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ON A SUBCLASS OF MULTIVALENT ANALYTIC
FUNCTIONS ASSOCIATED WITH AN EXTENDED
FRACTIONAL DIFFERINTEGRAL OPERATOR

J. L. LIU

Communicated by Mehdi Radjabalipour

ABSTRACT. Making use of an extended fractional differintegral op-
erator (introduced recently by Patel and Mishra), we introduce a
new subclass of multivalent analytic functions and investigate cer-
tain interesting properties of the subclass.

1. Introduction and preliminaries

Let A(p) denote the class of functions of the form
(11) f(z)zzp+zanzn+p (peN:{172737})7
n=1

which are analytic in the open unit disk U = {z: z € C and |2| < 1}.

Suppose that f(z) and g(z) are analytic in U. We say that the
function f(z) is subordinate to g(z) in U, and we write f(z) < g(z)
(z € U), if there exists an analytic function w(z) in U with w(0) = 0
and |w(z)| < 1for all z € U, such that f(z) = g(w(z)) (z€U). If g(2)
is univalent in U, then the following equivalence relationship holds:

f(2) < g(z) & f(0) = ¢g(0) and f(U) C g(U).
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For functions f;(z) € A(p) (j =1,2), given by
oo
fi(z) =2 + Zan,jz”ﬂ’ (1 =1,2),
n=1
we define the Hadamard product (or convolution) of f1(z) and fa(z) by

(fi* fo)(z) = 2P + Zan,lan,zznﬂo = (f2* f1)(2).

n=1

In [10] (see also [11] and [16]), Owa introduced the following defini-
tions of fractional calculus (that is, fractional integrals and fractional
derivatives of an arbitrary order).

Definition 1.1. The fractional integral of order X (A > 0) is defined,
for a function f(2), analytic in a simply-connected region of the complex
plane containing the origin, by

oy L[
DA =55 [, o

where the multipicity of (z — &) ™1 is removed by requiring log(z — £) to
be real when z — & > 0.

Definition 1.2. Under the hypothesis of Definition 1.1 , the fractional
derivative of f(z) of order A (A > 0) is defined by

d rz _f(¢
Doy = | T o e (0<A<),
¢ A DA f(2) (n<A<n+1;ne NU{0}),

dz™

-

where the multiplicity of (z — &))" is removed as in Definition 1.1.

Very recently, Patel and Mishra [12] defined the extended fractional

differintegral operator Q) : A(p) — A(p) for a function f(z) € A(p)

and for a real number A (—oo < A <p+1) by
Flp+1-X)

(1.2) Q,(z/\’p)f(z) = WZADQ\JC(Z%

where D2 f is, respectively the fractional integral of f of order —\, when
—00 < A < 0, and the fractional derivative of f of order A, when 0 <
A<p+1.
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It is easily seen from (1.2) that for a function f(z) of the form (1.1),
we have

A f(2)

(1.3) :Zp+§:F(n+p+1)F(p+l—)\) " (e

anZ

AP f(2))
(1.4) = (@E—-NAMP ) + XM f(2) (—o0 < A< p;z € U).
We also note from (1.3) and (1.4) that

p+1[ff@ma Q0P f(2) = f(2),

z

QP f(2) =

0o j(z) = L)

and, in general,
p—m)lz" fM)(2)
p!

QP £(2) = ( (me N;m < p+1).

The fractional differential operator Q,(Z)"p ) with 0 < \ < 1 was investi-
gated by Srivastava and Aouf [17] and studied by Srivastava and Mishra
[18]. Patel and Mishra [12] also obtained several interesting properties
and characteristics for certain subclasses of multivalent analytic func-

tions involving the differintegral operator QQ”’ ), when —oco < A < p+1.
We further observe that Qg)"l) = Q) is the operator introduced and

studied by Owa and Srivastava [11]. In the present sequel to these ear-
lier works, we shall derive certain interesting properties of the extended

)

fractional differintegral operator QQ”’ .

Let P be the class of functions h(z) with A(0) = 1, which are analytic
and convex univalent in U.

Recently, many authors have introduced and studied some new sub-
classes of analytic functions defined by various other linear operators
(see, e.g., Dziok and Srivastava [1,2], Srivastava et al. [17-20], Yang et
al. [23], Patel et al. [12,13]], Liu and Srivastava [7], Liu [5,6], and Wang

et al. [21]). Now, we introduce the following subclass of A(p) associated

with the operator ng\’p).
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Definition 1.3. A function f(z) € A(p) is said to be in the class
Hy(\, a; h), if it satisfies the subordination condition,

(L5)  (1-a)z PO f(z) + %Z*”“(QQ”’)f(Z))’ < h(2),

where a is a complex number and h(z) € P.

