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ON GENERALIZED TOPOLOGIES ARISING FROM

MAPPINGS

V. PAVLOVIĆ∗ AND A. S. CVETKOVIĆ

Communicated by Fariborz Azarpanah

Abstract. Given a mapping f : X → X, we naturally associate
to it a monotonic map γf : expX → expX from the power set of
X into itself, and thus inducing a generalized topology on X. Here,
we investigate some properties of generalized topologies as defined
by such a procedure.

1. Introduction

Various weakened forms of open sets and continuity have been consid-
ered in literature and vast research has been devoted to these concepts.
In [1], Császár gave a common framework to all of these by introduc-
ing the notion of generalized topologies. Since then, the investigation of
generalized topologies and generalized continuity has seen a rapid devel-
opment over the past decade (see [1, 2, 3, 5, 6, 7, 8, 9, 10, 11]) and our
work here is continuation of these efforts.

Let us briefly describe the plan of the paper. Following [1], we use
a method of generating generalized topologies on X via a specific γf :
expX → expX (where expX stands for the power set of X) that most
naturally arises from a given mapping f : X → X, where γfA is defined
to be the image of A ⊆ X under f . We then examine the basic structure
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of the generalized topology (GT for short) thus obtained, and show that
it is very unlikely for this GT to actually be a topology, indicating that
it is reasonable to consider it only in the context of GTs, and finally
investigate an aspect of products (as defined in [3]) of such GTs. By
and large, we are concerned with how the properties of the mapping f
reflect those of the induced GT.

2. Preliminaries

We begin with some notational explanations. Z is the set of all inte-
gers and N is the set of all positive integers. If f : X → Y is a mapping,
then we shall use the notations f→A and f←B to denote, respectively,
the image of A ⊆ X and the inverse image of B ⊆ Y under the mapping
f . For an equivalence relation ∼ on a set X and x ∈ X, we denote by
x/∼ the class of equivalence of x with respect to ∼, and X/∼ for the
corresponding quotient set of the classes of equivalence. For a sequence
x = (xn : n ∈ N), we put Set(x) = {xn : n ∈ N}. For all unexplained
topological notions, the reader is referred to [4].

Let us recall the basics of generalized topologies. A family σ of subsets
of a given set X is said to be a generalized topology on X (see [2]) if ∅ ∈ σ
and if

⋃
A ∈ σ, whenever A ⊆ σ. It is customary to call σ strong (see

[8]) if X ∈ σ (i.e.,
⋃
σ = X).

Following [1], we call γ : expX → expX monotonic if A ⊆ B ⊆ X
implies γA ⊆ γB (where γA stands for γ(A)) and denote by Γ(X), the
family of all such mappings γ. A set A ⊆ X is said to be γ-open if
A ⊆ γA, and it is shown in [1] that the family gγ of all γ-open subsets
of X constitutes a GT on X. Actually, all GTs on a given set X can be
obtained in this way (see Lemma 1.1 of [2]) and many papers use this
approach to study GTs (see, e.g., [9, 10, 11]).

One of the most natural ways to produce elements of Γ(X) is given by
the following. Suppose M ⊆ X and f : X → X. Consider the mapping
γf,M : expX → expX, defined by γf,MA = f→(A \M) \M . Then,
γf,M ∈ Γ(X). Putting γf = γf,∅ and denoting by λf the family of all
γf -open sets (i.e., λf = gγ), it shall be our goal to give some insights
into the structure and basic properties of the generalized topology λf .
Observe that for A ⊆ X, the set γfA is exactly the image f→A.

3. General considerations

The proposition below gives a simple criterion for γf -openness of sub-
sets, following directly from the definition of γf .
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Proposition 3.1. A ⊆ X is γf -open if and only if for every a ∈ A we
have that f←{a} ∩A 6= ∅.
Proof. Suppose that A is γf -open and let a ∈ A. Then, a ∈ A ⊆ γfA =
f→A, and so there must be some a0 ∈ A with f(a0) = a. Hence,
a0 ∈ f←{a} ∩A.

