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ON A SUBCLASS OF MULTIVALENT ANALYTIC

FUNCTIONS ASSOCIATED WITH AN EXTENDED

FRACTIONAL DIFFERINTEGRAL OPERATOR

J. L. LIU

Communicated by Mehdi Radjabalipour

Abstract. Making use of an extended fractional differintegral op-
erator (introduced recently by Patel and Mishra), we introduce a
new subclass of multivalent analytic functions and investigate cer-
tain interesting properties of the subclass.

1. Introduction and preliminaries

Let A(p) denote the class of functions of the form

f(z) = zp +
∞∑
n=1

anz
n+p (p ∈ N = {1, 2, 3, · · · }),(1.1)

which are analytic in the open unit disk U = {z : z ∈ C and |z| < 1}.
Suppose that f(z) and g(z) are analytic in U . We say that the

function f(z) is subordinate to g(z) in U , and we write f(z) ≺ g(z)
(z ∈ U), if there exists an analytic function w(z) in U with w(0) = 0
and |w(z)| < 1 for all z ∈ U , such that f(z) = g(w(z)) (z ∈ U). If g(z)
is univalent in U , then the following equivalence relationship holds:

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).
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For functions fj(z) ∈ A(p) (j = 1, 2), given by

fj(z) = zp +
∞∑
n=1

an,jz
n+p (j = 1, 2),

we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(f1 ∗ f2)(z) = zp +
∞∑
n=1

an,1an,2z
n+p = (f2 ∗ f1)(z).

In [10] (see also [11] and [16]), Owa introduced the following defini-
tions of fractional calculus (that is, fractional integrals and fractional
derivatives of an arbitrary order).

Definition 1.1. The fractional integral of order λ (λ > 0) is defined,
for a function f(z), analytic in a simply-connected region of the complex
plane containing the origin, by

D−λz f(z) =
1

Γ(λ)

∫ z

0

f(ξ)

(z − ξ)1−λdξ,

where the multipicity of (z− ξ)λ−1 is removed by requiring log(z− ξ) to
be real when z − ξ > 0.

Definition 1.2. Under the hypothesis of Definition 1.1 , the fractional
derivative of f(z) of order λ (λ ≥ 0) is defined by

Dλ
z f(z) =

{
1

Γ(1−λ)
d
dz

∫ z
0

f(ξ)
(z−ξ)λdξ (0 ≤ λ < 1),

dn

dznD
λ−n
z f(z) (n ≤ λ < n+ 1;n ∈ N ∪ {0}),

where the multiplicity of (z − ξ)−λ is removed as in Definition 1.1.

Very recently, Patel and Mishra [12] defined the extended fractional

differintegral operator Ω
(λ,p)
z : A(p) → A(p) for a function f(z) ∈ A(p)

and for a real number λ (−∞ < λ < p+ 1) by

Ω(λ,p)
z f(z) =

Γ(p+ 1− λ)

Γ(p+ 1)
zλDλ

z f(z),(1.2)

where Dλ
z f is, respectively the fractional integral of f of order −λ, when

−∞ < λ < 0, and the fractional derivative of f of order λ, when 0 ≤
λ < p+ 1.
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It is easily seen from (1.2) that for a function f(z) of the form (1.1),
we have

Ω(λ,p)
z f(z)

= zp +

∞∑
n=1

Γ(n+ p+ 1)Γ(p+ 1− λ)

Γ(p+ 1)Γ(n+ p+ 1− λ)
anz

n+p (z ∈ U)(1.3)

and

z(Ω(λ,p)
z f(z))′

= (p− λ)Ω(λ+1,p)
z f(z) + λΩ(λ,p)

z f(z) (−∞ < λ < p; z ∈ U).(1.4)

We also note from (1.3) and (1.4) that

Ω(−1,p)
z f(z) =

p+ 1

z

∫ z

0
f(t)dt, Ω(0,p)

z f(z) = f(z),

Ω(1,p)
z f(z) =

zf ′(z)

p
,

and, in general,

Ω(m,p)
z f(z) =

(p−m)!zmf (m)(z)

p !
(m ∈ N ;m < p+ 1).

