & b \\ 0 & a\end{array}\right]: a, b \in \mathbb{Z}\right\}$ and R-module $M=\left\{\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]: a, b \in \mathbb{Z}\right\}$. Let $f \in S$ and $f\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & c \\ c & d\end{array}\right]$. Multiplying the latter by $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ from the right, we have $f\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$. For any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M$, $f\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]=\left[\begin{array}{cc}0 & a c \\ a c & a d+b c\end{array}\right]$. Similarly, let $g \in S$ and $g\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=$ $\left[\begin{array}{cc}0 & c^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right]$. Then, $g\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & c^{\prime}\end{array}\right]$. For any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M$, $g\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]=\left[\begin{array}{cc}0 & a c^{\prime} \\ a c^{\prime} & a d^{\prime}+b c^{\prime}\end{array}\right]$. Then, it is easy to check that for any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M$,

$$
f g\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right]=f\left[\begin{array}{cc}
0 & a c^{\prime} \\
a c^{\prime} & a d^{\prime}+b c^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & a c^{\prime} c \\
a c^{\prime} c & a d^{\prime} c+a d c^{\prime}+b c^{\prime} c
\end{array}\right]
$$

and

$$
g f\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right]=g\left[\begin{array}{cc}
0 & a c \\
a c & a d+b c
\end{array}\right]=\left[\begin{array}{cc}
0 & a c c^{\prime} \\
a c c^{\prime} & a c d^{\prime}+a c^{\prime} d+b c c^{\prime}
\end{array}\right] .
$$

Hence, $f g=g f$, for all $f, g \in S$. Therefore, S is commutative, and so M is symmetric.

Let $f \in S$ be defined by $f\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right]$, where $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M$. Then,
$f\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and $f^{2}\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=0$. Hence, M is not rigid, and so M is not reduced. Also, since $r_{M}(f)=\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & b\end{array}\right]: b \in \mathbb{Z}\right\}$ and M is indecomposable as a right R-module, $r_{M}(f)$ can not be generated by an idempotent as a direct summand of M. Hence, M is not Rickart.

For an R-module M with $S=\operatorname{End}_{R}(M), M$ is called semicommutative if for any $f \in S$ and $m \in M, f m=0$ implies $f S m=0$; see [3] for details.

Proposition 2.20. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. If M is a semicommutative module, then S is semicommutative, and hence an abelian ring.
Proof. Let $f, g \in S$ and assume $f g=0$. Then, $f g m=0$ for all $m \in M$. By the hypothesis, fhgm $=0$, for all $m \in M$ and $h \in S$. Hence, $f h g=0$, for all $h \in S$ and so $f S g=0$. Let $e, f \in S$ with $e^{2}=e$. Then, $e(1-e) M=0$. By the hypothesis, ef $(1-e) M=0$. Hence, $e f(1-e)=0$, for all $f \in S$. Similarly, $(1-e) f e=0$, for all $f \in S$. Thus, $e f=f e$, for all $f \in S$.
Proposition 2.21. Let M be a semicommutative module. Consider the followings.
(1) M is a Baer module.
(2) M is a quasi-Baer module.
(3) M is a Rickart module.

Then, $(1) \Leftrightarrow(2) \Rightarrow(3)$.
Proof. (1) \Rightarrow (2) is clear.
(2) $\Rightarrow(1)$ Let N be any submodule of M and $n \in N$. By the hypothesis, $l_{S}(n)=l_{S}(\operatorname{SnR})$. Hence $l_{S}(N)=l_{S}(S N)$. Since $S N$ is a fully invariant submodule of M, by (2), $l_{S}(S N)=S e$, for some $e^{2}=e \in S$. Then, M is a Baer module.
$(2) \Rightarrow(3)$ Let φ be in S. Since $S \varphi S$ is a two sided ideal of S, there exists an idempotent $e \in S$ such that $r_{M}(S \varphi S)=e M$. Also, since M is semicommutative, $r_{M}(\varphi)=r_{M}(\varphi S)=r_{M}(S \varphi S)$, and so $r_{M}(\varphi)=e M$. This completes the proof.

