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OPTIMAL INEQUALITIES FOR THE POWER,
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Abstract. For all a, b > 0, the following two optimal inequalities
are presented: Hα(a, b)L1−α(a, b) ≥ M 1−4α

3
(a, b) for α ∈ [ 1

4
, 1),

and Hα(a, b)L1−α(a, b) ≤ M 1−4α
3

(a, b) for α ∈ (0, 3
√
5−5
40

]. Here,

H(a, b), L(a, b), and Mp(a, b) denote the harmonic, logarithmic,
and power means of order p of two positive numbers a and b, re-
spectively.

1. Introduction

For p ∈ R the power mean Mp(a, b) of order p and logarithmic mean
L(a, b) of two positive numbers a and b are defined by

(1.1) Mp(a, b) =


(
ap + bp

2

) 1
p

, p 6= 0,
√
ab, p = 0

and

(1.2) L(a, b) =


b− a

log b− log a
, a 6= b,

a, a = b,
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respectively.
It is well-known that Mp(a, b) is continuous and strictly increasing

with respect to p ∈ R for fixed a, b > 0 with a 6= b. Recently both
mean values have been the subject of intensive research. In particular,
many remarkable inequalities for Mp(a, b) and L(a, b) can be found in
the literature [2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18].

Let I(a, b) = 1
e (aa/bb)1/(a−b), A(a, b) = (a + b)/2, G(a, b) =

√
ab,

and H(a, b) = 2ab/(a + b) be the identric, arithmetic, geometric, and
harmonic means of two positive real numbers a and b with a 6= b, re-
spectively. Then

min{a, b} < H(a, b) = M−1(a, b) < G(a, b) = M0(a, b) < L(a, b)(1.3)

< I(a, b) < A(a, b) = M1(a, b) < max{a, b}.
In [3], Alzer and Janous established the following sharp double in-

equality (see also [6, p.350]):

M log 2
log 3

(a, b) ≤ 2

3
A(a, b) +

1

3
G(a, b) ≤M 2

3
(a, b)

for all a, b > 0.

For any α ∈ (0, 1), Janous [11] found the greatest value p and the
least value q such that

Mp(a, b) ≤ αA(a, b) + (1− α)G(a, b) ≤Mq(a, b)

for all a, b > 0.

In [15], Sándor proved

A(a, b)G(a, b)

I(a, b)
<
√
G(a, b)I(a, b) < L(a, b)

and

L(a, b) < A(a, b) +G(a, b)− I(a, b) <
1

2
(G(a, b) + I(a, b))

for all a, b > 0 with a 6= b.

The following companion of (1.3) provides inequalities for the geo-
metric and arithmetic means of L and I, the proof can be found in
[1].

G(a, b)
1
2A(a, b)

1
2 ≤ L(a, b)

1
2 I

1
2 (a, b) ≤ 1

2
L(a, b) +

1

2
I(a, b)

≤ 1

2
G(a, b) +

1

2
A(a, b)
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for all a, b > 0.

Burk [7] established

L(a, b) <

(
a

1
3 + b

1
3

2

)3

for all a, b > 0 with a 6= b.

Alzer and Qiu [4] proved

Mc(a, b) ≤
1

2
L(a, b) +

1

2
I(a, b)

for all a, b > 0 with the best possible parameter c = log 2
1+log 2 .

[G(a, b)]A(a,b) < [L(a, b)]I(a,b) < [A(a, b)]G(a,b)

for a, b ≥ e, and

[A(a, b)]G(a,b) < [I(a, b)]L(a,b) < [G(a, b)]A(a,b)

for 0 < a, b < e.

The main purpose of this paper is to present the optimal bounds
for Hα(a, b)L1−α(a, b) in terms of the power mean Mp(a, b) for some
α ∈ (0, 1).

2. Set up

In order to establish our main results we need a lemma, which we
present in this section.

Lemma 2.1. Let r ∈ (0, 1), p = 1−4r
3 and g(t) = [rtp+2 − tp+1

+ (r − 1)tp − (1 − r)t2 − t + r] log t + (1 − r)(tp+2 − tp + t2 − 1). Then
the following statements are true:

(1) If r ∈ (14 , 1), then g(t) < 0 for t ∈ (1,∞);

(2) If r ∈ (0, 3
√
5−5
40 ], then g(t) > 0 for t ∈ (1,∞).