The fractional differential operator Ω
(λ,p)
z with 0 ≤ λ < 1 was investi-

gated by Srivastava and Aouf [17] and studied by Srivastava and Mishra
[18]. Patel and Mishra [12] also obtained several interesting properties
and characteristics for certain subclasses of multivalent analytic func-

tions involving the differintegral operator Ω
(λ,p)
z , when −∞ < λ < p+ 1.

We further observe that Ω
(λ,1)
z = Ωλ

z is the operator introduced and
studied by Owa and Srivastava [11]. In the present sequel to these ear-
lier works, we shall derive certain interesting properties of the extended

fractional differintegral operator Ω
(λ,p)
z .

Let P be the class of functions h(z) with h(0) = 1, which are analytic
and convex univalent in U .

Recently, many authors have introduced and studied some new sub-
classes of analytic functions defined by various other linear operators
(see, e.g., Dziok and Srivastava [1, 2], Srivastava et al. [17–20], Yang et
al. [23], Patel et al. [12,13]], Liu and Srivastava [7], Liu [5,6], and Wang
et al. [21]). Now, we introduce the following subclass of A(p) associated

with the operator Ω
(λ,p)
z .



110 Liu

Definition 1.3. A function f(z) ∈ A(p) is said to be in the class
Hp(λ, α;h), if it satisfies the subordination condition,

(1− α)z−pΩ(λ,p)
z f(z) +

α

p
z−p+1(Ω(λ,p)

z f(z))′ ≺ h(z),(1.5)

where α is a complex number and h(z) ∈ P .

Remark 1.4.

(1) For p = 1, λ = 1, α = 1 and h(z) = 1+z
1−z , H1(1, 1; 1+z

1−z ) coincides

with R, as investigated by Singh and Singh [15].
(2) For p = 1, λ = 1 and h(z) = 1+az

1+bz (−1 ≤ b < 1, a > b),

H1(1, α; 1+az
1+bz ) reduces to H(α, a, b), as studied by Yang [22].

(3) For p = 1, λ = 1 and h(z) = 1+Mz(M > 0), H1(1, α; 1+Mz) =
S(α,M), as introduced and studied by Zhou and Owa [24] and
Liu [4] respectively.

A function f(z) ∈ A(1) is said to be in the class S∗(ρ), if

Re

{
zf ′(z)

f(z)

}
> ρ (z ∈ U),(1.6)

for some ρ(ρ < 1). When 0 ≤ ρ < 1, S∗(ρ) is the class of starlike
functions of order ρ in U . A function f(z) ∈ A(1) is said to be prestarlike
of order ρ in U , if

z

(1− z)2(1−ρ)
∗ f(z) ∈ S∗(ρ) (ρ < 1).(1.7)

We denote this class by R(ρ) (see [14]). It is clear from (1.6) and (1.7)
that a function f(z) ∈ A(1) is in the class R(0) if and only if f(z) is
convex univalent in U and

R

(
1

2

)
= S∗

(
1

2

)
.

We need the following lemmas in order to derive our main results for
the class Hp(λ, α;h).

Lemma 1.5. Let g(z) be analytic in U and h(z) be analytic and convex
univalent in U with h(0) = g(0). If

g(z) +
1

µ
zg′(z) ≺ h(z),(1.8)

where Reµ ≥ 0 and µ 6= 0, then

g(z) ≺ h̃(z) = µz−µ
∫ z

0
t µ−1h(t)dt ≺ h(z),
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and h̃(z) is the best dominant of (1.8).

Lemma 1.6. Let ρ < 1, f(z) ∈ S∗(ρ) and g(z) ∈ R(ρ). Then, for any
analytic function F (z) in U ,

g ∗ (fF )

g ∗ f
(U) ⊂ co(F (U)),

where co(F (U)) denotes the closed convex hull of F (U).

Lemma 1.5 is due to Miller and Mocanu [9] (see also [3]) and Lemma
1.6 can be found in Ruscheweyh [14].

Lemma 1.7. (see [8]). Let g(z) = 1 +
∑∞

n=k bnz
n (k ∈ N) be analytic

in U . If Re{g(z)} > 0 (z ∈ U), then

Re{g(z)} ≥ 1− |z|k

1 + |z|k
(z ∈ U).

