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ON RICKART MODULES

N. AGAYEV, S. HALICIOĞLU∗ AND A. HARMANCI

Communicated by Omid Ali S. Karamzadeh

Abstract. We investigate some properties of Rickart modules de-
fined by Rizvi and Roman. Let R be an arbitrary ring with iden-
tity and M be a right R-module with S = EndR(M). A module
M is called to be Rickart if for any f ∈ S, rM (f) = Se, for some
e2 = e ∈ S. We prove that some results of principally projective
rings and Baer modules can be extended to Rickart modules for this
general settings.

1. Introduction

Throughout this paper, R denotes an associative ring with identity,
and modules will be unitary right R-modules. For a module M , S =
EndR(M) denotes the ring of right R-module endomorphisms of M .
Then, M is a left S-module, right R-module and (S, R)-bimodule. In
this work, for any rings S and R and any (S, R)-bimodule M , rR(.)
and lM (.) denote the right annihilator of a subset of M in R and the left
annihilator of a subset of R in M , respectively. Similarly, lS(.) and rM (.)
will be the left annihilator of a subset of M in S and the right annihilator
of a subset of S in M , respectively. A ring R is said to be reduced if it
has no nonzero nilpotent elements. Recently, the reduced ring concept
was extended to modules by Lee and Zhou, [12], that is, a module M
is called reduced if, for any m ∈ M and any a ∈ R, ma = 0 implies
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mR ∩Ma = 0. According to Lambek [11], a ring R is called symmetric
if a, b, c ∈ R satisfy abc = 0, then we have bac = 0. This is generalized
to modules in [11] and [14]. A module M is called symmetric if a, b ∈ R,
m ∈ M satisfy mab = 0, then we have mba = 0. Symmetric modules
are also studied in [1] and [15]. A ring R is called semicommutative
if for any a, b ∈ R, ab = 0 implies aRb = 0. A module M is called
semicommutative [5] if, for any m ∈ M and any a ∈ R, ma = 0 implies
mRa = 0. Baer rings [9] are introduced as rings in which the right (left)
annihilator of every nonempty subset is generated by an idempotent. A
ring R is said to be quasi-Baer if the right annihilator of each right ideal
of R is generated (as a right ideal) by an idempotent. A ring R is called
right principally quasi-Baer if the right annihilator of a principal right
ideal of R is generated by an idempotent. Finally, a ring R is called right
(or left) principally projective if every principal right (or left) ideal of R
is a projective right (or left) R-module [4]. Baer property is considered
in [18] by utilizing the endomorphism ring of a module. A module M is
called Baer if for all R-submodules N of M , lS(N) = Se with e2 = e ∈ S.
A submodule N of M is said to be fully invariant if it is also left S-
submodule of M . The module M is said to be quasi-Baer if for all
fully invariant R-submodules N of M , lS(N) = Se with e2 = e ∈ S, or
equivalently, the right annihilator of a two-sided ideal is generated, as
a right ideal, by an idempotent. In what follows, by Z, Q, R, Zn and
Z/nZ, we mean, respectively, integers, rational numbers, real numbers,
the ring of integers modulo n and the Z-module of integers modulo n.

2. Rickart modules

Let M be a right R-module with S = EndR(M). In [19], the module
M is called Rickart if for any f ∈ S, rM (f) = rM (Sf) = eM, for
some e2 = e ∈ S. The ring R is called right Rickart if RR is a Rickart
module, that is, the right annihilator of any element is generated by an
idempotent. Left Rickart rings are defined in a symmetric way. It is
obvious that the module RR is Rickart if and only if the ring R is right
principally projective. This concept provides a generalization of a right
principally projective ring to module theoretic setting. It is clear that
every semisimple, Baer module is a Rickart module.

We now give an example for illustration.
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Example 2.1. Consider the Z-module M = Z ⊕ Q. Then, endomor-

phism ring of M is S =
[

Z 0
Q Q

]
. It is easy to check that, for any

f ∈ S, there exists an idempotent e in S such that rM (f) = eM .

Indeed, let namely f =
[

0 0
b c

]
, where 0 6= b, 0 6= c ∈ Q, and

m =
[

x
y

]
∈ rM (f). Then, bx + yc = 0 and e =

[
1 0

−b/c 0

]
is

an idempotent in S and eM ≤ rM (f), since feM = 0. Let m ∈ rM (f).
Then, m = em. Hence, rM (f) ≤ eM . Thus, rM (f) = eM . The other
possibilities for the picture of f give rise to an idempotent e such that
rM (f) = eM .