Proof. Let g1(t) = t1−pg′(t), g2(t) = tpg′1(t), g3(t) = t1−pg′2(t), g4(t) =
tpg′3(t), g5(t) = t1−pg′4(t), g6(t) = t3+pg′5(t), g7(t) = t1−pg′6(t), g8(t) =
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tp−1g′7(t), g9(t) = t2g′8(t), and g10(t) = t1−pg′9(t). Then simple compu-
tations lead to

g(1) = 0,(2.1)

g1(t) = [r(p+ 2)t2 − (p+ 1)t− 2(1− r)t2−p − t1−p

− p(1− r)] log t+ (p− pr + 2− r)t2 − t
+ (1− r)t2−p + rt−p − t1−p − (p+ 1)(1− r),

g1(1) = 0,(2.2)

g2(t) = [2r(p+ 2)t1+p − (p+ 1)tp + 2(p− 2)(1− r)t
+ p− 1] log t+ (2p+ 4− pr)t1+p − (p+ 2)tp

− p(1− r)tp−1 − p(1− r)t− prt−1 + p− 2,

g2(1) = 0,(2.3)

g3(t) = [2r(p+ 1)(p+ 2)t+ 2(p− 2)(1− r)t1−p

− p(p+ 1)] log t+ (2p2 − p2r + pr + 6p+ 4r + 4)t

− p(p− 1)(1− r)t−1 + prt−1−p + (p− 1))t−p

+ (1− r)(p− 4)t1−p − (p2 + 3p+ 1),

g3(1) = 6p+ 8r − 2 = 0,(2.4)

g4(t) = 2[r(p+ 1)(p+ 2)tp − (p− 1)(p− 2)(1− r)] log t

+ p(p− 1)(1− r)tp−2 − p(p+ 1)tp−1 − p(p− 1)t−1

− p(p+ 1)rt−2 + (2p2 + p2r + 7pr + 6p+ 8r + 4)tp

− (p2 − 7p+ 8)(1− r),
g4(1) = 12p+ 16r − 4 = 0,(2.5)

g5(t) = 2pr(p+ 1)(p+ 2) log t− 2(p− 1)(p− 2)t−p

+ p(p− 1)t−1−p − p(p+ 1)(p− 1)t−1

+ p(p− 1)(p− 2)(1− r)t−2 + 2p3 + p3r + 9p2r

+ 6p2 + 14pr + 4p+ 4r,

g5(1) = 2p3 + 16rp2 + 2p2 + 8pr + 12p+ 8r − 4(2.6)

=
8(r − 1)

27
(80r2 + 20r − 1),

g6(t) = p[2(p− 1)(p− 2)(1− r)t2 − (p− 1)(p+ 1)t

− 2r(p+ 1)(p+ 2) + 2r(p+ 1)(p+ 2)t2+p

+ (p− 1)(p+ 1)t1+p − 2(p− 1)(p− 2)(1− r)tp],
g6(1) = 0,(2.7)



Inequations for the power, harmonic and logarithmic means 601

g7(t) = p[2r(p+ 1)(p+ 2)2t2 + (p− 1)(p+ 1)2t

− (p− 1)(p+ 1)t1−p + 4(p− 1)(p− 2)(1− r)t2−p

− 2p(p− 1)(p− 2)(1− r)],
g7(1) = p[4rp3 − p3 + 10p2 + 32pr − 17p− 8](2.8)

=
4(1− 4r)

81
(−64r4 + 64r3 − 192r2 + 169r + 23),

g8(t) = p[4r(p+ 1)(p+ 2)2tp + (p− 1)(p+ 1)2tp−1

+ (p− 1)2(p+ 1)t−1 − 4(p− 1)(p− 2)2(1− r)],
g8(1) = 2p[4rp3 − p3 + 10p2 + 32pr − 17p− 8](2.9)

=
8(1− 4r)

81
(−64r4 + 64r3 − 192r2 + 169r + 23),

g9(t) = p[4rp(p+ 1)(p+ 2)2tp+1 + (p− 1)2(p+ 1)2tp

− (p+ 1)(p− 1)2],

g9(1) = p2(p+ 1)[4r(p+ 2)2 + (p− 1)2] > 0,(2.10)

g10(t) = p2(p+ 1)2[4r(p+ 2)2t+ (p− 1)2],(2.11)

g10(1) = p2(p+ 1)2[4r(p+ 2)2 + (p− 1)2] > 0.(2.12)

(1) If r ∈ (14 , 1), then from (2.6), (2.8) and (2.9) we have

g8(1) < 0,(2.13)

g7(1) < 0,(2.14)

g5(1) < 0,(2.15)

lim
t→+∞

g8(t) < 0,(2.16)

lim
t→+∞

g7(t) = −∞.(2.17)

Equation (2.11) implies that g10(t) is strictly increasing in (1,∞),
then from (2.10), (2.12) and the monotonicity of g10(t) we clearly see
that g9(t) > 0 for all t ∈ (1,∞). Hence we get that g8(t) is strictly
increasing in (1,∞).

From (2.13) and (2.16) together with the monotonicity of g8(t) we see
that g8(t) < 0 in (1,∞). Hence we obtain that g7(t) is strictly decreasing
in (1,∞). From (2.14) and (2.17) together with the monotonicity of g7(t)
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we clearly see that g7(t) < 0 in (1,∞). So we get that g6(t) is strictly
decreasing in (1,∞).

Therefore, Lemma 2.1(1) follows from the monotonicity of g6(t), (2.7),
(2.15) and (2.1)-(2.5).