2. Main results

Theorem 2.1. Let 0 ≤ α1 < α2. Then

Hp(λ, α2;h) ⊂ Hp(λ, α1;h).

Proof. Let 0 ≤ α1 < α2 and suppose that

g(z) = z−pΩ(λ,p)
z f(z),(2.1)

for f(z) ∈ Hp(λ, α2;h). Then, the function g(z) is analytic in U with
g(0) = 1. Differentiating both sides of (2.1) with respect to z and using
(1.5), we have

(1− α2)z−pΩ(λ,p)
z f(z) +

α2

p
z−p+1(Ω(λ,p)

z f(z))′

= g(z) +
α2

p
zg′(z) ≺ h(z).(2.2)

Hence, an application of Lemma 1.5 yields

g(z) ≺ h(z).(2.3)
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Noting that 0 ≤ α1
α2

< 1 and that h(z) is convex univalent in U , it

follows from (2.1), (2.2) and (2.3) that

(1− α1)z−pΩ(λ,p)
z f(z) +

α1

p
z−p+1(Ω(λ,p)

z f(z))′

=
α1

α2

(
(1− α2)z−pΩ(λ,p)

z f(z) +
α2

p
z−p+1(Ω(λ,p)

z f(z))′
)

+

(
1− α1

α2

)
g(z)

≺ h(z).

Thus, f(z) ∈ Hp(λ, α1;h), and the proof of Theorem 2.1 is complete. �

Remark 2.2. Theorem 2.1 generalizes a result by Yang [22].

Theorem 2.3. Let α > 0, γ > 0 and f(z) ∈ Hp(λ, α; γh + 1 − γ). If
γ ≤ γ0, where

γ0 =
1

2

(
1− p

α

∫ 1

0

u
p
α
−1

1 + u
du

)−1

,(2.4)

then f(z) ∈ Hp(λ, 0;h). The bound γ0 is sharp when h(z) = 1
1−z .

Proof. Define

g(z) = z−pΩ(λ,p)
z f(z),(2.5)

for f(z) ∈ Hp(λ, α; γh+ 1− γ), with α > 0 and γ > 0. Then, we have

g(z) +
α

p
zg′(z) = (1− α)z−pΩ(λ,p)

z f(z) +
α

p
z−p+1(Ω(λ,p)

z f(z))′

≺ γh(z) + 1− γ.

Hence, an application of Lemma 1.5 yields

g(z) ≺ γp

α
z−

p
α

∫ z

0
t
p
αh(t)dt+ 1− γ = (h ∗ ψ)(z),(2.6)

where

ψ(z) =
γp

α
z−

p
α

∫ z

0

t
p
α
−1

1− t
dt+ 1− γ.(2.7)



Subclass of multivalent analytic functions 113

If 0 < γ ≤ γ0, where γ0 > 1 is given by (2.4), then it follows from (2.7)
that

Reψ(z) =
γp

α

∫ 1

0
u
p
α
−1Re

(
1

1− uz

)
du+ 1− γ

>
γp

α

∫ 1

0

u
p
α
−1

1 + u
du+ 1− γ

≥ 1

2
(z ∈ U).

Now,by using the Herglotz representation for ψ(z), from (2.5) and (2.6)
we arrive at

z−pΩ(λ,p)
z f(z) ≺ (h ∗ ψ)(z) ≺ h(z),

because h(z) is convex univalent in U . This shows that f(z) ∈ Hp(λ, 0;h).
For h(z) = 1

1−z and f(z) ∈ A(p) defined by

z−pΩ(λ,p)
z f(z) =

γp

α
z−

p
α

∫ z

0

t
p
α
−1

1− t
dt+ 1− γ,

it is easy to verify that

(1− α)z−pΩ(λ,p)
z f(z) +

α

p
z−p+1(Ω(λ,p)

z f(z))′ = γh(z) + 1− γ.

