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Abstract. In this paper, we study a coupled system of nonlinear
fractional differential equations with multi-point boundary condi-
tions. The differential operator is taken in the Riemann-Liouville
sense. Applying the Schauder fixed-point theorem and the contrac-
tion mapping principle, two existence results are obtained for the
following system

Dα
0+x(t) = f

(
t, y(t), Dp

0+y(t)
)
, t ∈ (0, 1),

Dβ
0+y(t) = g

(
t, x(t), Dq

0+x(t)
)
, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = · · · = x(m−2)(0) = 0, x(1) = λx(ξ),

y(0) = y′ (0) = y′′(0) = · · · = y(m−2) (0) = 0, y(1) = λy(ξ),

where 0 < ξ < 1, m ∈ N, m ≥ 2, α, β ∈ (m−1,m) and α, β, p, q, λ
satisfy certain conditions.
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1. Introduction

In this paper, we consider the existence of the solution of the following
multi-point boundary value problem

Dα
0+x(t) = f

(
t, y(t), Dp

0+y(t)
)
, t ∈ (0, 1),

Dβ
0+y(t) = g

(
t, x(t), Dq

0+x(t)
)
, t ∈ (0, 1),

x(0) = x′(0) = · · · = x(m−2)(0) = 0, x(1) = λx(ξ),

y(0) = y′ (0) = · · · = y(m−2) (0) = 0, y(1) = λy(ξ),

(1.1)

where 0 < ξ < 1, m ∈ N, m ≥ 2, α, β ∈ (m− 1,m), α− q ≥ 1, β− p ≥
1, p, q ≥ 0, λ ≥ 0, 1− λξα−1 > 0, 1− λξβ−1 > 0, f, g : [0, 1]× R× R→
R are given continuous functions and D0+ is the standard Riemann-
Liouville fractional derivative.

Fractional differential equations have been shown to be very useful
in the study of models of many phenomena in various fields of sci-
ence and engineering, such as viscoelasticity, electrochemistry, control,
porous media, electromagnetic, aerodynamics, polymer rheology, etc
(see[7, 10, 11]). Recently, there are a large number of papers dealing with
the fractional differential equations (see[1–6, 8, 12–16]). Among them,
initial and boundary value problems for nonlinear differential equations
of fractional order have been a subject of intensive studies for quite a
long time and continue to play an important role in the theory of dif-
ferential equations (see[2–4, 12–14]). From [2, 3, 6, 8, 13], we know that
the coupled system of differential equations of fractional order is also
important and several authors have done a lot of work in this topic. In
[13], Xinwei Su considered the coupled system with two-point bound-
ary conditions, while Bashir Ahmad and Juan J. Nieto investigated the
three-point boundary value problem of the coupled system in [2]. Both
papers discussed the coupled system by means of the fixed-point theorem
where α, β ∈ (1, 2].

In this paper, we study the system under the multi-point boundary
conditions, and give the existence results of the solution of the system
(1.1). Besides, we prove the existence and uniqueness of the solution
applying the contraction mapping principle.

2. Preliminaries

We present the necessary definitions and fundamental facts on the
fractional calculus theory. They can be found in [7, 10, 11].
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Definition 2.1 ([7, 10, 11] ). The Riemann-Liouville fractional integral
of order ν > 0 of a function h : (0,∞)→ R is given by

(2.1) Iν0+h(t) =
1

Γ(ν)

∫ t

0
(t− s)ν−1h(s)ds

or

(2.2) D−ν0+h(t) =
1

Γ(ν)

∫ t

0
(t− s)ν−1h(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 ([7, 10, 11] ). The Riemann-Liouville fractional deriv-
ative of order ν > 0 of a continuous function h : (0,∞) → R is given
by

(2.3) Dν
0+h(t) =

1

Γ(n− ν)

(
d

dt

)n ∫ t

0
(t− s)n−ν−1h(s)ds,

where n = [ν]+1, provided that the right-hand side is pointwise defined
on (0,∞).

Lemma 2.1. ([4] ) Assume that h ∈ C(0, 1)
⋂
L(0, 1) with a fractional

derivative of order ν > 0 that belongs to C(0, 1)
⋂
L(0, 1). Then

(2.4) Iν0+D
ν
0+h(t) = h(t) +C1t

ν−1 +C2t
ν−2 + · · ·+CN t

ν−N , ∀t ∈ (0, 1)

for some Ci ∈ R, i = 1, 2, . . . , N, where N is the smallest integer greater
than or equal to ν.