Proposition 2.2. Let M be an R-module with S = EndR(M). If M is
a Rickart module, then S is a right Rickart ring.

Proof. Let ϕ ∈ S. By the hypothesis, we have rM (ϕ) = eM , where
e2 = e ∈ S. We claim that rS(ϕ) = eS. Since 0 = ϕeM = ϕeSM ,
eS ⊆ rS(ϕ). For any 0 6= f ∈ rS(ϕ), we have fM ⊆ rM (ϕ), and so
f = ef . Then, f ∈ eS. Therefore, rS(ϕ) = eS. �

Proposition 2.3 is well known. We give a proof for the sake of com-
pleteness.

Proposition 2.3. Let R be a right Rickart ring and e2 = e ∈ R. Then,
eRe is a right Rickart ring.

Proof. Let a ∈ eRe and rR(a) = fR, for some f2 = f ∈ R. Then, 1−e ∈
fR and reRe(a) = (eRe)∩rR(a). Multiplying 1−e from the left by f , we
obtain f−fe = 1−e, and so ef = efe by multiplying f−fe from the left
by e. Set g = ef . Then, g ∈ eRe, and g2 = efef = ef2 = ef = g. We
prove (eRe)∩ rR(a) = g(eRe). Let t ∈ (eRe)∩ rR(a). Since t = ete and
t ∈ fR, t = fr, for some r ∈ R. Multiplying t = fr from the left by f, we
have t = ft = fete. Again, multiplying t = ft = fete from the left by e,
we obtain t = et = efete = gete ∈ g(eRe). So, (eRe) ∩ rR(a) ≤ g(eRe).
For the converse inclusion, let gete ∈ g(eRe). Then, gete = efete ∈ eRe.
On the other hand, agete = aefete = afete = 0 implies gete ∈ rR(a).
Hence, g(eRe) ≤ (eRe)∩ rR(a). Therefore, g(eRe) = (eRe)∩ rR(a). �

Proposition 2.4. Let M be a Rickart module. Then, every direct sum-
mand N of M is a Rickart module.
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Proof. Let M = N ⊕ P . Let S
′

=EndR(N). Then, for any ϕ′ ∈ S′,
there exists ϕ ∈ S, defined by ϕ = ϕ′ ⊕ 0|P . By the hypothesis, rM (ϕ)
is a direct summand of M . Let M = rM (ϕ) ⊕ Q. Since P ⊆ rM (ϕ),
there exists L ≤ rM (ϕ) such that rM (ϕ) = P ⊕ L. So, we have M =
rM (ϕ) ⊕ Q = P ⊕ L ⊕ Q. Let πN : M → N be the projection of M
onto N . Then, πN |Q⊕L: Q ⊕ L → N is an isomorphism. Hence, N =
πN (Q)⊕πN (L). We will show that rN (ϕ′) = πN (L). Since ϕ(P⊕L) = 0,
we get ϕ(L) = 0. But, for all l ∈ L, l = πN (l)+πP (l). Since ϕπP (l) = 0,
we have ϕ

′
(πN (L)) = 0. So, πN (L) ⊆ rN (ϕ′).

Let n ∈ N\πN (L). Then, n = n1 + n2, for some n1 ∈ πN (L) and
some 0 6= n2 ∈ πN (Q). Since πN |Q⊕L is an isomorphism, there exists a
n2 ∈ Q such that πN (n2) = n2. Since Q ∩ rM (ϕ) = 0, we have ϕ(n2) =
ϕ′⊕0|P (n2) 6= 0. Since n2 = πN (n2)+πP (n2), we get ϕ′πN (n2) 6= 0. So,
ϕ′(n2) 6= 0. This implies n /∈ rN (ϕ′). Therefore, rN (ϕ′) = πN (L). �

Corollary 2.5. Let R be a right Rickart ring and let e be any idempotent
in R. Then, M = eR is a Rickart module.

Proposition 2.6. Let M be an R-module with S = EndR(M). If S is
a von Neumann regular ring, then M is a Rickart module.

Proof. For any α ∈ S, there exists β ∈ S such that α = αβα. Define
e = βα. Then, e2 = e and α = αe. Hence, rM (α) = rM (e) = (1− e)M .
This completes the proof. �

Recall that M is called a duo module if every submodule N of M is
fully invariant, i.e., f(N) ≤ N, for all f ∈ S, while M is said to be a
weak duo module, if every direct summand of M is fully invariant. Every
duo module is weak duo (see [13] for details).