Thus, f(z) ∈ Hp(λ, α, ; γh+ 1− γ). Also, for γ > γ0, we have

Re{z−pΩ(λ,p)
z f(z)} → γp

α

∫ 1

0

u
p
α
−1

1 + u
du+ 1− γ < 1

2
(z → −1),

which implies that f(z) /∈ Hp(λ, 0;h). Hence, the bound γ0 cannot be
increased when h(z) = 1

1−z . �

Theorem 2.4. Let f(z) ∈ Hp(λ, α;h),

g(z) ∈ A(p) and Re{z−pg(z)} > 1

2
(z ∈ U).(2.8)

Then

(f ∗ g)(z) ∈ Hp(λ, α;h).
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Proof. For f(z) ∈ Hp(λ, α;h) and g(z) ∈ A(p), we have

(1− α)z−pΩ(λ,p)
z (f ∗ g)(z) +

α

p
z−p+1(Ω(λ,p)

z (f ∗ g)(z))′

= (1− α)(z−pg(z)) ∗ (z−pΩ(λ,p)
z f(z))

+
α

p
(z−pg(z)) ∗ (z−p+1(Ω(λ,p)

z f(z))′)

= (z−pg(z)) ∗ ψ(z),(2.9)

where

ψ(z) = (1− α)z−pΩ(λ,p)
z f(z) +

α

p
z−p+1(Ω(λ,p)

z f(z))′

≺ h(z).(2.10)

In view of (2.8), the function z−pg(z) has the Herglotz representation,

z−pg(z) =

∫
|x|=1

dµ(x)

1− xz
(z ∈ U),(2.11)

where µ(x) is a probability measure defined on the unit circle |x| = 1
and ∫

|x|=1
dµ(x) = 1.

Since h(z) is convex univalent in U , it follows from (2.9), (2.10) and
(2.11) that

(1− α)z−pΩ(λ,p)
z (f ∗ g)(z) +

α

p
z−p+1(Ω(λ,p)

z (f ∗ g)(z))′

=

∫
|x|=1

ψ(xz)dµ(x) ≺ h(z).

This shows that (f ∗ g)(z) ∈ Hp(λ, α;h) and the theorem is proved. �

Remark 2.5. For p = 1, λ = 1 and h(z) = 1+az
1+bz ( − 1 ≤ b < 1, a > b),

we get a result by Yang [22](Throrem 4).

Corollary 2.6. Let f(z) ∈ Hp(λ, α;h) be given by (1.1) and let

sm(z) = zp +

m−1∑
n=1

anz
n+p (m ∈ N \ {1}).

Then, the function

σm(z) =

∫ 1

0
t−psm(tz)dt

is also in the class Hp(λ, α;h).
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Proof. We have

σm(z) = zp +

m−1∑
n=1

an
n+ 1

zn+p

= (f ∗ gm)(z) (m ∈ N \ {1}),(2.12)

where

f(z) = zp +
∞∑
n=1

anz
n+p ∈ Hp(λ, α;h)

and

gm(z) = zp +

m−1∑
n=1

zn+p

n+ 1
∈ A(p).

Also, for m ∈ N \ {1}, it is known from [8] that

Re{z−pgm(z)} = Re

{
1 +

m−1∑
n=1

zn

n+ 1

}
>

1

2
(z ∈ U).(2.13)

In view of (2.12) and (2.13), an application of Theorem 2.4 leads to
σm(z) ∈ Hp(λ, α;h). �

Theorem 2.7. Let f(z) ∈ Hp(λ, α;h),

g(z) ∈ A(p) and z−p+1g(z) ∈ R(ρ) (ρ < 1).

Then

(f ∗ g)(z) ∈ Hp(λ, α;h).

Proof. For f(z) ∈ Hp(λ, α;h) and g(z) ∈ A(p), from (2.9) (used in the
proof of Theorem 2.4), we can write

(1− α)z−pΩ(λ,p)
z (f ∗ g)(z) +

α

p
z−p+1(Ω(λ,p)

z (f ∗ g)(z))′

=
(z−p+1g(z)) ∗ (zψ(z))

(z−p+1g(z)) ∗ z
(z ∈ U),(2.14)

where ψ(z) is defined as in (2.10).
Since h(z) is convex univalent in U ,

ψ(z) ≺ h(z), z−p+1g(z) ∈ R(ρ) and z ∈ S∗(ρ) (ρ < 1),

the desired result follows from (2.14) and Lemma 1.6. �

Taking ρ = 0 and ρ = 1
2 , Theorem 2.7 reduces to the following.
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Corollary 2.8. Let f(z) ∈ Hp(λ, α;h) and let g(z) ∈ A(p) satisfy any
one of the following conditions:

(i) z−p+1g(z) is convex univalent in U
or

(ii) z−p+1g(z) ∈ S∗(1
2).