Lemma 2.2. ([7, 10, 11] ) If ν1, ν2, ν > 0, t ∈ [0, 1] and h ∈ L[0, 1],
then we have

(2.5) Iν10+I
ν2
0+h(t) = Iν1+ν2

0+ h(t), Dν
0+I

ν
0+h(t) = h(t).

Lemma 2.3. ([9, 11] ) If h ∈ C[0, 1] and ν > 0, then for s, t ∈ [0, 1] we
have

(2.6)
[
Iν0+h(t)

]
t=0

= 0, or lim
t→0

1

Γ(ν)

∫ t

0
(t− s)ν−1h(s)ds = 0,
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Lemma 2.4. ([9, 11] ) If h ∈ Cn[0, 1] and n− 1 < ν < n ∈ N, then

(2.7) Iν0+D
ν
0+h(t) = h(t)−

n∑
k=1

[
Dν−k

0+ h(t)
]
t=0

tν−k

Γ(ν − k + 1)
,∀t ∈ [0, 1] .

Lemma 2.5. ([11] ) If h ∈ Cn[0, 1] and n − 1 < ν < n ∈ N, then the
conditions [

Dν−k
0+ h(t)

]
t=0

= 0, k = 1, 2, · · · , n,

are equivalent to

h(k)(0) = 0, k = 0, 1, · · · , n− 1.

Define the space

C =

{
x : x ∈ Cm−2[0, 1], x(0) = x′(0) = · · · = x(m−2)(0) = 0

}
and

X =

{
x : x ∈ C and Dq

0+x(t) ∈ C[0, 1]

}
endowed with the norm

‖x‖X = max
k≤m−2

max
t∈[0,1]

∣∣∣x(k)(t)
∣∣∣+ max

t∈[0,1]

∣∣Dq
0+x(t)

∣∣ ,
where k ∈ N.

Lemma 2.6. If x ∈ X, then we have

Iq0+D
q
0+x(t) = x(t), ∀t ∈ [0, 1]

Proof. By Lemma 2.4, we have

Iq0+D
q
0+x(t) = x(t)−

[q]+1∑
k=1

[
Dq−k

0+ x(t)
]
t=0

tq−k

Γ(q − k + 1)
.

Since α− q ≥ 1, q > 0 and α ∈ (m− 1,m), then 0 < q ≤ α− 1 < m− 1
and [q] < m− 2. By the definition of the space X, we can get

x(0) = x′(0) = x′′(0) = · · · = x([q])(0) = 0.
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Then Lemma 2.5 implies that[
Dq−k

0+ x(t)
]
t=0

= 0, k = 1, 2, · · · , [q] + 1.

In consequence,

Iq0+D
q
0+x(t) = x(t).

This ends the proof. �

Lemma 2.7. (X, ‖ · ‖X) is a Banach space.

Remark 2.1. Analogous to the proof of Lemma 3.2 in [13], we can prove
Lemma 2.7. One thing we should note is that in the proof of Lemma
3.2 in [13] Iq0+D

q
0+x(t) = x(t) holds in X ′ only when 0 < q < 1(we

denote the space X in [13] as X ′), and in this paper we prove that
Iq0+D

q
0+x(t) = x(t) in X, in which q can be equal or greater 1.

Similarly, we can define the Banach space

Y =
{
y(t) : y(t) ∈ C and Dp

0+y(t) ∈ C[0, 1]
}

endowed with the norm

‖y‖Y = max
k≤m−2

max
t∈[0,1]

∣∣∣y(k)(t)
∣∣∣+ max

t∈[0,1]

∣∣Dp
0+y(t)

∣∣ ,
where k ∈ N.

For (x, y) ∈ X × Y , let

‖(x, y)‖X×Y = max {‖x‖X , ‖y‖Y } .

Then clearly (X × Y, ‖ · ‖X×Y ) is a Banach space.

3. The main results

In this section, we will reduce the problem (1.1) to the equivalent
system of integral equations, and then obtain the existence result of the
solution of problem (1.1) under certain conditions.