Lemma 2.22. If M is semicommutative, then it is abelian. The converse holds if M is Rickart.
Proof. Let M be a semicommutative module and $g \in S, e^{2}=e \in S$. Then, $e(1-e) m=0$, for all $m \in M$. Since M is semicommutative, $e g(1-e) m=0$. So, we have $e g m=e g e m$. Similarly, $(1-e) e m=0$. Then, $g e m=e g e m$. Therefore, egm $=g e m$. Suppose now that M is abelian and Rickart module. Let $f \in S, m \in M$ with $f m=0$. Then, $m \in r_{M}(f)$. Since M is a Rickart module, there exists an idempotent e in S such that $r_{M}(f)=e M$. Then, $m=e m, f e=0$. For any $h \in S$, since M is abelian, fhm $=$ fhem $=f e h m=0$. Therefore, $f S m=0$.

In [16], the ring R is called Armendariz if for any $f(x)=\sum_{i=0}^{n} a_{i} x^{i}$, $g(x)=\sum_{j=0}^{s} b_{j} x^{j} \in R[x], f(x) g(x)=0$ implies $a_{i} b_{j}=0$, for all i and j. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. The module M is called Armendariz if the following condition (1) is satisfied, and M is called Armendariz of power series type if the following condition (2) is satisfied:
(1) For any $m(x)=\sum_{i=0}^{n} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{s} a_{j} x^{j} \in S[x]$, $f(x) m(x)=0$ implies $a_{j} m_{i}=0$, for all i and j.
(2) For any $m(x)=\sum_{i=0}^{\infty} m_{i} x^{i} \in M[[x]]$ and $f(x)=\sum_{j=0}^{\infty} a_{j} x^{j} \in S[[x]]$, $f(x) m(x)=0$ implies $a_{j} m_{i}=0$, for all i and j.
Lemma 2.23. If the module M is Armendariz, then M is abelian. The converse holds if M is a Rickart module.
Proof. Let $m \in M, f^{2}=f \in S$ and $g \in S$. Consider
$m_{1}(x)=(1-f) m+f g(1-f) m x, m_{2}(x)=f m+(1-f) g f m x \in M[x]$,

$$
h_{1}(x)=f-f g(1-f) x, h_{2}(x)=(1-f)-(1-f) g f x \in S[x]
$$

Then, $h_{i}(x) m_{i}(x)=0$, for $i=1,2$. Since M is Armendariz, $f g(1-$ $f) m=0$ and $(1-f) g f m=0$. Therefore, $f g m=g f m$.

Suppose that M is an abelian and Rickart module. Let $m(t)=$ $\sum_{i=0}^{s} m_{i} t^{i} \in M[t]$ and $f(t)=\sum_{j=0}^{t} f_{j} t^{j} \in S[t]$. If $f(t) m(t)=0$, then
(1) $f_{0} m_{0}=0$
(2) $f_{0} m_{1}+f_{1} m_{0}=0$
(3) $f_{0} m_{2}+f_{1} m_{1}+f_{2} m_{0}=0$

By the hypothesis, there exists an idempotent $e_{0} \in S$ such that $r_{M}\left(f_{0}\right)=e_{0} M$. Then, (1) implies $f_{0} e_{0}=0$ and $m_{0}=e_{0} m_{0}$. Multiplying (2) by e_{0} from the left, we have $0=e_{0} f_{0} m_{1}+e_{0} f_{1} m_{0}=f_{1} e_{0} m_{0}=$ $f_{1} m_{0}$. By (2), $f_{0} m_{1}=0$. Let $r_{M}\left(f_{1}\right)=e_{1} M$. So, $f_{1} e_{1}=0$ and $m_{0}=e_{1} m_{0}$. Multiplying (3) by $e_{0} e_{1}$ from the left and using abelianness of S and $e_{0} e_{1} f_{2} m_{0}=f_{2} m_{0}$, we have $f_{2} m_{0}=0$. Then, (3) becomes $f_{0} m_{2}+f_{1} m_{1}=0$. Multiplying this equation by e_{0} from left and using $e_{0} f_{0} m_{2}=0$ and $e_{0} f_{1} m_{1}=f_{1} m_{1}$, we have $f_{1} m_{1}=0$. From (3), $f_{2} m_{0}=0$. Continuing in this way, we may conclude that $f_{j} m_{i}=0$, for all $1 \leq i \leq s$ and $1 \leq j \leq t$. Hence, M is Armendariz. This completes the proof.