Proposition 2.7. Let M be a quasi-Baer and weak duo module with
S = EndR(M). Then, M is Rickart.

Proof. Let f ∈ S. By the hypothesis, there exists e2 = e ∈ S such that
eM = rM (SfS). Since f ∈ Sf ≤ SfS, eM = rM (SfS) ≤ rM (Sf) =
rM (f). There exists K ≤ M such that rM (f) = eM ⊕ K. Assume
that K 6= 0 to reach a contradiction. Since K is fully invariant and
K ≤ rM (f), we have SK ≤ K ≤ rM (f). So, fSK = 0 and SfSK = 0.
Therefore, K ≤ rM (SfS) = eM . This is the required contradiction.
Thus, M is a Rickart module. �

Let M be an R-module with S = EndR(M). Some properties of
R-modules do not characterize the ring R, namely there are reduced
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R-modules but R need not be reduced and there are abelian R-modules
but R is not an abelian ring. Because of this, we are currently inves-
tigating the reduced, rigid, symmetric, semicommutative, Armendariz
and abelian modules in terms of endomorphism ring S. In the sequel,
we continue studying relations between reduced, rigid, symmetric, semi-
commutative, Armendariz and abelian modules by using Rickart mod-
ules.

Definition 2.8. Let M be an R-module with S = EndR(M). A module
M is called reduced if fm = 0 implies Imf ∩ Sm = 0, for each f ∈ S,
and m ∈ M .

Following the definition of reduced module in [12] and [15], M is a
reduced module if and only if f2m = 0, implies fSm = 0 for each
f ∈ S, and m ∈ M . The ring R is called reduced if the right R-module
R is reduced by considering EndR(R) ∼= R, that is, for any a, b ∈ R,
ab = 0 implies aR∩Rb = 0, or equivalently R does not have any nonzero
nilpotent elements.

Example 2.9. Let p be any prime integer and M denote the Z-module
(Z/pZ) ⊕ Q. Then, S = EndR(M) is isomorphic to the matrix ring{[

a 0
0 b

]
: a ∈ Zp, b ∈ Q

}
and M is a reduced module.

In [10], Krempa introduced the notion of rigid ring. An endomorphism
α of a ring R is said to be rigid if aα(a) = 0 implies a = 0, for a ∈ R.
According to Hong et al. [8], R is said to be an α-rigid ring if there
exits a rigid endomorphism α of R. This “rigid ring” notion depends
heavily on the endomorphism of the ring R. In the following, we redefine
rigidness so that it will be independent of endomorphism and also will
be extended to modules.

Proof of the Proposition 2.10 is obvious.

Proposition 2.10. Let M be an R-module with S = EndR(M). For
any f ∈ S, the followings are equivalent.
(1) Kerf ∩ Imf = 0.
(2) For m ∈ M , f2m = 0 if and only if fm = 0.

A module M is called rigid if it satisfies Proposition 2.10 for every
f ∈ S. The ring R is said to be rigid if the right R-module R is rigid
by considering EndR(R) ∼= R, that is, for any a, b ∈ R, a2b = 0 implies
ab = 0.
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Lemma 2.11. Let M be an R-module with S = EndR(M). If M is a
rigid module, then S is a reduced ring, and therefore idempotents in S
are central.

Proof. Let f, g ∈ S with fg = 0 and fg′ = f ′g, for some f ′, g′ ∈ S.
For any m ∈ M, (gf)2m = 0. By the hypothesis, (gf)m = 0. Hence,
gf = 0. So, gfg′ = gf ′g = 0. From what we have proved, we obtain
f ′g = 0. The rest is clear. �

Recall that the module M is called extending if every submodule of
M is essential in a direct summand of M . We have the following result.

Theorem 2.12. If M is a rigid and extending module, then M is a
Rickart module.