First, we present the Green’s function of system (1.1) by the following
lemma.
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Lemma 3.1. Given a function h ∈ C[0, 1], m ∈ N, m ≥ 2 and α ∈
(m− 1,m), then the unique solution of the boundary value problem,

(3.1) Dα
0+x(t) = h(t), t ∈ (0, 1),

x(0) = x′(0) = · · · = x(m−2)(0) = 0, x(1) = λx(ξ),

0 < ξ < 1, 1− λξα−1 > 0,
(3.2)

is given by

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

− tα−1

Γ(α)(1− λξα−1)

[∫ 1

0
(1− s)α−1h(s)ds− λ

∫ ξ

0
(ξ − s)α−1h(s)ds

]
.

(3.3)

Proof. Applying Lemma 2.1, we can reduce (3.1) to an equivalent inte-
gral equation

(3.4) x(t) =
1

Γ(α)

∫ t

0
(t−s)α−1h(s)ds−C1t

α−1−C2t
α−2−· · ·−Cmtα−m,

where C1, C2, · · · , Cm ∈ R are arbitrary constants. By x(0) = x′(0) =

· · · = x(m−2)(0) = 0, we can obtain C2 = C3 = · · · = Cm = 0. Then we
can write (3.4) as

x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds− C1t

α−1.

Using x(1) = λx(ξ), we get

C1 =
1

Γ(α)(1− λξα−1)

[∫ 1

0
(1− s)α−1h(s)ds− λ

∫ ξ

0
(ξ − s)α−1h(s)ds

]
.

Substituting the values of C1, C2, · · · , Cm in (3.4), we obtain (3.3). This
completes the proof. �

Eq. (3.3) can be written as

x(t) =

∫ 1

0
G1(t, s)h(s)ds
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where G1(t, s) is the Green’s function given by

G1(t, s) =
1

Γ(α)(1− λξα−1)

{
G11(t, s), 0 ≤ t ≤ ξ,
G12(t, s), ξ ≤ t ≤ 1,

G11(t, s) =


P (t, s, α)−Q(t, s, α), 0 ≤ s ≤ t,
−Q(t, s, α), t < s ≤ ξ,
− tα−1(1− s)α−1, ξ < s ≤ 1,

G12(t, s) =


P (t, s, α)−Q(t, s, α), 0 ≤ s ≤ ξ,
P (t, s, α)− tα−1(1− s)α−1, ξ < s ≤ t,
− tα−1(1− s)α−1, t < s ≤ 1.

(3.5)

where

P (t, s, α) = (1− λξα−1)(t− s)α−1,

Q(t, s, α) = tα−1
[
(1− s)α−1 − λ(ξ − s)α−1

]
.

By the same approach, we can get the unique solution of

(3.6) Dβ
0+y(t) = h(t), t ∈ (0, 1),

y(0) = y′(0) = · · · = y(m−2)(0) = 0, y(1) = λy(ξ),

0 < ξ < 1, 1− λξβ−1 > 0
(3.7)

is

y(t) =

∫ 1

0
G2(t, s)h(s)ds,

where G2(t, s) is the Green’s function which can be obtained by replacing
α with β in (3.5). Define the Green’s function of the system (1.1) as
(G1, G2).

Consider the coupled system of the integral equations as follows:

(3.8)


x(t) =

∫ 1

0
G1(t, s)f

(
t, y(t), Dp

0+y(t)
)
ds,

y(t) =

∫ 1

0
G2(t, s)g

(
t, x(t), Dq

0+x(t)
)
ds.

Lemma 3.2. Assume that f, g : [0, 1] × R × R → R are continuous.
Then (x, y) ∈ X × Y is a solution of (1.1) if and only if (x, y) ∈ X × Y
is a solution of the system (3.8).
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Proof. The proof is immediate from the discussion above, so we omit
it. �

Let T : X × Y → X × Y be an operator defined as

T (x, y)(t) = (T1y(t), T2x(t)) ,

where

T1y(t) =

∫ 1

0
G1(t, s)f

(
s, y(s), Dp

0+y(s)
)
ds,

T2x(t) =

∫ 1

0
G2(t, s)g

(
s, x(s), Dq

0+x(s)
)
ds.

It is obvious that the fixed-point of the operator T is the solution of the
problem (1.1).