Then

(f ∗ g)(z) ∈ Hp(λ, α;h).

Theorem 2.9. Let f(z) ∈ Hp(λ, α;h). Then, the function F (z), defined
by

F (z) =
µ+ p

zµ

∫ z

0
tµ−1f(t)dt (Reµ > −p)(2.15)

is in the class Hp(λ, α; h̃), where

h̃(z) = (µ+ p)z−(µ+p)

∫ z

0
tµ+p−1h(t)dt ≺ h(z).

Proof. For f(z) ∈ A(p) and Reµ > −p, we find from (2.15) that F (z) ∈
A(p) and

(µ+ p)f(z) = µF (z) + zF ′(z).(2.16)

Define G(z) by

zpG(z) = (1− α)Ω(λ,p)
z F (z) +

α

p
z(Ω(λ,p)

z F (z))′.(2.17)

Differentiating both sides of (2.17) with respect to z, we get

zG′(z) + pG(z) = (1− α)z−pΩ(λ,p)
z (zF ′(z))

+
α

p
z−p+1(Ω(λ,p)

z (zF ′(z)))′.(2.18)
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Furthermore, it follows from (2.16), (2.17) and (2.18) that

(1− α)z−pΩ(λ,p)
z f(z) +

α

p
z−p+1(Ω(λ,p)

z f(z))′

= (1− α)z−pΩ(λ,p)
z

(
µF (z) + zF ′(z)

µ+ p

)
+
α

p
z−p+1

(
Ω(λ,p)
z

(
µF (z) + zF ′(z)

µ+ p

))′
=

µ

µ+ p
G(z) +

1

µ+ p
(zG′(z) + pG(z))

= G(z) +
zG′(z)

µ+ p
.(2.19)

Let f(z) ∈ Hp(λ, α;h). Then, by (2.19),

G(z) +
zG′(z)

µ+ p
≺ h(z) (Reµ > −p),

and so it follows from Lemma 1.5 that

G(z) ≺ h̃(z) = (µ+ p)z−(µ+p)

∫ z

0
tµ+p−1h(t)dt ≺ h(z).

Therefore, we conclude that

F (z) ∈ Hp(λ, α; h̃) ⊂ Hp(λ, α;h).

�

Theorem 2.10. Let f(z) ∈ A(p) and F (z) be defined as in Theorem
2.9. If

(1− γ)z−pΩ(λ,p)
z F (z) + γz−pΩ(λ,p)

z f(z) ≺ h(z) (γ > 0),(2.20)

then F (z) ∈ Hp(λ, 0; h̃), where Reµ > −p and

h̃(z) =
µ+ p

γ
z
−µ+p

γ

∫ z

0
t
µ+p
γ
−1
h(t)dt ≺ h(z).

Proof. Define

G(z) = z−pΩ(λ,p)
z F (z).(2.21)

Then, G(z) is analytic in U , with G(0) = 1, and

zG′(z) = −pG(z) + z−p+1(Ω(λ,p)
z F (z))′.(2.22)
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Making use of (2.16), (2.20), (2.21) and (2.22), we deduce that

(1− γ)z−pΩ(λ,p)
z F (z) + γz−pΩ(λ,p)

z f(z)

= (1− γ)z−pΩ(λ,p)
z F (z) +

γ

µ+ p
(µz−pΩ(λ,p)

z F (z)

+z−p+1(Ω(λ,p)
z F (z))′)

= G(z) +
γ

µ+ p
zG′(z) ≺ h(z),

for Reµ > −p and γ > 0. Therefore, an application of Lemma 1.5 yields
the assertion of Theorem 2.10. �

