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THE STARLIKENESS, CONVEXITY, COVERING

THEOREM AND EXTREME POINTS OF p-HARMONIC

MAPPINGS

Q. LUO AND X. WANG∗

Communicated by Behzad Djafari-Rouhani

Abstract. The main aim of this paper is to introduce three classes
H0

p,q, H1
p,q and TH∗

p of p-harmonic mappings and discuss the prop-
erties of mappings in these classes. First, we discuss the starlikeness
and convexity of mappings in H0

p,q and H1
p,q. Then establish the

covering theorem for mappings in H1
p,q. Finally, we determine the

extreme points of the class TH∗
p .

1. Introduction

A 2p times continuously differentiable complex-valued mapping F =
u + iv in a domain D ⊆ C is p-harmonic if F satisfies the p-harmonic
equation ∆ · · ·∆︸ ︷︷ ︸

p

F = 0, where p (≥ 1) is an integer and ∆ represents

the complex Laplacian operator

∆ = 4
∂2

∂z∂z̄
:=

∂2

∂x2
+

∂2

∂y2
.

It is known that a mapping F is p-harmonic in a simply connected
domain D if and only if F has the following representation:
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F (z) =

p∑
k=1

|z|2(k−1)Gp−k+1(z)

where ∆Gp−k+1(z) = 0, i.e., Gp−k+1(z) is harmonic in D for each k ∈
{1, · · · , p} (see [4]).

Obviously, when p = 1 (respectively 2), F is harmonic (respectively
biharmonic). The properties of harmonic mappings have been investi-
gated by many authors, see [1, 4, 6, 7, 9, 16, 17]. Biharmonic mappings
arise in a lot of physical situations, particularly in fluid dynamics and
elasticity problems, and have many important applications in engineer-
ing and biology. See [12, 14] for the details. Nowadays, the study of
biharmonic mappings attracts much attention, see [1, 2, 3, 5, 8, 15].

Let Dr = {z : |z| < r} (r > 0). In particular, we use D to denote the
unit disk D1. Throughout this paper, we consider p-harmonic mappings
in D.

In [6], Clunie and Sheil-Small introduced the class S0
H of univalent

harmonic mappings in D, consisting of all harmonic mappings F with
the series expansion:

F (z) = z +

∞∑
n=2

(anz
n + bnz

n).

The main aim of Ganczar [9] was to discuss the starlikeness and convex-
ity of mappings F in S0

H under the coefficient condition:

∞∑
n=2

nq
(
|an|+ |bn|

)
≤ 1(1.1)

for q > 0. For convenience, we denote by H0
1,q the subclass of S0

H with

the coefficient condition (1.1).
Let H∗1 denote the set of all mappings in S0

H mapping D onto starlike
domains, and let TH∗1 denote the subclass of H∗1 whose elements satisfy
that F = h+ g, where

h(z) = z −
∞∑
n=2

anz
n with an ≥ 0 and g(z) = −

∞∑
n=2

bnz
n with bn ≥ 0.

In [18], Silverman obtained many properties of mappings in [18]. For
example, he proved that F ∈ TH∗1 if and only if

∑∞
n=2 n

(
|an|+ |bn|

)
≤ 1

(cf. [18, Theorems 2]). Also the extreme points of TH∗1 were determined



p-harmonic mappings 583

(cf. [18, Theorem 4(a)]). See [10, 11, 13] for other discussions in this
line.

We use H1
p,1 to denote the set of all p-harmonic mappings F in D with

the following series expansion:

F (z) =

p∑
k=1

|z|2(k−1)
( ∞∑
j=1

aj,p−k+1z
j +

∞∑
j=1

bj,p−k+1z̄
j
)
,

where a1,p = 1 and b1,p = 0, and satisfying the following coefficient
condition:

p∑
k=1

∞∑
j=1

(2(k − 1) + j)
(
|aj,p−k+1|+ |bj,p−k+1|

)
≤ 2.