Now, suppose that f←{b}∩A 6= ∅, for all b ∈ A and let a ∈ A. There
is an x ∈ f←{a}∩A. Then, x ∈ A and a = f(x), and so a ∈ f→A = γfA.
Thus, A ⊆ γfA, i.e., A is γf -open. �

Remark 3.2. By the preceding proposition λf is strong if and only if
f is an onto mapping.

It may seem that for a generalized topology gϕ, ϕ ∈ Γ(X), to be of
the form λf , for some f : X → X, the mapping ϕ would have to satisfy
some very restrictive conditions. For example, it might seem obvious
that the sets ϕ{x} must be singletons, for all x ∈ X, (since this would
yield a natural candidate for f defined by ϕ{x} = {f(x)}). The next
example shows that this is actually not the case.

Example 3.3. Let 1, 2 ∈ X and let f : X → X be given by f(1) = 1 and
f(i) = 2, for i ∈ X \ {1}. Define ϕ : expX → expX by ϕ∅ = ∅, ϕ{1} =
{1}, and ϕA = {1, 2} otherwise. We have {∅, {1}, {2}, {1, 2}} = gϕ =
λf . However, the mapping ϕ obviously does not satisfy the condition of
sending singletons to singletons.

As introduced in [2], a mapping ψ : X → exp expX is said to be a
generalized neighborhood system if for each x ∈ X and each V ∈ ψ(x)
we have x ∈ V . Following [2], we denote by gψ the family of all such
A ⊆ X with the property that for each x ∈ A there exists V ∈ ψ(x)
such that V ⊆ A. Then, gψ is a GT on X (see Lemma 1.2 of [2]). All
GTs can be obtained in this way (see Lemma 1.3 of [2]).

Given f : X → X, let us call a sequence x = (xn : n ∈ N) of
elements of X an f -sequence if for each n ∈ N we have f(xn+1) = xn.
For such a sequence, we shall agree to say that it starts at x1. Let us
denote by Seqf (a) the set of all f -sequences starting at a ∈ X. Also, put
Str(f) = {a ∈ X : there is an f -sequence starting at a} or equivalently,
Str(f) = {a ∈ X : Seqf (a) 6= ∅}. We define ψf : X → exp expX by
ψf (x) = {Set(s) : s ∈ Seqf (x)}, for x ∈ X. Then, ψf is a generalized
neighborhood system and we have that the following proposition.

Proposition 3.4. For any f : X → X, the following statements hold:

(1) For each x ∈ X, we have ψf (x) ⊆ λf .
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(2) gψf = λf .
(3) The family {Set(x) : x is an f -sequence} is a base for λf .

Proof. (1) We show that Set(x) ∈ λf , for any f -sequence x. Let a ∈
Set(x). Then, a = xn, for some n ∈ N. As x is an f -sequence, we have
f(xn+1) = xn = a, and so xn+1 ∈ f←{a}∩Set(x). As a ∈ Set(x) was
arbitrary, Set(x) is in λf , by Proposition 3.1.

(2) Fix A ∈ λf and a ∈ A. We shall construct recursively an f -
sequence x of elements of A starting at a. This yields a ∈ Set(x) ⊆ A,
which is exactly what we need to show.

Put x1 = a. If xi ∈ A have been constructed for 1 ≤ i ≤ n so that
f(xi+1) = xi holds, then proceed as follows: since xn ∈ A and A is γf -
open, by Proposition 3.1, there is a b ∈ f←{xn} ∩ A. Define xn+1 = b.
Then, obviously xn+1 ∈ A and also f(xn+1) = xn.

The sequence (xn : n ∈ N) is as required.
(3) This is a direct consequence of (1) and (2). �

The following proposition gives a suitable description of the largest
γf -open set.

Proposition 3.5.
⋃
λf = Str(f).

Proof. We first show that Str(f) is γf -open. Let a ∈ Str(f). There
is an f -sequence x = (xi : i ∈ N) with x1 = a. Fix any n ∈ N.
x′ = (xn−1+i : i ∈ N) is an f -sequence starting at xn, and so xn ∈ Str(f).
Thus, a = x1 ∈ Set(x) ⊆ Str(f). By Proposition 3.4, the set Str(f) is
γf -open, and so clearly Str(f) ⊆

⋃
λf .