Theorem 2.11. Let F (z) ∈ Hp(λ, α;h). If the function f(z) is defined
by

F (z) =
µ+ p

zµ

∫ z

0
tµ−1f(t)dt (µ > −p),(2.23)

then

σ−pf(σz) ∈ Hp(λ, α;h),

where

σ = σp(µ) =

√
1 + (µ+ p)2 − 1

µ+ p
∈ (0, 1).(2.24)

The bound σ is sharp, when

h(z) = β + (1− β)
1 + z

1− z
(β 6= 1).(2.25)

Proof. For F (z) ∈ A(p), it is easy to verify that

F (z) = F (z) ∗ zp

1− z
and zF ′(z) = F (z) ∗

(
zp

(1− z)2
+ (p− 1)

zp

1− z

)
.

Hence, by (2.23), we have

f(z) =
µF (z) + zF ′(z)

µ+ p
= (F ∗ g)(z) (z ∈ U ;µ > −p),(2.26)

where

g(z) =
1

µ+ p

(
(µ+ p− 1)

zp

1− z
+

zp

(1− z)2

)
∈ A(p).(2.27)

Next, we show that

Re{z−pg(z)} > 1

2
(|z| < σ),(2.28)
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where σ = σp(µ) is given by (2.24). Setting

1

1− z
= Reiθ (R > 0) and |z| = r < 1,

we see that

cos θ =
1 +R2(1− r2)

2R
and R ≥ 1

1 + r
.(2.29)

For µ > −p, it follows from (2.27) and (2.29) that

2Re{z−pg(z)} =
2

µ+ p
[(µ+ p− 1)R cos θ +R2(2 cos2 θ − 1)]

=
1

µ+ p
[(µ+ p− 1)(1 +R2(1− r2))

+(1 +R2(1− r2))2 − 2R2]

=
R2

µ+ p
[R2(1− r2)2 + (µ+ p+ 1)(1− r2)− 2] + 1

≥ R2

µ+ p
[(1− r)2 + (µ+ p+ 1)(1− r2)− 2] + 1

=
R2

µ+ p
(µ+ p− 2r − (µ+ p)r2) + 1.

This evidently gives (2.28), which is equivalent to

Re{z−pσ−pg(σz)} > 1

2
(z ∈ U).(2.30)

Let F (z) ∈ Hp(λ, α;h). Then, by using (2.26) and (2.30), an application
of Theorem 2.4 yields

σ−pf(σz) = F (z) ∗ (σ−pg(σz)) ∈ Hp(λ, α;h).

For h(z) given by (2.25), we consider the function F (z) ∈ A(p) defined
by

(1− α)z−pΩ(λ,p)
z F (z) +

α

p
z−p+1(Ω(λ,p)

z F (z))′

= β + (1− β)
1 + z

1− z
(β 6= 1).(2.31)
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Then, by (2.31), (2.17) and (2.19) (used in the proof of Theorem 2.9),
we find that

(1− α)z−pΩ(λ,p)
z f(z) +

α

p
z−p+1(Ω(λ,p)

z f(z))′

= β + (1− β)
1 + z

1− z
+

z

µ+ p

(
β + (1− β)

1 + z

1− z

)′
= β +

(1− β)(µ+ p+ 2z − (µ+ p)z2)

(µ+ p)(1− z)2

= β (z = −σ).

Therefore, we conclude that the bound σ = σp(µ) cannot be increased
for each µ(µ > −p). �

Theorem 2.12. Let α ≥ 0 and

fj(z) = zp +
∞∑
n=1

an,jz
n+p ∈ Hp(λ, α;hj) (j = 1, 2),(2.32)

where

hj(z) = βj + (1− βj)
1 + z

1− z
and βj < 1.(2.33)

If f(z) ∈ A(p) is defined by

Ω(λ,p)
z f(z) = Ω(λ,p)

z f1(z) ∗ Ω(λ,p)
z f2(z),(2.34)

then f(z) ∈ Hp(λ, α;h), where

h(z) = β + (1− β)
1 + z

1− z
(2.35)

and the parameter β is given by

β =

{
1− 4(1− β1)(1− β2)(1− p

α

∫ 1
0
u
p
α−1

1+u du) (α > 0),

1− 2(1− β1)(1− β2) (α = 0).
(2.36)

The bound β is the best possible.