Proof. Let f ∈ S and m ∈ Kerf . If mR is essential in M , then Kerf
is essential in M . Since M is rigid, i.e., Ker(f) ∩ Im(f) = 0, f = 0.
Assume that mR is not essential in M . There exists a direct summand K
of M such that mR is essential in K and M = K⊕K ′. Let πK denote the
canonical projection from M onto K. Then, the composition map fπK

has kernel mR+K ′, that is an essential submodule of M . By assumption,
fπK = 0. Hence, f(K) = 0, and Kerf = K ⊕ (Kerf) ∩K ′. Similarly,
there exists a direct summand U of K ′ containing (Kerf)∩K ′ essentially
so that K ′ = U ⊕ U ′. Let πU denote the canonical projection from M
onto U . Then, Ker(fπU ) is essential in M . Hence, Ker(fπU ) = 0. So,
f(U) = 0. Thus, Kerf = K ⊕ U . This is a direct summand of M . �

Proposition 2.13. Let R be a ring. Then, the followings are equivalent.
(1) R is a reduced ring.
(2) RR is a reduced module.
(3) RR is a rigid module.

Proof. Clear by definitions. �

In the module case, Proposition 2.13 does not hold in general.

Proposition 2.14. If M is a reduced module, then M is a rigid module.
The converse holds if M is a Rickart module.

Proof. For any f ∈ S, (SKerf) ∩ Imf = 0, by the hypothesis. Since
Kerf ∩ Imf ⊂ (Skerf) ∩ Imf , Kerf ∩ Imf = 0. Then, M is a rigid
module. Conversely, let M be a Rickart and rigid module. Assume that
fm = 0, for f ∈ S and m ∈ M . Then, there exists e2 = e ∈ S such that
rM (f) = eM . By Lemma 2.11, e is central in S. Then, fe = ef = 0,
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m = em. Let fm′ = gm ∈ fM ∩ Sm. We multiply fm′ = gm from the
left by e to obtain efm′ = fem′ = egm = gem = gm = 0. Therefore,
M is a reduced module. �

A ring R is called abelian if every idempotent is central, that is, ae =
ea, for any e2 = e, a ∈ R. Abelian modules are introduced in the context
by Roos [20] and studied by Goodearl and Boyle [7], Rizvi and Roman
[17]. A module M is called abelian if for any f ∈ S, e2 = e ∈ S, m ∈ M ,
we have fem = efm. Note that M is an abelian module if and only if
S is an abelian ring.

We mention some classes of abelian modules.

Examples 2.15. (1) Every weak duo module is abelian. In fact, let
e2 = e ∈ S, f ∈ S. For any m ∈ M, write m = em+(1−e)m. M Being
weak duo, we have fem ∈ eM and f(1 − e)m ∈ (1 − e)M . Multiplying
fm = fem + f(1− e)m by e from the left, we have efm = fem.
(2) Let M be a torsion Z-module. Then, M is abelian if and only if

M =
t⊕

i=1
Zpi

ni where the pi are distinct prime integers and the ni ≥ 1

are integers.
(3) Cyclic Z-modules are always abelian, but non-cyclic finitely generated
torsion-free Z-modules are not abelian.

Lemma 2.16. If M is a reduced module, then it is abelian. The converse
is true if M is a Rickart module.

Proof. One way is clear. For the converse, assume that M is a Rickart
and abelian module. Let f ∈ S, m ∈ M with fm = 0. We want to show
that fM∩Sm = 0. There exists e2 = e ∈ S such that m ∈ rM (f) = eM .
Then, em = m and fe = 0. Let fm1 = gm ∈ fM ∩Sm, where m1 ∈ M ,
g ∈ S. Multiplying fm1 = gm by e from the left. Then, we have
0 = fem1 = efm1 = egm = gem = gm. This completes the proof. �

Recall that a ring R is symmetric if abc = 0, implies acb = 0, for any
a, b, c ∈ R. For the module case, we have the following definition.

Definition 2.17. Let M be an R-module with S = EndR(M). A mod-
ule M is called symmetric if for any m ∈ M and f , g ∈ S, fgm = 0
implies gfm = 0.

Lemma 2.18. If M is a reduced module, then it is symmetric. The
converse holds if M is a Rickart module.
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Proof. Let fgm = 0, f, g ∈ S. Then, (fg)2(m) = 0. By the hypothesis,
fgSm ≤ (fgM) ∩ Sm = 0. So, fgfm = 0 and (gf)2m = 0. Similarly,
gfSm = 0, and so gfm = 0. Therefore, M is symmetric. For inverse
implication, let f ∈ S and m ∈ M with fm = 0. We prove that
fM ∩ Sm = 0. Let fm1 = gm ∈ fM ∩ Sm, where m1 ∈ M , g ∈ S.
There exists a central idempotent e ∈ S such that rM (f) = eM . Then,
feM = efM = 0 and em = m. Multiplying fm1 = gm from the left
by e, we have 0 = efm1 = egm = gem = gm. This completes the
proof. �

The next example shows that the reverse implication of the first state-
ment in Lemma 2.18 is not true, in general, i.e., there exists a symmetric
module which is neither reduced nor Rickart.