In [16], Qiao and Wang proved that the mappings F in H1
p,1 is sense-

preserving, univalent and starlike in D (cf. [16, Theorems 3.1 and 3.2]).
In Section 2, we will introduce three classes of p-harmonic mappings:

H0
p,q, H

1
p,q and TH∗p . When p = 1, H0

p,q, and TH∗p coincide with H0
1,q

and TH∗1 , respectively, and when q = 1, H1
p,q is H1

p,1.
The first aim of this paper is to discuss the starlikeness and convexity

of p-harmonic mappings in H0
p,q. Our results are Theorems 3.3 and 3.5,

where Theorem 3.3 extends [9, Theorems 1 and 4] to the setting of p-
harmonic mappings, and Theorem 3.5 is a generalization of [9, Theorems
2 and 3]). Also we consider the univalence, starlikeness and convexity of
mappings belonging to H1

p,q with q ∈ (0, 1]. Our result is Theorem 3.7
which is a generalization of [16, Theorems 3.1 and 3.2]. The proofs of
the mentioned theorems will be presented in Section 3.

As the second aim of this paper, we investigate the covering theorem
for mappings in H1

p,q. Our result is Theorem 4.1 which is a generalization
of [9, Theorem 5]. We will prove this theorem in Section 4.

Finally, we get a necessary and sufficient condition for a p-harmonic
mapping to be in TH∗p and then determine the extreme points of TH∗p .
Our main results are Theorems 5.1 and 5.2, where Theorems 5.1 and 5.2
are generalizations of [18, Theorem 2] and [18, Theorem 4(a)], respec-
tively. Theorems 5.1, 5.2 proved in Section 5.
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2. Necessary notions and notations

Let

F (z) =

p∑
k=1

|z|2(k−1)Gp−k+1(z)(2.1)

=

p∑
k=1

|z|2(k−1)
(
hp−k+1 + gp−k+1

)
=

p∑
k=1

|z|2(k−1)
( ∞∑
j=1

aj,p−k+1z
j +

∞∑
j=1

bj,p−k+1z̄
j
)

be a p-harmonic mapping with a1,p = 1 and b1,p = 0.
We denote by H0

p,q with q > 0 the class of all univalent mappings
satisfying the form (2.1) and the following condition:

p∑
k=1

∞∑
j=1

jq
(
|aj,p−k+1|+ |bj,p−k+1|

)
≤ 2,(2.2)

and the class H1
p,q with q > 0 the class of all mappings satisfying the

form (2.1) and the following condition:

p∑
k=1

∞∑
j=1

(2(k − 1) + j)q
(
|aj,p−k+1|+ |bj,p−k+1|

)
≤ 2.(2.3)

Proposition 2.1. If f ∈ H1
p,q and f is univalent, then f ∈ H0

p,q.

We use JF to denote the Jacobian of F , that is,

JF = |Fz|2 − |Fz̄|2.

Then it is known that F is sense-preserving and locally univalent if
JF > 0.

Definition 2.2. We say that a univalent p-harmonic mapping F with
F (0) = 0 is starlike of order α ∈ [0, 1) with respect to the origin if the
curve F (reiθ) is starlike of order α with respect to the origin for each
r ∈ (0, 1). In other words, F is starlike of order α if ∂

∂θ (argF (reiθ)) ≥ α
for all z = reiθ 6= 0.
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Definition 2.3. A univalent p-harmonic mapping F with F (0) = 0
and ∂

∂θF (reiθ) 6= 0 whenever 0 < r < 1 is said to be convex of order

β ∈ [0, 1) if the curve F (reiθ) is convex of order β for each r ∈ (0, 1).
In other words, F is convex of order β if ∂

∂θ (arg ∂
∂θF (reiθ)) ≥ β for all

z = reiθ 6= 0.

Definition 2.4. Let X be a topological vector space over the field of
complex numbers, and let D be a subset of X. A point x ∈ D is called an
extreme point of D if it has no representation of the form x = ty+(1−t)z
(t ∈ (0, 1)) as a proper convex combination of two distinct points y and
z in D.

Furthermore, we introduce following notions and notations.
Let TH∗p denote the class of all p-harmonic mappings F which are uni-

valent, starlike and has the form (2.1), where a1,p = 1 and b1,p = 0, with
an additional restriction that all the other coefficients are nonpositive.

3. Starlikeness and convexity

We start this section with two lemmas which will be useful for the
following proofs.