Now, fix a ∈
⋃
λf .

⋃
λf is γf -open, and so there is an f -sequence x

starting at a (such that a ∈ Set(x) ⊆
⋃
λf , but this is not needed here).

Then, by the very definition of Str(f), we have that a ∈ Str(f). We
have thus verified that

⋃
λf ⊆ Str(f). �

The following few auxiliary notions to be introduced in the next para-
graph will play crucial roles in depicting the structure of λf .

For f : X → X and x ∈ X, let us say that a is a weak fixed point of
f if there is an n ∈ N such that fn(a) = a. Let Cycle(f) denote the
set, possibly empty, of all weak fixed points of f . Clearly, Cycle(f) ⊆
Str(f) and a mapping kf : Cycle(f)→ N is defined by setting kf (x) =
min{m ∈ N : fm(x) = x}, for x ∈ Cycle(f). kf (x) shall be referred to
as the f -order of the point x ∈ Cycle(f).
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The next two lemmas will be used in the sequel often without any
explicit mention and are easy exercises, but we shall give proofs for the
sake of completeness.

Lemma 3.6. For any x ∈ Cycle(f) the following statements hold:

(1) if m is a nonnegative integer, then fmkf (x)(x) = x;
(2) if m is a nonnegative integer and fm(x) = x, then we have

m ≡ 0 (mod kf (x));
(3) if m and n are nonnegative integers, then fn(x) = fm(x) if and

only if n ≡ m (mod kf (x)).

Proof. (1) Use induction on m ≥ 0.
To prove (2), let m = nkf (x) + i, where 0 ≤ i < kf (x). Then,

x = fnkf (x)+i(x) = f i(x), where we have used (1). But, i < kf (x), and
so i = 0.

We now prove (3). Suppose first that n ≡ m (mod kf (x)) and let
n ≤ m. Then fm(x) = fn(fm−n(x)) = fn(x), by (1). Suppose now
that fm(x) = fn(x), n ≤ m. Choose l ∈ N with lkf (x) ≥ n. Then,

fm+(lkf (x)−n)(x) = fn+(lkf (x)−n)(x) = x, and so m−n ≡ 0 (mod kf (x)),
by (2). �

On the set Cycle(f), define the relation ∼f by a ∼f b
def⇐⇒ ∃n ∈

N (fn(a) = b).

Lemma 3.7. With f : X → X, we have that the following statements
hold:

(1) if a ∈ Cycle(f), b ∈ X and n is a nonnegative integer such that
fn(a) = b, then b ∈ Cycle(f) and b ∼f a;

(2) ∼f is an equivalence relation;
(3) if a ∈ Cycle(f), then a/∼f = {f i(a) : 0 ≤ i < kf (a)};
(4) if a is an f -sequence with Set(a) ⊆ Cycle(f), then ai = aj if and

only if i ≡ j (mod kf (a1)).

Proof. (1) Write n = mkf (a) + i, where 0 ≤ i < kf (a). Then, b =

fn(a) = f i(a), and so fkf (a)−i(b) = fkf (a)−i(f i(a)) = fkf (a)(a) = a.
Thus, we would have b ∼f a if we could show that b ∈ Cycle(f). But,
for r = kf (a)−i ∈ N, it follows from f r(b) = a that f r+n(b) = fn(a) = b,
and hence b ∈ Cycle(f).

(2) Reflexivity and transitivity of the relation ∼f are immediate from
the definition, and by part (1) it follows that it is symmetric.
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(3) {f i(a) : 0 ≤ i < kf (a)} ⊆ a/∼f follows directly from the definition
of ∼f . On the other hand, if a ∼f b, then we can find an integer i with
0 ≤ i < kf (a) and f i(a) = b just as we did in the proof of (1).