Example 2.19. Let Z denote the ring of integers. Consider the ring

R =
{[

a b
0 a

]
: a, b ∈ Z

}
and R-module M =

{[
0 a
a b

]
: a, b ∈ Z

}
.

Let f ∈ S and f

[
0 1
1 0

]
=

[
0 c
c d

]
. Multiplying the latter by

[
0 1
0 0

]
from the right, we have f

[
0 0
0 1

]
=

[
0 0
0 c

]
. For any

[
0 a
a b

]
∈ M ,

f

[
0 a
a b

]
=

[
0 ac
ac ad + bc

]
. Similarly, let g ∈ S and g

[
0 1
1 0

]
=[

0 c′

c′ d′

]
. Then, g

[
0 0
0 1

]
=

[
0 0
0 c′

]
. For any

[
0 a
a b

]
∈ M ,

g

[
0 a
a b

]
=

[
0 ac′

ac′ ad′ + bc′

]
. Then, it is easy to check that for any[

0 a
a b

]
∈ M ,

fg

[
0 a
a b

]
= f

[
0 ac′

ac′ ad′ + bc′

]
=

[
0 ac′c

ac′c ad′c + adc′ + bc′c

]
,

and

gf

[
0 a
a b

]
= g

[
0 ac
ac ad + bc

]
=

[
0 acc′

acc′ acd′ + ac′d + bcc′

]
.

Hence, fg = gf, for all f , g ∈ S. Therefore, S is commutative, and so
M is symmetric.
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Let f ∈ S be defined by f

[
0 a
a b

]
=

[
0 0
0 a

]
, where

[
0 a
a b

]
∈ M .

Then,

f

[
0 1
1 1

]
=

[
0 0
0 1

]
and f2

[
0 1
1 1

]
= 0. Hence, M is not rigid,

and so M is not reduced. Also, since rM (f) =
{[

0 0
0 b

]
: b ∈ Z

}
and M is indecomposable as a right R-module, rM (f) can not be gen-
erated by an idempotent as a direct summand of M . Hence, M is not
Rickart.

For an R-module M with S = EndR(M), M is called semicommuta-
tive if for any f ∈ S and m ∈ M , fm = 0 implies fSm = 0; see [3] for
details.

Proposition 2.20. Let M be an R-module with S = EndR(M). If M
is a semicommutative module, then S is semicommutative, and hence an
abelian ring.

Proof. Let f, g ∈ S and assume fg = 0. Then, fgm = 0 for all m ∈ M .
By the hypothesis, fhgm = 0, for all m ∈ M and h ∈ S. Hence,
fhg = 0, for all h ∈ S and so fSg = 0. Let e, f ∈ S with e2 = e.
Then, e(1 − e)M = 0. By the hypothesis, ef(1 − e)M = 0. Hence,
ef(1 − e) = 0, for all f ∈ S. Similarly, (1 − e)fe = 0, for all f ∈ S.
Thus, ef = fe, for all f ∈ S. �

Proposition 2.21. Let M be a semicommutative module. Consider the
followings.
(1) M is a Baer module.
(2) M is a quasi-Baer module.
(3) M is a Rickart module.
Then, (1) ⇔ (2) ⇒ (3).

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1) Let N be any submodule of M and n ∈ N . By the hypothesis,
lS(n) = lS(SnR). Hence lS(N) = lS(SN). Since SN is a fully invariant
submodule of M , by (2), lS(SN) = Se, for some e2 = e ∈ S. Then, M
is a Baer module.
(2) ⇒ (3) Let ϕ be in S. Since SϕS is a two sided ideal of S, there
exists an idempotent e ∈ S such that rM (SϕS) = eM . Also, since M is
semicommutative, rM (ϕ) = rM (ϕS) = rM (SϕS), and so rM (ϕ) = eM .
This completes the proof. �
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Lemma 2.22. If M is semicommutative, then it is abelian. The con-
verse holds if M is Rickart.

