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HYBRID STEEPEST-DESCENT METHOD WITH

SEQUENTIAL AND FUNCTIONAL ERRORS IN

BANACH SPACE
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Communicated by Heydar Radjavi

Abstract. Let X be a reflexive Banach space, T : X → X a
nonexpansive mapping with C = Fix(T ) 6= ∅ and F : X → X δ-
strongly accretive and λ- strictly pseudocontractive with δ+λ > 1.
In this paper, we present modified hybrid steepest-descent methods
involving sequential and functional errors with functions admitting
a center which generate convergent sequences to the unique solu-
tion of the variational inequality V I∗(F,C). We also present sim-
ilar results for a strongly monotone and Lipschitzian operator in
the context of a Hilbert space and apply the results for solving a
minimization problem.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H and
F : C → H be a nonlinear map. The classical variational inequality
which is denoted by V I(F,C) is used to find x∗ ∈ C so that

〈Fx∗, v − x∗〉 ≥ 0,
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for all v ∈ C. We recall that F is called r-strongly monotone, if for each
x, y ∈ C we have

〈Fx− Fy, x− y〉 ≥ r‖x− y‖2

for a constant r > 0. Existence and uniqueness of solutions are im-
portant problems of the V I(F,C). It is known that, if F is a strongly
monotone and Lipschitzian mapping on C, then V I(F,C) has a unique
solution. An important problem is how to find a solution of V I(F,C).
It is known that

x∗ ∈ V I(F,C)⇐⇒ x∗ = PC(x∗ − λFx∗),(1.1)

where λ > 0 is an arbitrarily fixed constant and PC is the projection
of H onto C. This alternative equivalence has been used to study the
existence theory of the solution and to develop several iterative type
algorithms for solving variational inequalities. But, the fixed point for-
mulation in (1.1) involves the projection PC , which may not be easy
to compute, due to the complexity of the convex set C. So, projec-
tion methods and their variant forms can be implemented for solving
variational inequalities.

In order to reduce the probable complexity as the results of the projec-
tion PC , Yamada [19] (see also [7]) introduced a hybrid steepest-descent
method for solving V I(F,C). His idea is as follow. Assume that C is
the fixed point set of a nonexpansive mapping T : H → H. Recall that
T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H.

Assume that F is r-strongly monotone and µ-Lipschitzian on C. Take a
fixed number η ∈ (0, 2r/µ2) and a sequence {λn} in (0, 1) satisfying the
following conditions:

(C1) limn λn = 0;
(C2)

∑∞
n=1 λn =∞;

(C3) limn(λn − λn+1)/λ
2
n+1 = 0.

Starting with an arbitrary initial guess u0 ∈ H, generate a sequence
{un} by the following algorithm:

un+1 := Tun − λn+1ηF (Tun), n ≥ 0.(1.2)
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Yamada [19] proved that the sequence {un} converges strongly to a
unique solution of V I(F,C). Xu and Kim [18] studied the hybrid steepest-
descent algorithm (1.2). Their major contribution is that the strong
convergence of (1.2) holds with condition (C3) being replaced by the
following condition:

(C3)′ limn(λn − λn+1)/λn+1 = 0.

It is clear that condition (C3)′ is strictly weaker than condition (C3),
coupled with conditions (C1) and (C2). Moreover, (C3)′ includes the
important and natural choice {1/n} for {λn}, whereas (C3) does not.

Let X be a real Banach space and let J : X → 2X
∗

denote the
normalized duality mapping defined by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖‖f‖, ‖x‖ = ‖f‖},

for all x ∈ X. Now, let F : X → X be a mapping and T : X →
X be a nonexpansive mapping with C = Fix(T ) 6= ∅. For the rest
of the paper, we denote by J the single-valued duality mapping. The
variational inequality problem in Banach space is to find a point x∗ ∈ X
such that

〈F (x∗), J(x− x∗)〉 ≥ 0,∀x ∈ C.