(4) Let a = (am : m ∈ N) be an f -sequence with {am : m ∈ N} ⊆
Cycle(f). Fix i, j ∈ N and denote l = kf (a1). Take any integer n >
max{i, j} + l. We have fn−1(an) = a1 and an, a1 ∈ Cycle(f), and
so an ∼f a1. Thus, a1 ∼f an, and therefore, as in the proof of (1),
there is an integer r such that 0 ≤ r < l and f r(an) = a1. Now,
a1 = f r(an) = an−r and n − r > n − l > max{i, j}, and so both
n − r − i and n − r − j are positive integers, and also fn−r−i(a1) = ai
and fn−r−j(a1) = aj .

We now have ai = aj ⇐⇒ fn−r−i(a1) = fn−r−j(a1) ⇐⇒ i ≡ j (mod
kf (a1)), by Lemma 3.6. �

Theorem 3.8. If f : X → X and X is a finite set then

(1) the set {a/∼f : a ∈ Cycle(f)} is a base for λf ;

(2) card(λf ) = 2card(Cycle(f)/∼f ).

Proof. (1) Let B = {a/∼f : a ∈ Cycle(f)} and L = {Set(x) : x is an
f -sequence}. By Proposition, 3.4 it suffices to prove B = L.

Take an a ∈ Cycle(f) and put l = kf (a). Define, for n ∈ N, xn =

f l+1−r(a), where 0 ≤ i < l and n ≡ r (mod l). Then, x ∈ Seqf (a) and
Set(x) = {f i(a) : 0 ≤ i < kf (a)} = a/∼f . Thus, B ⊆ L.

Let x = (xi : i ∈ N) be an f -sequence. As X is finite, there is some
n ∈ N such that {xi : i ∈ N} = {xi : 1 ≤ i ≤ n}.

Fix i > n. There is an integer j with 1 ≤ j ≤ n and xi = xj =
f i−j(xi), and so xi ∈ Cycle(f).

Fix any integer i such that 1 ≤ i ≤ n. Now, xn+1 ∈ Cycle(f) and
fn+1−i(xn+1) = xi, and so by (1) of Lemma 3.7, we get that xi ∈
Cycle(f). Hence Set(x) ⊆ Cycle(f), and by (4) of Lemma 3.7, Set(x) =
{xi : 1 ≤ i ≤ kf (x1)} = {f i(x1) : 0 ≤ i < kf (x1)} = x1/∼f . This shows
that L ⊆ B.

(2) Fix a transversal T ⊆ Cycle(f) of the relation ∼f and put B =
{a/∼f : a ∈ T}. Then, B = {a/∼f : a ∈ Cycle(f)} and card(B) =
card(T ) = card(Cycle(f)/ ∼f ). Now, B is a base for λf and elements
of B are nonempty pairwise disjoint. Thus, for any A ∈ λf , there is
a unique A ⊆ B with A =

⋃
A. The assertion of (2) now directly

follows. �
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Theorem 3.9. If f : X → X is a bijection, then λf is a topology and
there are cardinals κ and µ and nα ∈ N, for α < κ, such that the space
(X,λf ) is homeomorphic to the topological sum

[⊕0≤α<κ(Znα , {∅, Znα})]⊕ [⊕0≤α<µ(Z,R)],

where we have denoted Zm = {k ∈ N : 1 ≤ k ≤ m}, for m ∈ N, and
R = {{n ∈ Z : n ≥ m} : m ∈ Z} is the right order topology on Z as
called, e.g., in [12].

Proof. Fix x ∈ X. Since f is onto, λf is strong, i.e., X =
⋃
λf ∈ λf ,

and by Proposition 3.5, X = Str(f). Thus, Seqf (x) 6= ∅. Now, let a, b ∈
Seqf (x). Since f is injective, an easy induction on n ∈ N establishes
an = bn, i.e., a = b. Thus, there must be exactly one f -sequence starting
at x. Denote it by s(x) = (si(x) : i ∈ N).

To prove that λf is closed under taking intersections of finite sub-
families, it suffices to show, by virtue of Proposition 3.4, that if a =
(an : n ∈ N) and b = (bn : n ∈ N) are f -sequences and x ∈ Set(a)∩
Set(b), then there is an f -sequence c = (cn : n ∈ N) with x ∈ Set(c) ⊆
Set(a)∩ Set(b). Given such x, a and b, we can find positive integers n1

and n2 such that x = an1 = bn2 . Then, a′ = (an1−1+m : m ∈ N) and
b′ = (bn2−1+m : m ∈ N) are two f -sequences both starting at x, and
therefore they must coincide. But then, x ∈ Set(a′) =Set(b′) ⊆ Set(a)∩
Set(b), as required.