Lemma 3.1. Let

F (z) =

p∑
k=1

∞∑
j=1

|z|2(k−1)
(
aj,p−k+1z

j + bj,p−k+1z̄
j
)

be a univalent p-harmonic mapping with a1,p = 1 and b1,p = 0. If

p∑
k=1

∞∑
j=1

( j − α
1− α

|aj,p−k+1|+
j + α

1− α
|bj,p−k+1|

)
≤ 2(3.1)

for some α ∈ [0, 1), then F is starlike of order α.

Proof. Note that

∂

∂θ
(argF (reiθ)) = Re

{z ∂
∂zF (z)− z̄ ∂

∂zF (z)

F (z)

}
= Re

1 +A(z)

1 +B(z)

for r 6= 0, where

A(z) =− 1 +

p∑
k=1

∞∑
j=1

j|z|2(k−1)(aj,p−k+1z
j − bj,p−k+1z

j)
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and

B(z) =− 1 +

p∑
k=1

∞∑
j=1

|z|2(k−1)(aj,p−k+1z
j + bj,p−k+1z

j).

Let

w1(z) =
A(z)−B(z)

2− 2α+A(z) + (1− 2α)B(z)
.

Then
1 +A(z)

1 +B(z)
=

1 + (1− 2α)w1(z)

1− w1(z)
.

An elementary calculation shows that

Re
1 +A(z)

1 +B(z)
= Re

1 + (1− 2α)w1(z)

1− w1(z)
≥ α

if and only if

|w1(z)| ≤ 1.

Obviously, a sufficient condition of

|w1(z)| ≤ 1

is
p∑

k=1

∞∑
j=1

(
(j − 1)|aj,p−k+1|+ (j + 1)|bj,p−k+1|

)
≤4− 4α−

p∑
k=1

∞∑
j=1

(
(j + 1− 2α)|aj,p−k+1|+ (j − 1 + 2α)|bj,p−k+1|

)
,

which is equivalent to (3.1).
The proof of the lemma is complete. �

Lemma 3.2. Let

F (z) =

p∑
k=1

∞∑
j=1

|z|2(k−1)
(
aj,p−k+1z

j + bj,p−k+1z̄
j
)

be a univalent p-harmonic mapping with a1,p = 1 and b1,p = 0. If

p∑
k=1

∞∑
j=1

(j(j − β)

1− β
|aj,p−k+1|+

j(j + β)

1− β
|bj,p−k+1|

)
≤ 2(3.2)

for some β ∈ [0, 1), then F is convex of order β.
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Proof. Note that

∂

∂θ
(arg

∂

∂θ
F (reiθ)) = Re

1 + P (z)

1 +Q(z)

for r 6= 0, where

P (z) =

z
∂

∂z
F (z) + z2 ∂

2

∂z2
F (z)− 2|z|2 ∂2

∂z∂z
F (z) + z

∂

∂z
F (z)

+ z2 ∂
2

∂z2F (z)− 1

=− 1 +

p∑
k=1

∞∑
j=1

j2|z|2(k−1)(aj,p−k+1z
j + bj,p−k+1z

j)

and

Q(z) =z
∂

∂z
F (z)− z ∂

∂z
F (z)− 1

=− 1 +

p∑
k=1

∞∑
j=1

j|z|2(k−1)(aj,p−k+1z
j − bj,p−k+1z

j).

Let

w2(z) =
P (z)−Q(z)

2− 2β + P (z) + (1− 2β)Q(z)
.

Then

1 + P (z)

1 +Q(z)
=

1 + (1− 2β)w2(z)

1− w2(z)
.

It is easy to deduce that

Re
1 + P (z)

1 +Q(z)
= Re

1 + (1− 2β)w2(z)

1− w2(z)
≥ β

if and only if

|w2(z)| ≤ 1.

Obviously, a sufficient condition of

|w2(z)| ≤ 1
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is
p∑

k=1

∞∑
j=1

(
(j2 − j)|aj,p−k+1|+ (j2 + j)|bj,p−k+1|

)
≤4− 4β −

p∑
k=1

∞∑
j=1

(
(j2 + j − 2βj)|aj,p−k+1|+ (j2 − j + 2βj)|bj,p−k+1|

)
,

which is equivalent to (3.2). �

Now we are ready to state and prove the results concerning the geo-
metric properties of mappings in H0

p,q.