For convenience, we will set some notations as follows:

d11 =

∫ 1

0
(1− s)α−1a(s)ds,

d12 = λ

∫ ξ

0
(ξ − s)α−1a(s)ds,

l11(k) = (1− λξα−1)

∫ 1

0
(1− s)α−k−1a(s)ds,

l12(q) = (1− λξα−1)

∫ 1

0
(1− s)α−q−1a(s)ds,

µ11 = max
k≤m−2

d11 + d12 + l11(k)

Γ(α− k)(1− λξα−1)
,

µ12 =
d11 + d12 + l12(q)

Γ(α− q)(1− λξα−1)
,

µ1 = µ11 + µ12,

ω11 = max
k≤m−2

α(1− λξα−1) + (α− k)(1 + λξα)

αΓ(α− k + 1)(1− λξα−1)
,

ω12 =
α(1− λξα−1) + (α− q)(1 + λξα)

αΓ(α− q + 1)(1− λξα−1)
,

ω1 = ω11 + ω12,
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where a(t), b(t) are nonnegative functions in L[0, 1]. By replacing α
with β and a(t) with b(t) respectively, we can define µ2 and ω2.

Now we present the main results of the paper.

Theorem 3.3. Let f, g : [0, 1]×R×R→ R be continuous. Assume that
one of the following conditions is satisfied.

(H1) There exist two nonnegative functions a, b ∈ L[0, 1] such that
|f(t, u, v)| ≤ a(t) + κ1 |u|ρ1 + κ2 |v|ρ2 and |g(t, u, v)| ≤ b(t) +

χ1 |u|
δ1 + χ2 |v|

δ2, where κ1, κ2, χ1 , χ2 ≥ 0, 0 < ρ1 , ρ2 , δ1, δ2 <
1, t ∈ [0, 1].

(H2) |f(t, u, v)| ≤ κ1 |u|ρ1 +κ2 |v|ρ2 and |g(t, u, v)| ≤ χ1 |u|
δ1 +χ2 |v|

δ2,
where κ1, κ2, χ1 , χ2 ≥ 0, ρ1 , ρ2 , δ1, δ2 > 1.

Then the problem (1.1) has a solution.

Proof. The proof will be given in two parts, and we’ll prove each part
in three steps by using the Schauder fixed-point theorem.

Part 1: Let (H1) be valid. Define

B =
{

(x, y) : (x, y) ∈ X × Y, ‖(x, y)‖X×Y ≤ R
}
,

where

R ≥ max {3µ1, b12, b13, 3µ2, b11, b14} ,

b11 = (3ω1κ1)
1

1−ρ1 ,

b12 = (3ω1κ2)
1

1−ρ2 ,

b13 = (3ω2χ1)
1

1−δ1 ,

and

b14 = (3ω2χ2)
1

1−δ2 .

Step 1: T : B → B. Let F (t) = f
(
t, y(t), Dp

0+y(t)
)
. For any (x, y) ∈ B,

applying Lemma 3.1 and the propertyDq
0+t

α−1 = Γ(α)
Γ(α−q) t

α−q−1 (see [10])

we have
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∣∣

=

∣∣∣∣ 1

Γ(α− k)

∫ t

0
(t− s)α−k−1F (s)ds− tα−k−1

Γ(α− k)(1− λξα−1)

×
(∫ 1

0
(1− s)α−1F (s)ds− λ

∫ ξ

0
(ξ − s)α−1F (s)ds

) ∣∣∣∣
≤ 1

Γ(α− k)(1− λξα−1)

[
(1− λξα−1)

(∫ t

0
(t− s)α−k−1a(s)ds

+
tα−k

α− k
(κ1R

ρ1 + κ2R
ρ2 )

)
+ tα−k−1

(∫ 1

0
(1− s)α−1a(s)ds

+λ

∫ ξ

0
(ξ − s)α−1a(s)ds+

1 + λξα

α
(κ1R

ρ1 + κ2R
ρ2 )

)]
≤ 1

Γ(α− k)

[
tα−k−1(1− λξα−1)

(∫ 1

0
(1− s)α−1a(s)ds

+λ

∫ ξ

0
(ξ − s)α−1a(s)ds

)
+

∫ t

0
(t− s)α−k−1a(s)ds

]
+

[
tα−k

Γ(α− k + 1)
+

(1 + λξα)tα−k−1

αΓ(α− k)(1− λξα−1)