Remark 1.4.
(1) Forp=1,A=1,a =1 and h(z) = 32, Hy(1,1;£2) coincides

1-27 P 1—2
with R, as investigated by Singh and Singh [15].
(2) For p = 1,LA = 1 and h(z) = £ (-1 < b < l,a > b),

Hi(1, iigj) reduces to H(a,a,b), as studied by Yang [22].
(3) Forp=1,A=1and h(z) =1+Mz(M > 0), Hi(1,o;1+Mz) =
S(a, M), as introduced and studied by Zhou and Owa [24] and

Liu [}] respectively.
A function f(z) € A(1) is said to be in the class S*(p), if
Zf’(Z)}
1.6 Re >p (z€eU),
o) eSS
for some p(p < 1). When 0 < p < 1, S*(p) is the class of starlike

functions of order p in U. A function f(z) € A(1) is said to be prestarlike
of order p in U, if

(1.7)

T TP ES M) (<),

We denote this class by R(p) (see [14]). It is clear from (1.6) and (1.7)
that a function f(z) € A(1) is in the class R(0) if and only if f(z) is
convex univalent in U and

()= (2)

We need the following lemmas in order to derive our main results for
the class Hp(\, s h).

Lemma 1.5. Let g(z) be analytic in U and h(z) be analytic and convex
univalent in U with h(0) = ¢g(0). If

1
(1.8) 9(z) + ﬁzg’(Z) < h(z),
where Rep > 0 and p # 0, then

9(2) < h(z) = pz " /0 I FLh(t)dt < h(z),
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and h(z) is the best dominant of (1.8).

Lemma 1.6. Let p <1, f(z) € S*(p) and g(z) € R(p). Then, for any
analytic function F(z) in U,

g* (fF) =
Y (U) Ceo(F(U)),

where co(F(U)) denotes the closed convex hull of F(U).

Lemma 1.5 is due to Miller and Mocanu [9] (see also [3]) and Lemma
1.6 can be found in Ruscheweyh [14].

Lemma 1.7. (see [8]). Let g(z) =1+ 2, by2" (k€ N) be analytic
inU. If Re{g(2)} >0 (z€U), then

Re{g(2)} =

2. Main results

Theorem 2.1. Let 0 < a1 < ag. Then
Hy(\, ag;h) C Hy(X\, aq; h).
Proof. Let 0 < a1 < ao and suppose that
(2.1) 9(z) = 2 PAMP £ (2),
for f(z) € Hp(A\, ag;h). Then, the function g(z) is analytic in U with

g(0) = 1. Differentiating both sides of (2.1) with respect to z and using
(1.5), we have

(1 - ag)zPQM f(2) + %z‘p“(ﬂ(ﬁ’p)f(z»’
(2.2) = g(2) + %zg'(z) < h(z).

Hence, an application of Lemma 1.5 yields

(2.3) g(z) < h(z).
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Noting that 0 < §1 < 1 and that h(z) is convex univalent in U, it
follows from (2.1), (2.2) and (2.3) that

(1= an)z PQOP [ (2) + T PO f(2))
p

aq

=2 (1= a)s D 1) + 2@ )Y

(65
a1
12
+(1-2) ot
=< h(z).
Thus, f(z) € Hyp(X, aq; h), and the proof of Theorem 2.1 is complete. [
Remark 2.2. Theorem 2.1 generalizes a result by Yang [22].

Theorem 2.3. Let o > 0,7 > 0 and f(z) € Hy(A\,asvh +1 — 7). If
v < 79, where

—1

1 p [LuE!

2.4 =—|1-= d
(2.4) % 2( a/01+uu ,

then f(z) € Hp(X,0;h). The bound 7y is sharp when h(z) = 1.

Proof. Define
(2.5) g(z) = zPQMP £ (2),

for f(z) € Hy(A\, o5 vh +1 — =), with & > 0 and v > 0. Then, we have

9(2) + %zg'(Z) = (1—a)z P f(2) + %Z’pH(QQ’p)f (2))

< vh(z)+1—17.