The problem V I∗(F,C) for an inverse strongly accretive operator F
over a nonempty closed convex subset C of a smooth Banach space X
has already been presented in Aoyama et al., [3, 4]. For the study of
the variational inequality problem for monotone operators in a Banach
space, see, e.g., [1–4, 6, 10, 11]. If F is strongly accretive and strictly
pseudocontractive, then F is inverse strongly accretive. Recently, L.
C. Ceng et al. [6] have proved, in case that F is strongly accretive and
strictly pseudocotractive on a reflexive Banach space that admits a weak
sequentially continuous duality mapping, V I∗(F,C) has a unique solu-
tion and extended steepest-descent method for solving V I∗(F,C). They
have shown that if {λn} and {µn} are two sequences in (0, 1) satisfying
the following conditions:

(C1) limn→∞ λn/µn = 0;
(C2)

∑∞
n=0 λnµn =∞;

(C3)
∑∞

n=0 |λn+1 − λn| <∞;
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(C4)
∑∞

n=0 |µn+1 − µn| <∞ or limn→∞ µn/µn+1 = 1;
then, the sequence {xn} defined by x0 ∈ X and{

yn = λnxn + (1− λn)T (xn)
xn+1 = yn − λnµnF (xn), n ≥ 0

converges strongly to the unique solution of V I∗(F,C).
In this paper, we introduce modified hybrid steepest-descent methods

involving sequential and functional errors. Among many other results,
we mention the following: Let X be a reflexive Banach space that ad-
mits a weak sequentially continuous duality mapping J from X to X∗,
T : X → X be a nonexpansive mapping with C = Fix(T ) 6= ∅ and
F : X → X be a δ-strongly accretive and λ- strictly pseudocotrac-
tive mapping with δ + λ > 1. Suppose that {αn}, {βn} ⊂ [0, 1] and
{λn} ⊂ (0, 1] satisfy the following conditions:

(C1) λn → 0;
(C2)

∑∞
n=0 λn =∞;

(C3) (1− αn)/λn → 0;
(C4) 0 < lim infn→∞ βn and lim supn→∞ βn < 1;

and either {yn} is an arbitrary bounded sequence in X or yn ∈ co{T ixn :
i = 0, 1, 2, . . . }, for all n. Let x0 ∈ X and {xn} be generated by{

zn = αnTxn + (1− αn)yn,
xn+1 = (1− βn)xn + βn{zn − λnFzn}.

We show that {xn} converges in norm to the unique solution of V I∗(F,C).
The results presented in this paper are new even for Hilbert spaces. Our
results extend some results of e.g., [6, 7, 14,18,19].

2. Preliminaries

Let X be a real Banach space and J the duality mapping from X
to X∗. If X admits sequentially continuous duality mapping from weak
topology to weak-star topology, then by [ [9], Lemma 1] we know that the
duality mapping J is single-valued, hence hence X is also smooth (see
[1, 16]). In this case, duality mapping J is also called weak sequentially
continuous, that is, for each {xn} ⊂ X with xn ⇀ x we have J(xn) ⇀∗

J(x).
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A Banach space X is said to satisfy Opial’s condition if whenever
{xn} is a sequence in X which converges weakly to x, then

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖ for all y ∈ X, y 6= x.

By [ [9], Theorem 1], we know that if X admits a weak sequentially
continuous duality mapping, then X satisfies Opial’s condition. The
following lemma will be needed in the sequel.

Lemma 2.1. ( [1,12,16]) Let C be a nonempty closed convex subset of
a reflexive Banach space X that satisfies Opial’s condition and suppose
that T : C → C is nonexpansive then the mapping I − T is demiclosed
at zero, that is, if xn ⇀ x and ‖xn − Txn‖ → 0 then Tx = x.

Recall that a mapping F with domain D(F ) and range R(F ) in X is
called δ-strongly accretive if for each x, y ∈ D(F ), there exists j(x−y) ∈
J(x− y) such that

〈Fx− Fy, j(x− y)〉 ≥ δ‖x− y‖2 for some δ ∈ (0, 1).

F is called λ-strictly pseudocontractive [5] if for each x, y ∈ D(F ), there
exists j(x− y) ∈ J(x− y) such that

〈Fx− Fy, j(x− y) ≤ ‖x− y‖2 − λ‖x− y − (Fx− Fy)‖2,
for some λ ∈ (0, 1).

The following Lemmas will be used throughout the paper:

Lemma 2.2. ( [6]) Let X be a smooth Banach space and F : X → X be
a mapping. If F is δ-strongly accretive and λ-strictly pseudocontractive
with δ+λ > 1, then for any fixed number α ∈ (0, 1), I−αF is contractive

with constant 1− α(1−
√

(1− δ)/λ).