We now turn to describing the structure of the topology λf .
From (1) of Lemma 3.7, it follows that f→Cycle(f) = Cycle(f). But,

f is a bijection, and so f→[X \ Cycle(f)] = X \ Cycle(f).
Next, let κ = card(Cycle(f)/ ∼f ), fix a transversal {aα : α ∈ κ} of

the relation ∼f , put nα = kf (aα) and Xα = aα/∼f .
Let α ∈ κ, b ∈ Xα and t ∈ Seqf (b). For m ∈ N, define zm =

fkf (b)+1−r(b), where 0 ≤ r < kf (b) and m ≡ r (mod kf (b)). Then,
z ∈ Seqf (b). Therefore, as previously noted, it must be that z = t.
Thus, Set(t) = Set(z) = {f i(b) : 0 ≤ i < kf (b)} = b/∼f = a/∼f = Xα,
since a ∼f b. This means that Xα ∈ λf and that the relative topology
σf on Xα inherited from λf is the trivial topology σα = {∅, Xα}. Thus,
the space (Xα, σα) is homeomorphic to the space (Znα , {∅, Znα}).

Put µ = card(X \Cycle(f)) and let x ∈ X \Cycle(f). Define l(x) =
(li(x) : i ∈ Z) as follows: li(x) = si(x), for i ∈ N, and li(x) = f1−i(x), for
integers i ≤ 0. Also, put L(x) = {li(x) : i ∈ Z}, for x ∈ \Cycle(f). It is
easy to show that for x, y ∈ X \ Cycle(f), the following two assertions
hold:
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• if z ∈ L(x) ∩ L(y), then L(x) = L(y) = L(z) and
• if i, j ∈ Z and i 6= j, then li(x) 6= lj(x).

Thus, {L(x) : x ∈ X \Cycle(f)} is a partition of the set X \Cycle(f).
Fix any transversal {bβ : β < µ} of this partition. Set yα,i = li(bα), for
i ∈ Z and α < µ. Denote Yα = L(bα). It can easily be verified that
Yα ∈ λf , for α < µ, and that the relative topology τα on Yα inherited
from λf is τα = {{yα,i : i ∈ Z, k ≤ i} : k ∈ Z} ∪ {∅, Yα}. Since
yα,i 6= yα,j for i 6= j, we can conclude that the topological space (Yα, τα)
is homeomorphic to the space (Z,R).

The discussion above together with X = [
⋃
α∈κXα]∪[

⋃
β∈µ Yβ], where

Xα1 ∩ Xα2 = ∅, Xα2 ∩ Yβ2 = ∅ and Yβ1 ∩ Yβ2 = ∅, if α1 ∈ α2 ∈ κ and
β1 ∈ β2 ∈ µ, imply that the topological space (X,λf ) is homeomorphic
to the topological sum

[⊕0≤α<κ(Znα , {∅, Znα})]⊕ [⊕0≤α<µ(Z,R)].

�

A partial converse of Theorem 3.9 is given below.

Theorem 3.10. Suppose f : X → X has no fixed points and λf is a
topology on X. Then, f must be a bijection.

Proof. Since λf is a topology, it is strong generalized topology, and so, by
Remark 3.2, f is an onto, mapping. To prove injectivity, suppose there
are b 6= c with f(b) = f(c) = a. As f is onto, we have

⋃
λf = X, and

so, by Proposition 3.5, for each x ∈ X we have Seqf (x) 6= ∅. Thus, we
can find some y = (yi : i ∈ N) ∈ Seqf (b) and z = (zi : i ∈ N) ∈ Seqf (c).
Define y′ = (y′i : i ∈ N) and z′ = (z′i : i ∈ N) so that y′1 = z′1 = a and y′i =
yi−1, z

′
i = zi−1, for i > 1. As λf is a topology, the set Set(y′)∩Set(z′)

is in λf and it contains the point a, and hence by Proposition 3.4, there
is some s ∈ Seqf (a) such that a ∈ Set(s) ⊆ Set(y′)∩ Set(z′). From
a 6= f(a), it follows that s is not a constant sequence, and so there is
some x0 ∈ Set(s) \ {a}. But then, x0 ∈ Set(y)∩Set(z). Thus, there are
n1, n2 ∈ N such that x0 = yn1 = zn2 .