Hence, an application of Lemma 1.5 yields

(2.6)  g(z) < %z—ﬁ /Oztf«h(t)dt +1—v=(hx¢)(z),

where

z 21

VP __» ta
2. = =2 @ dt +1—~.
(27) v =2k [ a1y
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If 0 < v < 49, where 79 > 1 is given by (2.4), then it follows from (2.7)
that

1
1
Reyp(z) = % ; u§_1R6<1_uz>du+1—’y
1,21
P Ue
> — du+1—
a Jo 14+u ut 7
1

Now,by using the Herglotz representation for ¢ (z), from (2.5) and (2.6)
we arrive at

2PN f(2) < (h* ¥)(2) < h(z),
because h(z) is convex univalent in U. This shows that f(z) € Hy(A,0;h).

For h(z) = X and f(z) € A(p) defined by

P
z ta—l

1—-1¢

2 PO £(2) = Pk /
0

(0}

dt +1—r,
it is easy to verify that
(1= )z QPP () + =2 PO f(2)) = yh(z) +1 = .

Thus, f(z) € Hp(X, o, ;7h +1 — 7). Also, for v > 79, we have

2_q
«

1
Re{zPQMP) f(2)} — 7]?/ U
0

1
d 1-— - -1
o T u+ T<3 (z — —1),

which implies that f(z) ¢ Hp(X,0;h). Hence, the bound 7y cannot be

increased when h(z) = 1. O

Theorem 2.4. Let f(z) € Hy(\, a; h),

(2.8) g(z) € A(p) and Re{z"Pg(z)} > % (z€U).

Then
(f*9)(2) € Hp(A, a3 h).



Proof. For f(z) € Hy(\, a; h) and g(z) € A(p), we have
(1= )z ?QRI(f 5 g)(2) + 2 PHHQLD(S 2 9)(2))
= (1-a)(7g(2)) * (2P f(2))
(2 Pg(2) (PO f(2)))
(29) = (2"g(2) *¥(2),

where
9() = (1= @) PP f(z) 4 PO (2
(2.10) < h(2).

In view of (2.8), the function 27Pg(z) has the Herglotz representation,

- dp(z)
2.11 P = U
(211) o= [T GeU)
where p(x) is a probability measure defined on the unit circle |z| = 1
and

/x|=1 du(z) = 1.

Since h(z) is convex univalent in U, it follows from (2.9), (2.10) and
(2.11) that

(1—a)z PP (fx g)(2) + %z*p“(ﬂgwf % 9)(2))’

= | a2 < he)

This shows that (f * g)(2) € Hp(A, o; h) and the theorem is proved. [

Remark 2.5. Forp=1,A =1 and h(z) = %(— 1<b<1l,a>0),
we get a result by Yang [22]( Throrem 4).

Corollary 2.6. Let f(z) € Hy(X\, a; h) be given by (1.1) and let
m—1
sm(z) = 2P + Z a,2"?  (m € N\ {1}).
n=1
Then, the function

1
Um(z):/o t Psp(tz)dt

is also in the class Hy(\, o h).
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Proof. We have

m—1
— P An_ _n+p
om(2) 2P+ ;::1 i’
(2.12) = (frgm)(z) (meN\{1}),
where
f(z) =2+ Zanz”+p € Hy(\, o h)
n=1
and
m—1 n+p
— P i A
gm(z) =z —1—7; T € A(p).

Also, for m € N \ {1}, it is known from [8] that

ZTL

n—+1

m—1
(2.13) Re{z Pgm(2)} = Re {1 +y } > % (zeU).
n=1

In view of (2.12) and (2.13), an application of Theorem 2.4 leads to
om(2) € Hy(X, o5 h). O
Theorem 2.7. Let f(z) € Hy(\, a; h),
9(2) € A(p) and 27 "*g(z) € R(p) (p < 1).
Then
(f *9)(2) € Hp(A, a; h).
Proof. For f(z) € Hy(\, oz h) and g(z) € A(p), from (2.9) (used in the
proof of Theorem 2.4), we can write
(1 =)z PAPP (% g)(2) + — = PHQPP(f + 9)(2))
p
_ (27Pg(2)) * (29(2))
(z7P*1g(2)) * 2

where 1(z) is defined as in (2.10).
Since h(z) is convex univalent in U,

U(2) < h(z),z " g(2) € R(p) and z € S*(p) (p < 1),
the desired result follows from (2.14) and Lemma 1.6. O

(2.14)

(z €U),

Taking p =0 and p = %, Theorem 2.7 reduces to the following.
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Corollary 2.8. Let f(z) € Hy(\, o h) and let g(z) € A(p) satisfy any
one of the following conditions:
(i) 2 PTlg(2) is convex univalent in U
or
(ii) =1 g(2) € 5°(b).
Then

(f x9)(2) € Hyp(A, a5 h).