Corollary 2.24. If M is Armendariz of power series type, then M is abelian. The converse holds if M is a Rickart module.

Proof. Similar to the proof of Lemma 2.23.
We end with some observations concerning relationships between reduced, rigid, symmetric, semicommutative, Armendariz and abelian modules by using Rickart modules.

Theorem 2.25. If M is a Rickart module, then the followings are equivalent.
(1) M is a rigid module.
(2) M is a reduced module.
(3) M is a symmetric module.
(4) M is a semicommutative module.
(5) M is an abelian module.
(6) M is an Armendariz module.
(7) M is an Armendariz of power series type module.

Proof. (1) \Leftrightarrow (2) Use Proposition 2.14. (2) \Leftrightarrow (3) Use Lemma 2.18. (2) \Leftrightarrow (5) Use Lemma 2.16. (4) \Leftrightarrow (5) Use Lemma 2.22. (5) \Leftrightarrow (6) Use Lemma 2.23. (5) \Leftrightarrow (7) Use Corollary 2.24.

Acknowledgments

The authors express their gratitude to the referee for valuable suggestions and helpful comments.

References

[1] N. Agayev, S. Halicioğlu and A. Harmanci, On symmetric modules, Riv. Mat. Univ. Parma 8 (2009), no. 2, 91-99.
[2] N. Agayev, S. Halicioğlu and A. Harmanci, On Reduced Modules, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 58 (2009), no. 1, 9-16.
[3] N. Agayev, T. Özen and A. Harmanci, On a Class of Semicommutative Modules, Proc. Indian Acad. Sci. Math. Sci. 119 (2009), no. 2, 149-158.
[4] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), no. 1, 25-42.
[5] A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci. 8 (2002), no. 1, 53-65.
[6] A. W. Chatters, C. R. Hajarnavis, Rings with Chain Conditions, Research Notes in Mathematics, 44. Pitman (Advanced Publishing Program), Boston, Mass.London, 1980.
[7] K. R. Goodearl and A. K. Boyle, Dimension theory for nonsingular injective modules, Mem. Amer. Math. Soc. 7 (1976), no. 177, 112 pp.
[8] C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226.
[9] I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York-Amsterdam, 1968
[10] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
[11] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368.
[12] T. K. Lee and Y. Zhou, Reduced Modules, Rings, modules, algebras and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
[13] A. C. Özcan, A. Harmanci and P. F. Smith, Duo Modules, Glasg. Math. J 48 (2006), no. 3, 533-545.
[14] R. Raphael, Some remarks on regular and strongly regular rings, Canad. Math. Bull. 17 (1974/75), no. 5, 709-712.
[15] M. B. Rege and A. M. Buhphang, On reduced modules and rings, Int. Electron. J. Algebra 3 (2008), 58-74.
[16] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17.
[17] S. T. Rizvi and C. S. Roman, On \mathcal{K}-nonsingular Modules and Applications, Comm. Algebra 35 (2007), no. 9, 2960-2982.
[18] S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra 32 (2004), no. 1, 103-123.
[19] S. T. Rizvi and C. S. Roman, On direct sums of Baer modules, J. Algebra 321 (2009), no. 2, 682-696.
[20] J. E. Roos, Sur les categories auto-injectifs a droit, (French) C. R. Acad. Sci. Paris Sr. 265 (1967), 14-17.

Nazim Agayev
 Department of Computer Engineering, European University of Lefke, Cyprus Email: nagayev@eul.edu.tr

Sait Halıcıoglu
Department of Mathematics, Ankara University, 06100 Ankara, Turkey
Email: halici@science.ankara.edu.tr

Abdullah Harmanci
Department of Mathematics, Hacettepe University, 06550 Ankara, Turkey
Email: harmanci@hacettepe.edu.tr

[^0]: MSC(2010): Primary: 13C99; Secondary: 16D80, 16U80.
 Keywords: Rickart modules, Baer modules, reduced modules, rigid modules.
 Received: 26 September 2010, Accepted: 25 December 2010.

 * Corresponding author
 (c) 2012 Iranian Mathematical Society.