(2) If r ∈ (0, 3
√
5−5
40 ], then from (2.6), (2.8) and (2.9) we have

g8(1) > 0,(2.18)

g7(1) > 0,(2.19)

g5(1) ≥ 0.(2.20)

Equation (2.11) implies that g10(t) is strictly increasing in (1,∞).
Therefore, Lemma 2.1(2) follows from (2.12), (2.10), (2.18), (2.19), (2.7),
(2.20) and (2.1)-(2.5) together with the monotonicity of g10(t). �

3. The main result

Theorem 3.1. For all a, b > 0 we

M 1−4α
3

(a, b) ≤ Hα(a, b)L1−α(a, b)

for α ∈ (14 , 1), and

Hα(a, b)L1−α(a, b) ≤M 1−4α
3

(a, b)

for α ∈ (0, 3
√
5−5
40 ]. Each inequality becomes equality if and only if a = b,

and the parameter 1−4α
3 in each inequality is the best possible.

Proof. If a = b, then from (1.1) we clearly see that

a = M0(a, b) = Hα(a, b)L1−α(a, b) = M 1−4α
3

(a, b) = b.

Without loss of generality, we assume that a > b. Let t = a
b > 1.

Then (1.1) and (1.2) lead to

Mp(a, b)−Hα(a, b)L1−α(a, b)(3.1)

= b

[(
tp + 1

2

) 1
p

−
(

2t

t+ 1

)α( t− 1

log t

)1−α
]
.

Let

f(t) =
1

p
log

1 + tp

2
− α log

(
2t

t+ 1

)
− (1− α)[log(t− 1)(3.2)

+ log(log t)].
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Then simple computations yield

lim
t→1+

f(t) = 0,(3.3)

f ′(t) =
g(t)

t(t− 1)(t+ 1)(tp + 1) log t
,(3.4)

where

g(t) = [αtp+2 − tp+1 + (α− 1)tp − (1− α)t2 − t+ α] log t

+(1− α)(tp+2 − tp + t2 − 1).

(1) If α ∈ (14 , 1), then from Lemma 2.1(1) and (3.4) we get

f ′(t) < 0(3.5)

for all t ∈ (1,∞).

Therefore, from (3.1)-(3.3) and (3.5) we see that the inequality

Hα(a, b)L1−α(a, b) > M 1−4α
3

(a, b)

holds for all a, b > 0 with a 6= b.

(2) If α ∈ (0, 3
√
5−5
40 ], from Lemma 2.1(2) and (3.4) we have

f ′(t) > 0(3.6)

for all t ∈ (1,∞).

Therefore, from (3.1)-(3.3) and (3.6) we obtain that inequality

Hα(a, b)L1−α(a, b) < M 1−4r
3

(a, b)

for all a, b > 0 with a 6= b.

Next, we prove that the parameter 1−4α
3 in each inequality is optimal.

Case A. If α ∈ [14 , 1), then for any 0 < ε < (4α− 1)/3 and x > 0 one
has

M 1−4α
3

+ε(x+ 1, 1)−Hα(x+ 1, 1)L1−α(x+ 1, 1)(3.7)

=

[
(x+ 1)

1−4α
3

+ε + 1

2

] 1
1−4α

3 +ε

−
(
x+ 1

1 + x
2

)α
·
[

x

log(x+ 1)

]1−α
=

f1(x)(
1 +

x

2

)α
[log(1 + x)]1−α

,
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where

f1(x) =

[
(x+ 1)

1−4α
3

+ε + 1

2

] 1−4α
3

+ε

[log(1 + x)]1−α
(

1 +
x

2

)α
− (1 + x)α x1−α.

Letting x→ 0 and making use of Taylor expansion we get

f1(x) =
[ε

8
x2 + o(x2)

]
x1−α.(3.8)

Equations (3.7) and (3.8) imply that for any α ∈ [14 , 1) and

0 < ε < 4α−1
3 there exists δ1(ε, α) > 0, such that

Hα(x+ 1, 1)L1−α(x+ 1, 1) < M 1−4α
3

+ε(x+ 1, 1)

for x ∈ (0, δ1).

Case B. If α ∈ (0, 3
√
5−5
40 ], then for any 0 < ε < 1−4α

3 and x > 0 one
has

Hα(x+ 1, 1)L1−α(x+ 1, 1)−M 1−4α
3
−ε(x+ 1, 1)(3.9)

=

(
x+ 1

1 + x
2

)α [ x

log(x+ 1)

]1−α
−

[
(x+ 1)

1−4α
3
−ε + 1

2

] 1
1−4α

3 −ε

=
f2(x)(

1 +
x

2

)α
[log(1 + x)]1−α

,

where

f2(x) = (1 + x)α · x1−α −

[
(x+ 1)

1−4α
3
−ε + 1

2

] 1−4α
3
−ε

[log(1 + x)]1−α

×
(

1 +
x

2

)α
.

Letting x→ 0 and making use of Taylor expansion we have

f2(x) =
[ε

8
x2 + o(x2)

]
x1−α.(3.10)

Equations (3.9) and (3.10) imply that for any α ∈ (0, 3
√
5−5
40 ] and

0 < ε < 1−4α
3 there exists δ2(ε, α) > 0, such that

Hα(1 + x, 1)L1−α(1 + x, 1) > M 1−4α
3
−ε(1 + x, 1)

for x ∈ (0, δ2). �
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