Theorem 2.9. Let f(z) € Hy(\, a;h). Then, the function F(z), defined
by

(2.15) F(z)= 212 / L (t)dt  (Rep > —p)
zH 0

is in the class Hy(\, a;ﬁ), where

h(z) = (u+ p)z~ WD) /0 PR dt < h(2).

Proof. For f(z) € A(p) and Rep > —p, we find from (2.15) that F'(z) €
A(p) and

(2.16) (44 P)f(2) = HF(2) + 2F'(2).
Define G(z) by

AP F(z)Y.
D

(217)  2PG(2) = (1 — a)QPPF(z) +
Differentiating both sides of (2.17) with respect to z, we get

2G(2) +pG(z) = (1—a)zPQMP)(2F(2))
(2.18) +%z—p+1(QQ’M(,ZF'(,Z)))'.
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Furthermore, it follows from (2.16) (2.17) and (2.18) that
(1—a)z PO f(2) + _p“( M f(z))

z) + zF'( z))
K+D

<
e (o (M)

=(1—a)z PP

__H /
= G0 + (62 +0G(E)
(s 2G'(2)
(2.19) =G(z) + ity
Let f(z) € Hy(X\, a; h). Then, by (2.19),
6+ 2 L) men> ),

p+p
and so it follows from Lemma 1.5 that

G(2) < T(z) = (i + p)z—(+D) / # 1R ()dt < ().
0
Therefore, we conclude that
F(z) e Hp()\,a;ﬁ) C Hy(\, a3 h).
U

Theorem 2.10. Let f(z) € A(p) and F(z) be defined as in Theorem
2.9. If

(2:20) (1 =)z PQOPIF(2) + 72 PQ0P f(2) < h(z) (v > 0),
then F(z) € Hp(A, 0;h), where Rep > —p and

h(z) = ’”pz“?’/ () dt < h(z).
Y 0

Proof. Define

(2.21) G(z) = 2 PQOP F(2).

Then, G(z) is analytic in U, with G(0) = 1, and
(2.22) 2G'(2) = —pG(2) + 2 P QAP F(2)).
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Making use of (2.16), (2.20), (2.21) and (2.22), we deduce that
(1 —7) 2 PQAP)F(2) + 72 PQONP) £ (2)

= (1 —7)z PO F(2) + ——(uz PQMP (2
(1=2) (@) + (2)

2 @R (:)))
= LZ /Z z
= G(2) + 1 2G(2) < h(z),

for Reyu > —p and v > 0. Therefore, an application of Lemma 1.5 yields

the assertion of Theorem 2.10. O
Theorem 2.11. Let F(z) € Hy(\, a; h). If the function f(z) is defined
by
@) P =3P et o> -p),
0
then
o Pfloz) € Hy(\ a3 h),
where
V1t (p+p)2? -1
2.24 o=0 = €(0,1).
(2.24) (10 e 01
The bound o is sharp, when
1+2

(2:25) W) =B+ (- B (B#1)
Proof. For F(z) € A(p), it is easy to verify that

< and 2F'(z) = F(z) * (uipz)Z +(p-1) < > :

—z
Hence, by (2.23), we have
_ uF(2) + 2F'(2)

(2.26) f(2) tp =(Fxg)(z) (z€Uspn>—p),
where

1 P P
220 o) = (- D7+ ) € AW

Next, we show that

(2.28) Re{=g()} > 3 (|| <o),
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where 0 = op,(p) is given by (2.24). Setting

1 :
1_Z:Re’0 (R>0) and |z]=7r<]1,
we see that
14+ R*(1—r?
(2.29) COSQZ—F]%Q(RT) and Rzl—i—r'

For > —p, it follows from (2.27) and (2.29) that

2Re{z7Pg(2)} = uj-p[(u +p—1)Rcosf + R*(2cos? 0 — 1))
1
= m[(ﬂ+ﬁ—1)(1+32(1—T2))
+(1 4+ R*(1 —r?))? — 2R?]
2
= MR+p[R2(1—T2)2—|—(u+p—I—1)(1—r2)—2]—1—1
2
> 0 e ) 2]
_ B 2 ) +1
= M+p(u+p— r—(u+pr)+1L

This evidently gives (2.28), which is equivalent to

(2.30) Re{zPoPg(c2)} > % (z e U).