If n1 = n2, then b = y1 = fn1−1(yn1) = fn1−1(zn2) = fn2−1(zn2) =
z1 = c, which contradicts our assumption. Therefore, n1 6= n2 and we
may suppose, without loss of generality, that n1 > n2. Now, fn2−1(x0) =
fn2−1(zn2) = z1 = c and fn2−1(x0) = fn2−1(yn1) = yn1−n2+1 so that
yn1−n2+1 = c. Also, a = f(c) = f(yn1−n2+1) = yn1−n2 . Thus, there is a
least positive integer m0 with ym0 = a. Clearly, 2 ≤ m0 ≤ n1 − n2.
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Set y0 = a and define tnm0+i = yi−1, for any nonnegative integer n and
0 < i < m0 and tnm0 = ym0−1, for n ∈ N. The sequence t = (ti : i ∈ N)
is an f -sequence starting at a, the set Set(t)∩Set(z′) is in λf , and it
contains the point a and f(a) 6= a, and so, with the same reasoning as
before, we can find an x1 ∈Set(t)∩Set(z′) with x1 6= a. Then, x1 = zn3 ,
for some n3 ≥ 1. x1 ∈ Set(t) \ {a} = {y1, . . . , ym0−1}, and so x1 = yn4 ,
for some 1 ≤ n4 ≤ m0 − 1. Now, c = fn3−1(zn3) = fn3−1(x1) =
fn3−1(yn4) ∈ Set(t). Obviously, c 6= a, for otherwise, f(a) = f(c) = a.
Thus, c = yn5 , for some 1 ≤ n5 ≤ m0 − 1. We cannot have that
n5 = 1, because then, c = yn5 = y1 = b. Thus, n5 − 1 ∈ N. Hence,
yn5−1 = f(yn5) = f(c) = a, but this is not possible by the choice of m0,
since n5 − 1 < m0, and n5 − 1 ∈ N. �

The last few results show that essentially λf is worth investigating
exactly in the case when λf is not a topology.

4. On products

In [3], the notion of (Tychonoff) product of a family of topologies was
generalized. Given sets Xs, s ∈ S, and generalized topologies σs on Xs,
for s ∈ S, we define the product of the GTs, σs, as proposed by (see
Császár in [3], and also Shen [8]), and denote it by Ps∈S σs. In the case
of only two GTs, σ1 and σ2, we shall write σ1 ⊗ σ2 for their product.

Recall that the product of mappings fs : Xs → Ys, s ∈ S, is the
mapping ⊗s∈Sfs :

∏
s∈S Xs →

∏
s∈S Ys, defined by (⊗s∈Sfs)((xs : s ∈

S)) = (fs(xs) : s ∈ S) ∈
∏
s∈S Ys. In the case of only two mappings f1

and f2, we shall write f1 ⊗ f2 for their product.
If fs : Xs → Xs, s ∈ S, then we can consider two GTs on the same set∏
s∈S Xs. The first is the one induced by the product mapping ⊗s∈Sfs,

and the second is the product of the generalized topologies λfs , s ∈ S.
In the sequel, we shall look more closely into the relationship between
these two.

For s0 ∈ S, let us write ps0 :
∏
s∈S Xs → Xs0 for the projection

ps0((xs : s ∈ S)) = xs0 .

Theorem 4.1. Let fs : Xs → Xs, for s ∈ S, and denote f = ⊗s∈Sfs.
Then,

Ps∈Sλfs ⊆ λf .
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Proof. Let A ∈ Ps∈Sλfs be an element of the standard base for Ps∈S .
Then, there is a finite T ⊆ S and Bs ∈ λfs , for each s ∈ T , such that

A = [
⋂

s∈S\T

p←s (
⋃
λfs)] ∩ [

⋂
s∈T

p←s Bs].