]
(κ1R

ρ1 + κ2R
ρ2 )

≤ 1

Γ(α− k)(1− λξα−1)

[
(1− λξα−1)

∫ 1

0
(1− s)α−k−1a(s)ds

+

∫ 1

0
(1− s)α−1a(s)ds+ λ

∫ ξ

0
(ξ − s)α−1a(s)ds

]
+
α(1− λξα−1) + (α− k)(1 + λξα)

αΓ(α− k + 1)(1− λξα−1)
(κ1R

ρ1 + κ2R
ρ2 ) ,

where k = 0, 1, 2, · · · ,m− 2, and∣∣Dq
0+(T1y)(t)

∣∣
=

∣∣∣∣Dq
0+I

α
0+F (t)−

Dq
0+t

α−1

(1− λξα−1)

[
Iα0+F (1)− λIα0+F (ξ)

]∣∣∣∣
=

∣∣∣∣Iα−q0+ F (t)− Γ(α)tα−q−1

Γ(α− q)(1− λξα−1)
×
[
Iα0+F (1)− λIα0+F (ξ)

]∣∣∣∣
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≤ 1

Γ(α− q)

[
tα−q−1(1− λξα−1)

(∫ 1

0
(1− s)α−1a(s)ds

+λ

∫ ξ

0
(ξ − s)α−1a(s)ds

)
+

∫ t

0
(t− s)α−q−1a(s)ds

]
+

[
tα−q

Γ(α− q + 1)
+

(1 + λξα)tα−q−1

αΓ(α− q)(1− λξα−1)

]
(κ1R

ρ1 + κ2R
ρ2 )

≤ 1

Γ(α− q)(1− λξα−1)

[
(1− λξα−1)

∫ 1

0
(1− s)α−q−1a(s)ds

+

∫ 1

0
(1− s)α−1a(s)ds+ λ

∫ ξ

0
(ξ − s)α−1a(s)ds

]
+
α(1− λξα−1) + (α− q)(1 + λξα)

αΓ(α− q + 1)(1− λξα−1)
(κ1R

ρ1 + κ2R
ρ2 ) .

Thus,

‖(T1y)(t)‖ = max
k≤m−2

max
t∈[0,1]

|(T1y)(k)(t)|+ max
t∈[0,1]

∣∣Dq
0+(T1y)(t)

∣∣
≤ µ1 + ω1 (κ1R

ρ1 + κ2R
ρ2 ) ≤ R

3
+
R

3
+
R

3
≤ R.

Similarly, we can get

‖(T2x)(t)‖ ≤ µ2 + ω2

(
χ1R

δ1 + χ2R
δ2
)
≤ R

3
+
R

3
+
R

3
≤ R.

In consequence, we obtain that T : B → B.

Step 2: T is continuous. By the continuity of G1, G2, f and g, we
conclude that the operator T is continuous.

Step 3: T (B) is relatively compact. For this we denote

M = max
t∈[0,1]

|u|≤R,|v|≤R

|f(t, u, v)| , N = max
t∈[0,1]

|u|≤R,|v|≤R

|g(t, u, v)| .

Let (x, y) ∈ B, t1, t2 ∈ [0, 1] (t1 < t2). By Lemma 3.1 we have∣∣∣(T1y)(k)(t2)− (T1y)(k)(t1)
∣∣∣

=

∣∣∣∣∣ 1

Γ(α− k)

(∫ t2

0
(t2 − s)α−k−1F (s)ds−

∫ t1

0
(t1 − s)α−k−1F (s)ds

)
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+
t2
α−k−1 − t1α−k−1

Γ(α− k)(1− λξα−1)
×
[ ∫ 1

0
(1− s)α−1F (s)ds

−λ
∫ ξ

0
(ξ − s)α−1F (s)ds

]∣∣∣∣∣
=

∣∣∣∣∣ 1

Γ(α− k)

(∫ t1

0

(
(t2 − s)α−k−1 − (t1 − s)α−k−1

)
F (s)ds

+

∫ t2

t1

(t2 − s)α−k−1F (s)ds

)
+

t2
α−k−1 − t1α−k−1

Γ(α− k)(1− λξα−1)