Let F'(z) € Hy(X\, o h). Then, by using (2.26) and (2.30), an application
of Theorem 2.4 yields

0 Pfloz) =F(z)* (0 Pg(oz)) € Hy(\, a; h).

For h(z) given by (2.25), we consider the function F(z) € A(p) defined
by

(1 - )z PQMPIF(2) + ngpH(Qg"p)F(z))’
p

L2 54,

1—

(2.31) =+ (1-p)
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Then, by (2.31), (2.17) and (2.19) (used in the proof of Theorem 2.9),
we find that

(1= )z Q0P () =27 @) f(2))

:5+(1‘ﬁ)iz+ﬂip <6+(1—6)iz)

(1=B)(pu+p+2z— (u+p)2?)

B TET et

—8 (:=-0).
Therefore, we conclude that the bound o = o,(1) cannot be increased
for each pu(p > —p). O

Theorem 2.12. Let o« > 0 and

(2.32) fi(2) =27+ Y an;2"P € Hy(A oz hy)  (j =1,2),

n=1
where
(233)  hy(2) :ﬁj+(1—ﬂj)ii and B < 1.
If f(2) € A(p) is defined by
(2.34) QM) f(z) = QPP f1(2) % QD) fo(2),
then f(z) € Hy(A, a; h), where
(23 M) =+ (- B

and the parameter B is given by
1 ug_l
1-2(1-p61)(1—52) (a=0).
The bound (3 is the best possible.

Proof. We consider the case when o > 0. By setting
Fj(z) = (1= )20 f5(2) + ~= QM f(2)) (G =1,2),
p

for fj(2) (j =1,2), given by (2.32), we find that

(2.37) Fi(z) =1+ ibn,jzn <hi(z) (j=1,2),

n=1
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where hj(z) (j =1,2), given by (2.33), and

pi-a) [

(238) Q0P £ =L, / tEIE ()t (= 1,2).

0

Now, if f(z) € A(p) is defined by (2.34), then we find from (2.38) that
QM f(z) = QPP fi(2) x QP fo(z)

Py [l P e
= <zp/ ua_lFl(uz)du) * (zp/ ua_ng(uz)du>
@ Jo @ Jo

1
(2.39) = pzp/ we ' F(uz)du,
@ Jo
where
1
(2.40) Fz)=2 / we L (Fy * Fy)(uz)du.
@ Jo

Also, by using (2.37) and the Herglotz theorem, we see that

() )y e e

which leads to
Re{(Fl*FQ)(Z)}>ﬁ0:1—2(1—ﬁ1)(1—ﬁ2) (ZEU)

According to Lemma 1.7, we have
1—|z]

(2.41) Re{(F1* F2)(2)} 2 fo+ (1= fo) 2|

Now, it follows from (2.39),(2.40) and (2.41) that

p+1(99,p)f(z))’} = Re{F(2)}

(z€U).

Re {(1 — )z PQMP) £(2) 4 2.
p

1
_ p/o WE T Re {(Fy % By)(uz))} du

1
p 2_q 1 —ulz|
> = o 1-— d
_Oé/o u (ﬁ0+( 50)1+u|z|> u
— 1—
> By + p(l BO)/ T Y
«a 0

1,21
—4(1 = B)(1 = B2) (1 - Z/O qf:udu>
:B (ZE U)a
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which proves that f(z) € Hp(\ «a;h) for the function h(z) given by
(2.35) and 3 given by (2.36).
In order to show that the bound f is sharp, we take the functions f;(2) €
A(p) (j =1,2), defined by
—a Z P 1 t

QP fi(z) = Do / a1 (Bj +(1- 5j>+> dt (j=1,2),

(6% 0 1—1¢
for which we have

Fis) = (1= o)z 08P fi(z) + 2@ fi(2))

1+2
= BH1-B)— (=12
and .
(Fr+12)(2) =1+4(1 = f1)(A = Ba) 7— -

Hence, for f(z) € A(p) given by (2.34), we obtain
(1= @)z P f(2) + —= QP f(2)Y
p

:p/olui—l (1+4(1—ﬁ1)(1—ﬂ2) Uz >du

« 1—uz
—p (asz— —1).

Finally, for the case when a = 0, the proof of Theorem 2.12 is simple,
and so we omit the details. O
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