We shall verify that A ∈ λf by checking the condition in Proposition
3.1. Let a ∈ A. Fix s ∈ S \ T . Then, ps(a) ∈

⋃
λfs ∈ λfs , and

so, by Proposition 3.1, there is some xs ∈
⋃
λfs with fs(xs) = ps(a).

Now, fix s ∈ T . Then, ps(a) ∈ Bs ∈ λfs , and so there must be some
xs ∈ Bs ∩ f←s {ps(a)}, i.e., xs ∈ Bs and fs(xs) = ps(a). Now, consider
x = (xs : s ∈ S) ∈

∏
s∈S Xs. By the choice of the points xs, we have that

x ∈ A. Furthermore, f(x) = a. Indeed, denote y = f(x). If s0 ∈ S, then
ps0(y) = ps0((⊗s∈Sfs)(x)) = fs0(x) = ps0(a). Thus, x ∈ A∩ f←{a}. �

The converse of Theorem 4.1 does not hold, in general. Instead of
giving a specific counterexample, we shall describe how to produce (The-
orem 4.3 below) all the counterexamples in the case of products of two
mappings. But, first we prove an auxiliary lemma. As usual, we let
f � A let restriction of function f to the subdomain A. Also, we let idA
to be the identity function of the set A.

Lemma 4.2. f � Cycle(f) is injective.

Proof. Suppose x, y ∈ Cycle(f) and f(x) = f(y) = z. Then, z ∈
Cycle(f), by (1) of Lemma 3.7, and thus we have x ∼f z and y ∼f z. It
follows now that z ∼f x and z ∼f y, i.e., there are nonnegative integers
n1 and n2 such that fn1(z) = x and fn2(z) = y. Thus, fn1+1(z) =
f(x) = z = f(y) = fn2+1(z), and hence n1 ≡ n2 (mod kf (z)), and
consequently y = fn2(z) = fn1(z) = x. �

Theorem 4.3. λf1⊗f2 = λf1 ⊗ λf2 if and only if one of the following
three conditions holds:

(1) f1 � Str(f1) = idStr(f1);
(2) f2 � Str(f2) = idStr(f2);
(3) Cycle(f1) = Str(f1) and Cycle(f2) = Str(f2) and for all (u, v) ∈

Cycle(f1) × Cycle(f2), we have that gcd(kf1(u), kf2(v)) = 1,
where gcd(n,m) stands for the greatest common divisor of n and
m.

Proof. Note first that λf1⊗f2 = λf1 ⊗ λf2 is actually equivalent, by The-
orem 4.1, to λf1⊗f2 ⊆ λf1 ⊗ λf2 .

For necessity, suppose λf1⊗f2 ⊆ λf1 ⊗ λf2 holds.
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Case 1. There is some u ∈ Str(f1) \ Cycle(f1).
Let a ∈ Seqf1(u) be arbitrary. Take any v ∈ Str(f2) and any b ∈

Seqf2(v). Define the sequence s by si = 〈ai, bi〉. Then, obviously, s ∈
Seqf1⊗f2((u, v)), and so (u, v) ∈ Set(s) ∈ λf1⊗f2 ⊆ λf1 ⊗ λf2 . Therefore,
there are c ∈ Seqf1(u) and d ∈ Seqf2(v) such that (u, v) ∈ Set(c)×
Set(d) ⊆ Set(s), i.e.,

(u, v) ∈ {(ci, dj) : (i, j) ∈ N2} ⊆ {(ai, bi) : i ∈ N}.

In particular, (a1, d2) = (c1, d2) = (ai, bi), for some i ∈ N, and hence
a1 = ai. But, u is not a weak fixed point of f1, and so it must be i = 1.
It now follows that b1 = d2, and consequently f2(v) = f2(b1) = f2(d2) =
d1 = v. As v ∈ Str(f2) was arbitrary, we conclude that (2) holds.

Case 2. There is some v ∈ Str(f2) \ Cycle(f2). Reasoning, in total
analogy to the previous case, we get that (1) must be satisfied.