×
[ ∫ 1

0
(1− s)α−1F (s)ds− λ

∫ ξ

0
(ξ − s)α−1F (s)ds

]∣∣∣∣∣
≤ M

Γ(α− k)

[∫ t1

0

(
(t2 − s)α−k−1 − (t1 − s)α−k−1

)
ds

+

∫ t2

t1

(t2 − s)α−k−1ds

]

+
M(1 + λξα)

Γ(α− k)(1− λξα−1)
(t2

α−k−1 − t1α−k−1)

≤ M

Γ(α− k + 1)
(t2

α−k − t1α−k)

+
M(1 + λξα)

αΓ(α− k)(1− λξα−1)
(t2

α−k−1 − t1α−k−1),

where k = 0, 1, · · · ,m− 2, and∣∣Dq
0+(T1y)(t2)−Dq

0+(T1y)(t1)
∣∣

=

∣∣∣∣Iα−q0+ F (t2)− Iα−q0+ F (t1)

−Γ(α)(tα−q−1
2 − tα−q−1

1 )

Γ(α− q)(1− λξα−1)

[
Iα0+F (1)− λIα0+F (ξ)

]∣∣∣∣
≤ M

Γ(α− q)

[∫ t1

0

(
(t2 − s)α−q−1 − (t1 − s)α−q−1

)
ds

+

∫ t2

t1

(t2 − s)α−q−1ds

]
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+
M(1 + λξα)

Γ(α− q)(1− λξα−1)
(t2

α−q−1 − t1α−q−1)

≤ M

Γ(α− q + 1)
(t2

α−q − t1α−q)

+
M(1 + λξα)

αΓ(α− q)(1− λξα−1)
(t2

α−q−1 − t1α−q−1).

Similarly, ∣∣Dp
0+(T2x)(t2)−Dp

0+(T2x)(t1)
∣∣

≤ N

Γ(β − p+ 1)
(t2

β−p − t1β−p)

+
N(1 + λξβ)

βΓ(β − p)(1− λξβ−1)
(t2

β−p−1 − t1β−p−1),∣∣∣(T2x)(k)(t2)− (T2x)(k)(t1)
∣∣∣

≤ N

βΓ(β − k + 1)
(t2

β−k − t1β−k)

+
N(1 + λξβ)

βΓ(β − k)(1− λξβ−1)
(t2

β−k−1 − t1β−k−1),

where k = 0, 1, · · · ,m− 2.

Then we can obtain that T (B) is an equicontinuous set, for the fact
that tα−q, tβ−p, tα−q−1, tβ−p−1, tα−k, tα−k−1, tβ−k, tβ−k−1 (k = 0, 1, · · · ,
m− 2) are uniformly continuous on [0, 1]. Also it is uniformly bounded
for T (B) ⊂ B. By the Arzelà-Ascoli theorem, we conclude that T (B)
is relatively compact. Thus, the problem (1.1) has a solution by the
Schauder fixed-point theorem.

Part 2: Let (H2) be valid. In this part, let

0 < R ≤ min

{
b21, b22, b23, b24

}
,

where

b21 =

(
1

2ω1κ1

) 1
ρ1−1

,
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b22 =

(
1

2ω1κ2

) 1
ρ2−1

,

b23 =

(
1

2ω2χ1

) 1
δ1−1

,

and

b24 =

(
1

2ω2χ2

) 1
δ2−1

.

We can also get the result by repeating arguments similar to part 1.
Here we omit it. This completes the proof . �

Theorem 3.4. Let f, g : [0, 1]×R×R→ R. Assume that the following
conditions are satisfied.

(H3) There exist two constants L1 > 0 and L2 > 0 such that∣∣f(t, x1, y1)− f(t, x2, y2)
∣∣ ≤ L1

(∣∣x1 − x2

∣∣+
∣∣y1 − y2

∣∣),∣∣g(t, x1, y1)− g(t, x2, y2)
∣∣ ≤ L2

(∣∣x1 − x2

∣∣+
∣∣y1 − y2

∣∣),
t ∈ [0, 1], x1, y1, x2, y2 ∈ R.

(H4)

ε1 = max
{
ω11, ω12

}
,

ε2 = max
{
ω21, ω22

}
,

ε = max
{
L1ε1, L2ε2

}
< 1.