Theorem 3.3. Suppose F ∈ H0
p,q and b1,p−k+1 = 0 for k ∈ {2, · · · , p}.

(1) If q ∈ [1, 2), then F is starlike of order α(q), where α(q) = 2q−2
2q+1 ;

(2) If q ∈ [2,+∞), then F is convex of order β(q), where β(q) =
2q−1−2
2q−1+1

.

Proof. By Lemma 3.1, for a fixed q ∈ [1, 2) and any j ∈ {2, 3, · · · }, we
know that F is p-harmonic starlike of order α = α(q) if

jq ≥ j + α

1− α
,

which is equivalent to

α ≤ jq − j
jq + 1

.

Since {Sq(j) = jq−j
jq+1} is an increasing sequence about j for any fixed

q ∈ [1, 2), it follows that

jq − j
jq + 1

≥ 2q − 2

2q + 1
= Sq(2) = α,

which proves (1).
Next, we prove (2). By Lemma 3.2, for a fixed q ∈ [2,+∞), F will be

p-harmonic and convex of order β = β(q) if

jq ≥ j(j + β)

1− β
,

which is equivalent to

β ≤ jq − j2

jq + j
.
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It is easy to know that {Tq(j) = jq−j2
jq+j } is an increasing sequence about

j for any fixed q ∈ [2,∞). Hence

jq − j2

jq + j
≥ 2q−1 − 2

2q−1 + 1
= Tq(2) = β(q),

which shows that (2) holds. �

Corollary 3.4. If F ∈ H0
p,1 (respectively F ∈ H0

p,2 ), then F is starlike

(respectively convex) in D.

By taking α = 0 (respectively β = 0), Lemma 3.1 (respectively
Lemma 3.2) implies that if F ∈ H0

p,q with q ≥ 1 (respectively q ≥ 2),
then F is starlike (respectively convex) in D. However, when q ∈ (0, 1)
(respectively q ∈ (0, 2)), F ∈ H0

p,q need not be starlike (respectively
convex). For instance, the harmonic polynomials

f∗q (z) = z − 2−qz2 (respectively f cq (z) = z + 2−qz2)

with q ∈ (0, 1) (respectively q ∈ (0, 2)). Upon choosing the value of z in
the interval z ∈ (−1,−2q−1) (respectively z ∈ (−1,−2q−2)) , it is easy
to know that

∂

∂θ

(
argf∗q (reiθ)

)
< 0 (respectively

∂

∂θ
arg
( ∂
∂θ
f cq (reiθ)

)
< 0).

By replacing D by some subdisk, in this case, we can prove the following
result.

Theorem 3.5. Suppose F ∈ H0
p,q for k ∈ {2, · · · , p}.

(1) If q ∈ (0, 1], then F is starlike in D 1
21−q

;

(2) If q ∈ (0, 2], then F is convex in D 1
22−q

.

And the results are sharp with extremal functions

F1(z) = z + 2−qαz2 and F2(z) = z + 2−qβz2,

respectively, where α, β are constants with |α| = |β| = 1.

Proof. Let

F ∗(z) = 21−qF
( z

21−q
)
.

Then

F ∗(z) =

p∑
k=1

∞∑
j=1

|z|2(k−1)
( aj,p−k+1

2(1−q)(2k+j−3)
zj +

bj,p−k+1

2(1−q)(2k+j−3)
zj
)
.
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By (2.2) and the inequality

j

2(1−q)(2k+j−3)
· 1

jq
≤ (2j)1−q

(2j)1−q ≤ 1

for any j ∈ {1, 2, · · · }, k ∈ {1, · · · , p} and fixed q ∈ (0, 1), it follows that

p∑
k=1

∞∑
j=1

j
( |aj,p−k+1|+ |bj,p−k+1|

2(1−q)(2k+j−3)

)
≤

p∑
k=1

∞∑
j=1

jq(|aj,p−k+1|+ |bj,p−k+1|) ≤ 2.

Then Lemma 3.1 implies that F ∗ is starlike in D, which shows that F is
starlike in D 1

21−q
.

Let

F c(z) = 22−qF
( z

22−q
)
.