Proof. We consider the case when α > 0. By setting

Fj(z) = (1− α)z−pΩ(λ,p)
z fj(z) +

α

p
z−p+1(Ω(λ,p)

z fj(z))
′ (j = 1, 2),

for fj(z) (j = 1, 2), given by (2.32), we find that

Fj(z) = 1 +

∞∑
n=1

bn,jz
n ≺ hj(z) (j = 1, 2),(2.37)
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where hj(z) (j = 1, 2), given by (2.33), and

Ω(λ,p)
z fj(z) =

p

α
z−

p(1−α)
α

∫ z

0
t
p
α
−1Fj(t)dt (j = 1, 2).(2.38)

Now, if f(z) ∈ A(p) is defined by (2.34), then we find from (2.38) that

Ω(λ,p)
z f(z) = Ω(λ,p)

z f1(z) ∗ Ω(λ,p)
z f2(z)

=

(
p

α
zp
∫ 1

0
u
p
α
−1F1(uz)du

)
∗
(
p

α
zp
∫ 1

0
u
p
α
−1F2(uz)du

)
=

p

α
zp
∫ 1

0
u
p
α
−1F (uz)du,(2.39)

where

F (z) =
p

α

∫ 1

0
u
p
α
−1(F1 ∗ F2)(uz)du.(2.40)

Also, by using (2.37) and the Herglotz theorem, we see that

Re

{(
F1(z)− β1

1− β1

)
∗
(

1

2
+
F2(z)− β2

2(1− β2)

)}
> 0 (z ∈ U),

which leads to

Re {(F1 ∗ F2)(z)} > β0 = 1− 2(1− β1)(1− β2) (z ∈ U).

According to Lemma 1.7, we have

Re {(F1 ∗ F2)(z)} ≥ β0 + (1− β0)
1− |z|
1 + |z|

(z ∈ U).(2.41)

Now, it follows from (2.39),(2.40) and (2.41) that

Re

{
(1− α)z−pΩ(λ,p)

z f(z) +
α

p
z−p+1(Ω(λ,p)

z f(z))′
}

= Re{F (z)}

=
p

α

∫ 1

0
u
p
α
−1Re {(F1 ∗ F2)(uz)} du

≥ p

α

∫ 1

0
u
p
α
−1

(
β0 + (1− β0)

1− u|z|
1 + u|z|

)
du

> β0 +
p(1− β0)

α

∫ 1

0
u
p
α
−1 1− u

1 + u
du

= 1− 4(1− β1)(1− β2)

(
1− p

α

∫ 1

0

u
p
α
−1

1 + u
du

)
= β (z ∈ U),
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which proves that f(z) ∈ Hp(λ, α;h) for the function h(z) given by
(2.35) and β given by (2.36).
In order to show that the bound β is sharp, we take the functions fj(z) ∈
A(p) (j = 1, 2), defined by

Ω(λ,p)
z fj(z) =

p

α
z−

p(1−α)
α

∫ z

0
t
p
α
−1

(
βj + (1− βj)

1 + t

1− t

)
dt (j = 1, 2),

for which we have

Fj(z) = (1− α)z−pΩ(λ,p)
z fj(z) +

α

p
z−p+1(Ω(λ,p)

z fj(z))
′

= βj + (1− βj)
1 + z

1− z
(j = 1, 2)

and
(F1 ∗ F2)(z) = 1 + 4(1− β1)(1− β2)

z

1− z
.

Hence, for f(z) ∈ A(p) given by (2.34), we obtain

(1− α)z−pΩ(λ,p)
z f(z) +

α

p
z−p+1(Ω(λ,p)

z f(z))′

=
p

α

∫ 1

0
u
p
α
−1

(
1 + 4(1− β1)(1− β2)

uz

1− uz

)
du

→ β ( as z → −1).

Finally, for the case when α = 0, the proof of Theorem 2.12 is simple,
and so we omit the details. �
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