Then Problem (1.1) has a unique solution.

Proof. Let (x1, y1), (x2, y2) ∈ X ×Y . By Lemma 3.1 and the discussion
in theorem 3.4, we have∣∣∣Dq

0+

(
T1y1 − T1y2

)
(t)
∣∣∣ ≤ L1ω12

(∣∣∣(y1 − y2

)
(t)
∣∣∣+
∣∣∣Dp

0+

(
y1 − y2

)
(t)
∣∣∣),∣∣∣(T1y1 − T1y2

)(k)
(t)
∣∣∣ ≤ L1ω11

(∣∣∣(y1 − y2

)
(t)
∣∣∣+
∣∣∣Dp

0+

(
y1 − y2

)
(t)
∣∣∣),
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where k = 0, 1, · · · ,m− 2. So,∥∥∥T1y1 − T1y2

∥∥∥
X
≤ L1ε1

∥∥∥y1 − y2

∥∥∥
Y
≤ ε
∥∥∥y1 − y2

∥∥∥
Y
.

Similarly,∥∥∥T1x1 − T1x2

∥∥∥
Y
≤ L2ε2

∥∥∥x1 − x2

∥∥∥
X
≤ ε
∥∥∥x1 − x2

∥∥∥
X
.

Thus, ∥∥∥T (x1, y1)− T (x2, y2)
∥∥∥
X×Y

=
∥∥∥ (T1y1 − T1y2, T2x1 − T2x2)

∥∥∥
X×Y

= max

{∥∥∥T1y1 − T1y2

∥∥∥
X
,
∥∥∥T2x1 − T2x2

∥∥∥
Y

}
≤ ε

∥∥∥(x1, y1)− (x2, y2)
∥∥∥
X×Y

.

Hence, we conclude that the Problem (1.1) has a unique solution by
the contraction mapping principle. This ends the proof. �

Example 3.5. Consider the system

(3.9)


D

7/2
0+ x(t) = t2 +

(
y(t)

)1/3
+
(
D

7/6
0+ y(t)

)1/5
, t ∈ (0, 1),

D
10/3
0+ y(t) = t4 +

(
x(t)

)1/7
+
(
D

4/3
0+ x(t)

)1/9
, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = 0, x(1) = 2x(1/3),

y(0) = y′ (0) = y′′(0) = 0, y(1) = 2y(1/3).

By Theorem 3.4, the existence of the solution of the System (3.9) is
obvious.

Example 3.6. Consider the system

(3.10)


D

5/2
0+ x(t) = L1 arctan y(t) + L1D

7/6
0+ y(t),

D
10/3
0+ y(t) = L2

(
x(t)− ln(1 + ex(t))

)
+ L2D

4/3
0+ x(t),

x(0) = x′(0) = x′′(0) = 0, x(1) = 2x(1/3),

y(0) = y′ (0) = y′′(0) = 0, y(1) = 2y(1/3),
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where t ∈ (0, 1), f(t, x, y) = L1 arctanx+ L1y, g(t, x, y) =
L2(x− ln (1 + ex)) + L2y and L1, L2 > 0.

Note that∣∣∣( arctanx
)′∣∣∣ =

1

1 + x2
< 1,

∣∣∣(x− ln (1 + ex))′
∣∣∣ =

1

1 + ex
< 1,

we have ∣∣∣f(t, x1, y1)− f(t, x2, y2)
∣∣∣

≤ L1

(∣∣ arctanx1 − arctanx2

∣∣+
∣∣y1 − y2

∣∣)
≤ L1

(∣∣x1 − x2

∣∣+
∣∣y1 − y2

∣∣),∣∣∣g(t, x1, y1)− f(t, x2, y2)
∣∣∣

≤ L2

(∣∣(x1 − ln (1 + ex1))− (x2 − ln (1 + ex2))
∣∣+
∣∣y1 − y2

∣∣)
≤ L2

(∣∣x1 − x2

∣∣+
∣∣y1 − y2

∣∣), t ∈ [0, 1], x ∈ R, y ∈ R.

A simple computation shows that ε1 ≈ 0.3111, ε2 ≈ 0.4426. Hence,
if we let L1ε1, L2ε2 < 1, we can obtain that the System (3.10) has a
unique solution.
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