By similar arguments as in the proof of (1), we know that (2) holds. �

Corollary 3.6. If F ∈ H0
p,1, then F maps the disk D 1

2
onto a convex

domain.

Next, we consider the starlikeness and convexity of F ∈ H1
p,q and

prove

Theorem 3.7. If F ∈ H1
p,q is a p-harmonic mapping with q ∈ (0, 1],

then F is sense-preserving and univalent in D 1
21−q

. Moreover, F is star-

like in D 1
21−q

and convex in D 1
22−q

, and the extremal functions are

F3(z) = z + 2−qα1z
2 and F4(z) = z + 2−qβ1z

2,

respectively, where α1, β1 are constants with |α1| = |β1| = 1.

Proof. First, we prove that F is sense-preserving in D 1
21−q

. Let 0 ≤ |z| =
r < 1

21−q . Then∣∣∣ ∂
∂z
F (z)

∣∣∣− ∣∣∣ ∂
∂z
F (z)

∣∣∣ ≥2−
p∑

k=1

∞∑
j=1

(
2(k − 1) + j)r2k+j−3(|aj,p−k+1|

+ |bj,p−k+1|)

>2−
p∑

k=1

∞∑
j=1

2(k − 1) + j

2(1−q)(2k+j−3)
(|aj,p−k+1|+ |bj,p−k+1|)

≥0,
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since

2(k − 1) + j

2(1−q)(2k+j−3)
≤ (2(k − 1) + j)q

for j ∈ {1, · · · }, k ∈ {1, · · · , p} and q ∈ (0, 1]. Therefore, F is sense-
preserving in D 1

21−q
.

Next, we show that F (z1) 6= F (z2) if z1 6= z2. Suppose z1, z2 ∈ D 1
21−q

such that z1 6= z2 and |z1| ≥ |z2|. Then∣∣∣F (z1)− F (z2)

z1 − z2

∣∣∣ ≥ 2−
p∑

k=1

∞∑
j=1

(
2(k − 1) + j

)
(|aj,p−k+1|

+ |bj,p−k+1|)|z1|2k+j−3

> 2−
p∑

k=1

∞∑
j=1

2(k − 1) + j

2(1−q)(2k+j−3)
(|aj,p−k+1|+ |bj,p−k+1|)

≥ 2−
p∑

k=1

∞∑
j=1

(
2(k − 1) + j

)q
(|aj,p−k+1|+ |bj,p−k+1|)|

≥ 0.

Hence F is univalent in D 1
21−q

.

The remaining part of the proof easily follows from the similar rea-
soning as in Theorem 3.5. �

4. Covering theorem

Theorem 4.1. Let F ∈ H1
p,q be a p-harmonic mapping with q ∈ (0,∞).

Then

(1) {ω : |ω| < 1
22−q } ⊆ F (D 1

21−q
) ⊆ {ω : |ω| < 3

22−q } if q ∈ (0, 1];

(2) {ω : |ω| < 1− 1
2q } ⊆ F (D) ⊆ {ω : |ω| < 1 + 1

2q } if q ∈ [1,∞).

Proof. Since F ∈ H1
p,q, it is easy to show that

p∑
k=1

∞∑
j=1

(|aj,p−k+1|+ |bj,p−k+1|) ≤ 1 +
1

2q
.
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Then for 0 < r < 1, we have

|F (reiθ)| ≥ 2r −
p∑

k=1

∞∑
j=1

r2(k−1)+j(|aj,p−k+1|+ |bj,p−k+1|)

≥ r + r2 − r2
p∑

k=1

∞∑
j=1

(|aj,p−k+1|+ |bj,p−k+1|)

≥ r − 1

2q
r2

and

|F (reiθ)| ≤
p∑

k=1

∞∑
j=1

r2(k−1)+j(|aj,p−k+1|+ |bj,p−k+1|)

≤ r − r2 + r2
p∑

k=1

∞∑
j=1

(|aj,p−k+1|+ |bj,p−k+1|)

≤ r +
1

2q
r2.

Hence

r − 1

2q
r2 ≤ |F (reiθ)| ≤ r +

1

2q
r2.