Case 3. Suppose now Cycle(f1) = Str(f1) and Cycle(f2) = Str(f2).
Let (u, v) ∈ Cycle(f1)×Cycle(f2). Put l1 = kf1(u) and l2 = kf2(v) and
suppose that 1 < gcd(l1, l2) = l′.

Define the sequence a ∈ Seqf1(u) by periodically repeating the fi-

nite sequence (f l11 (u), f l1−1
1 (u), . . . , f1(u)), or more formally let an =

f l1+1−i
1 (u), where 0 ≤ i < l1 and n ≡ i (mod l1). Similarly, let

b ∈ Seqf2(v) be defined by bn = f l1+1−i
2 (v), where 0 ≤ i < l2 and

n ≡ i (mod l2). Define s ∈ Seqf1⊗f2((u, v)) by si = 〈ai, bi〉. As before,
we obtain sequences c ∈ Seqf1(u) and d ∈ Seqf2(v) such that (u, v) ∈
{(ci, dj) : (i, j) ∈ N2} ⊆ {(ai, bi) : i ∈ N}. Using Lemma 4.2 and the fact
that Cycle(f1) = Str(f1) and Cycle(f2) = Str(f2), we can conclude
that a = c and b = d. Hence, {(ai, bj) : (i, j) ∈ N2} ⊆ {(ai, bi) : i ∈ N}.

Let l1 = n1l
′ and l2 = n2l

′. We must have that (a2, b1) = (ai, bi) for
some i ∈ N. But then, i ≡ 2 (mod l1) and i ≡ 1 (mod l2), and so, for
some nonnegative integers m1 and m2, i = 2 + m1l1 = 1 + m1l2, i.e.,
1 = l′(m2n2 −m1n1), which is a contradiction, since l′ > 1.

For sufficiency, suppose that (1) holds. Let (u, v) ∈ Str(f1 ⊗ f2) and
s ∈ Seqf1⊗f2((u, v)) be arbitrary. Then, s = ((ai, bi) : i ∈ N), for some
a ∈ Seqf1(u) and b ∈ Seqf2(v). As obviously {ai : i ∈ N} ⊆ Str(f1),
we have that ai = u, for all i ∈ N. But then, Set(s) = {u}× Set(b) =
Set(a)× Set(b) ∈ λf1 ⊗ λf2 .

If (2) holds, then λf1⊗f2 = λf1 ⊗ λf2 is proved exactly as in the case
(1).

Suppose now that (3) holds. Let (u, v) ∈ Str(f1⊗f2) and s ∈ Seqf1⊗f2
((u, v)) be arbitrary. Then, s = ((ai, bi) : i ∈ N), for some a ∈ Seqf1(u)
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and b ∈ Seqf2(v). As Cycle(fj) = Str(fj), for j ∈ {1, 2}, we have that
{ai : i ∈ N} ⊆ Cycle(f1) and {bi : i ∈ N} ⊆ Cycle(f2). Thus, by
Lemma 3.7, ai = aj if and only if i ≡ j (mod l1) and bi = bj if and
only if i ≡ j (mod l2), where l1 = kf1(u) and l2 = kf2(v). Let us show
that Set(s) = Set(a)× Set(b) (∈ λf1 ⊗ λf2). Take any (ai, bj) ∈ Set(a)×
Set(b). By (3), we have that gcd(l1, l2) = 1, and so by the Chinese
Remainder Theorem, there is some n ∈ N such that n ≡ i (mod l1) and
n ≡ j (mod l2). But then, (an, bn) = (ai, bj) ∈ Set(s). �

Corollary 4.4. Let f1 : X1 → X1 and f2 : X2 → X2 be both onto.
Then, λf1⊗f2 = λf1 ⊗ λf2 if and only if
– one of the mappings is the identity mapping, or
– all points of Xi are weak fixed points of fi, i ∈ {1, 2}, and any f1-order
of a point of X1 is coprime with any f2-order of a point of X2. �
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Email: vlada@pmf.ni.ac.rs

Aleksandar S. Cvetković
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