Proof. Let M be a semicommutative module and g ∈ S, e2 = e ∈ S.
Then, e(1 − e)m = 0, for all m ∈ M . Since M is semicommutative,
eg(1 − e)m = 0. So, we have egm = egem. Similarly, (1 − e)em = 0.
Then, gem = egem. Therefore, egm = gem. Suppose now that M is
abelian and Rickart module. Let f ∈ S, m ∈ M with fm = 0. Then,
m ∈ rM (f). Since M is a Rickart module, there exists an idempotent
e in S such that rM (f) = eM . Then, m = em, fe = 0. For any
h ∈ S, since M is abelian, fhm = fhem = fehm = 0. Therefore,
fSm = 0. �

In [16], the ring R is called Armendariz if for any f(x) =
∑n

i=0 aix
i,

g(x) =
∑s

j=0 bjx
j ∈ R[x], f(x)g(x) = 0 implies aibj = 0, for all i and j.

Let M be an R-module with S = EndR(M). The module M is called
Armendariz if the following condition (1) is satisfied, and M is called
Armendariz of power series type if the following condition (2) is satisfied:

(1) For any m(x) =
n∑

i=0
mix

i ∈ M [x] and f(x) =
s∑

j=0
ajx

j ∈ S[x],

f(x)m(x) = 0 implies ajmi = 0, for all i and j.

(2) For any m(x) =
∞∑
i=0

mix
i ∈ M [[x]] and f(x) =

∞∑
j=0

ajx
j ∈ S[[x]],

f(x)m(x) = 0 implies ajmi = 0, for all i and j.

Lemma 2.23. If the module M is Armendariz, then M is abelian. The
converse holds if M is a Rickart module.

Proof. Let m ∈ M , f2 = f ∈ S and g ∈ S. Consider

m1(x) = (1− f)m + fg(1− f)mx, m2(x) = fm + (1− f)gfmx ∈ M [x],

h1(x) = f − fg(1− f)x, h2(x) = (1− f)− (1− f)gfx ∈ S[x].
Then, hi(x)mi(x) = 0, for i = 1, 2. Since M is Armendariz, fg(1 −
f)m = 0 and (1− f)gfm = 0. Therefore, fgm = gfm.

Suppose that M is an abelian and Rickart module. Let m(t) =
s∑

i=0
mit

i ∈ M [t] and f(t) =
t∑

j=0
fjt

j ∈ S[t]. If f(t)m(t) = 0, then

(1) f0m0 = 0
(2) f0m1 + f1m0 = 0
(3) f0m2 + f1m1 + f2m0 = 0

· · ·
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By the hypothesis, there exists an idempotent e0 ∈ S such that
rM (f0) = e0M . Then, (1) implies f0e0 = 0 and m0 = e0m0. Multiply-
ing (2) by e0 from the left, we have 0 = e0f0m1 + e0f1m0 = f1e0m0 =
f1m0. By (2), f0m1 = 0. Let rM (f1) = e1M . So, f1e1 = 0 and
m0 = e1m0. Multiplying (3) by e0e1 from the left and using abelianness
of S and e0e1f2m0 = f2m0, we have f2m0 = 0. Then, (3) becomes
f0m2 + f1m1 = 0. Multiplying this equation by e0 from left and us-
ing e0f0m2 = 0 and e0f1m1 = f1m1, we have f1m1 = 0. From (3),
f2m0 = 0. Continuing in this way, we may conclude that fjmi = 0, for
all 1 ≤ i ≤ s and 1 ≤ j ≤ t. Hence, M is Armendariz. This completes
the proof. �

Corollary 2.24. If M is Armendariz of power series type, then M is
abelian. The converse holds if M is a Rickart module.

Proof. Similar to the proof of Lemma 2.23. �

We end with some observations concerning relationships between re-
duced, rigid, symmetric, semicommutative, Armendariz and abelian mod-
ules by using Rickart modules.

Theorem 2.25. If M is a Rickart module, then the followings are equiv-
alent.

(1) M is a rigid module.
(2) M is a reduced module.
(3) M is a symmetric module.
(4) M is a semicommutative module.
(5) M is an abelian module.
(6) M is an Armendariz module.
(7) M is an Armendariz of power series type module.

Proof. (1) ⇔ (2) Use Proposition 2.14. (2) ⇔ (3) Use Lemma 2.18. (2)
⇔ (5) Use Lemma 2.16. (4) ⇔ (5) Use Lemma 2.22. (5) ⇔ (6) Use
Lemma 2.23. (5) ⇔ (7) Use Corollary 2.24. �
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