By Theorem 3.7, if 0 < q ≤ 1, then F is univalent in D 1
21−q

. Letting

r → 1
21−q in the above inequality gives (1). By [16, Theorem 3.1], if q ≥ 1,

then F is univalent in D. By letting r → 1 in the above inequality, (2)
easily follows. These complete the proof. �

5. Extreme points of TH∗p

In this section, we consider the mappings in TH∗p . First, we give a
characterization for a p-harmonic mapping to be in TH∗p .

Theorem 5.1. Let F be a p-harmonic mapping with the form (2.3).
Then F ∈ TH∗p if and only if

p∑
k=1

∞∑
j=1

(2(k − 1) + j)(|aj,p−k+1|+ |bj,p−k+1|) ≤ 2.
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Proof. The sufficiency easily follows from [16, Theorems 3.1 and 3.2].
To prove the necessity, it suffices to show that F /∈ TH∗p if

p∑
k=1

∞∑
j=1

(2(k − 1) + j)(|aj,p−k+1|+ |bj,p−k+1|) > 2.

Under this assumption, it suffices to prove that F is not univalent. Set-
ting z = r > 0 gives

F (r) =2r −
p∑

k=1

∞∑
j=1

r2(k−1)+j(|aj,p−k+1|+ |bj,p−k+1|)

and

F ′(r) =2−
p∑

k=1

∞∑
j=1

(2(k − 1) + j)r2k−3+j(|aj,p−k+1|+ |bj,p−k+1|).

Since F ′(0) = 1 and F ′(1) < 0, there must exist some r0 with r0 < 1
such that F ′(r0) = 0. Hence F (r) is not one-to-one on the real interval
(0, 1) which implies F /∈ TH∗p . �

From Theorem 5.1, we know that TH∗p is closed under the convex
combination. Now we use Theorem 5.1 to determine the extreme points
in TH∗p .

Theorem 5.2. Let

h1,p(z) = z, hj,p−k+1(z) = z − |z|2(k−1)zj

2(k − 1) + j

and

g1,p(z) = 0 and gj,p−k+1(z) = z − |z|2(k−1)zj

2(k − 1) + j
,

where j ∈ {1, · · · }, k ∈ {1, · · · , p} and |j − 1|+ |k − 1| 6= 0. Then

(1) F ∈ TH∗p if and only if it can be expressed in the form

F (z) =

p∑
k=1

∞∑
j=1

(
λj,p−k+1hj,p−k+1(z) + γj,p−k+1gj,p−k+1(z)

)
,

where λj,p−k+1 ≥ 0, γj,p−k+1 ≥ 0, γ1,p = 0 and∑p
k=1

∑∞
j=1(λj,p−k+1 + γj,p−k+1) = 1.
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(2) The set of all extreme points of TH∗p are the union of the sets
{hj,p−k+1} and {gj,p−k+1}.

Proof. Suppose

F (z) =

p∑
k=1

∞∑
j=1

(
λj,p−k+1hj,p−k+1(z) + γj,p−k+1gj,p−k+1(z)

)
=(1 + λ1,p)z −

p∑
k=1

∞∑
j=1

|z|2(k−1)
( λj,p−k+1z

j

2(k − 1) + j
+

γj,p−k+1z
j

2(k − 1) + j

)
.

Since λj,p−k+1 ≥ 0, γj,p−k+1 ≥ 0, γ1,p = 0 and
∑p

k=1

∑∞
j=1(λj,p−k+1 +

γj,p−k+1) = 1, the starlikeness of F follows from Theorem 5.1. Hence,
F ∈ TH∗p .

Conversely, if F ∈ TH∗p , then by Theorem5.1,

|aj,p−k+1| ≤
1

2(k − 1) + j
and |bj,p−k+1| ≤

1

2(k − 1) + j
.

Set

λj,p−k+1 = −(2(k− 1) + j)aj,p−k+1, γj,p−k+1 = −(2(k− 1) + j)bj,p−k+1,

λ1,p = 1−
∑
j·k>1

(λj,p−k+1 + γj,p−k+1)

and
γ1,p = 0.

Then

F (z) =

p∑
k=1

∞∑
j=1

(λj,p−k+1hj,p−k+1(z) + γj,p−k+1gj,p−k+1(z)).

Hence (1) holds.
The proof of (2) easily follows from (1). Hence we complete the proof

of Theorem 5.2. �
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