Lemma 2.3. ( [6]) Let X be a reflexive Banach space that admits a
weak sequentially continuous duality mapping J from X to X∗. Suppose
that T : X → X is a nonexpansive mapping and C = F (T ) 6= ∅. Assume
that F : X → X is δ-strongly accretive and λ-strictly pseudocontractive
with δ+λ > 1. Then the variationally inequality V I∗(F,C) has a unique
solution.

Lemma 2.4. ( [16]) Let X be a real smooth Banach space. Then

‖x+ y‖2 ≤ ‖x‖2 + 2 < y, J(x+ y) > ; ∀x, y ∈ X

Lemma 2.5. ( [15]) Let {xn} and {zn} be bounded sequences in a Ba-
nach space X and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn
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and lim supn→∞ βn < 1. Suppose xn+1 = βnxn + (1 − βn)zn for all in-
tegers n ≥ 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖xn − zn‖ = 0.

Lemma 2.6. ( [13,17]) Let {sn}, {cn} ⊂ R+, {an} ⊂ (0, 1) and {bn} ⊂
R be sequences such that sn+1 ≤ (1 − an)sn + bn + cn for all n ≥ 0.
Assume

∑∞
n=0 cn <∞ then the following results hold:

1) If bn ≤ βan (for some β > 0), then {sn} is a bounded sequence.
2) If we have

∑∞
n=0 an =∞ and lim supn→∞ bn/an ≤ 0, then sn → 0.

3. Iterative methods with sequential errors

Theorem 3.1. Let X be a reflexive Banach space that admits a weak
sequentially continuous duality mapping J from X to X∗, T : X → X
be a nonexpansive mapping with C = Fix(T ) 6= ∅ and F : X → X
be a δ-strongly accretive and λ- strictly pseudocotractive mapping with
δ + λ > 1. Suppose that {αn}, {βn} ⊂ [0, 1] and {λn} ⊂ (0, 1] satisfying
the following conditions:

(C1) λn → 0;
(C2)

∑∞
n=0 λn =∞;

(C3) (1− αn)/λn → 0;
(C4) 0 < lim infn→∞ βn and lim supn→∞ βn < 1;

and {yn} is an arbitrary bounded sequence in X. Let x0 ∈ X and {xn}
be generated by{

zn = αnTxn + (1− αn)yn,
xn+1 = (1− βn)xn + βn{zn − λnFzn}.

Then {xn} converges strongly to the unique solution x∗ of the variational
inequality V I∗(F,C).

Proof. Note that, taking Fn := (I − λnF ), we can write

xn+1 = (1− βn)xn + βnFnzn

and by Lemma 2.2, we have for all x, y ∈ C,

‖Fnx− Fny‖ ≤ (1− λnτ)‖x− y‖,
where τ := 1−

√
(1− δ)/λ.
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Now we shall divide the proof into several steps.

Step 1. {xn} is bounded:
From (1− αn)/λn → 0 we can choose N such that (1 − αn) ≤ λn,

(∀n > N). Let x∗ ∈ C. Since {yn} is bounded, we can choose some big
enough constant K > 0 such that

sup
n
{‖yn − x∗‖+ ‖Fx∗‖} < K.

So, for n > N , we have

‖xn+1 − x∗‖ ≤ (1− βn)‖xn − x∗‖+ βn‖Fnzn − x∗‖
≤ (1− βn)‖xn − x∗‖+ βn{‖Fnzn − Fnx

∗‖+ ‖Fnx
∗ − x∗‖}

≤ (1− βn)‖xn − x∗‖+ βn{(1− λnτ)‖zn − x∗‖+ λn‖Fx∗‖}
≤ (1− βn)‖xn − x∗‖+ βn{(1− λnτ)‖xn − x∗‖

+(1− αn)‖yn − x∗‖+ λn‖Fx∗‖}
= (1− βnλnτ)‖xn − x∗‖+ βn(1− αn)‖yn − x∗‖+ βnλn‖Fx∗‖
≤ (1− βnλnτ)‖xn − x∗‖+ βnλn‖yn − x∗‖+ βnλn‖Fx∗‖

≤ (1− βnλnτ)‖xn − x∗‖+ βnλnK.

From this inequality and the first part of Lemma 2.6, it follows that
{xn} is bounded.

Step 2. Let {ωn} be a bounded sequence in C. Then ‖Fn+1wn −
Fnωn‖ → 0.

In fact, since {ωn} is bounded and F is a Lipschitzian mapping,
supn{‖Fωn‖} <∞. Now, from λn → 0, we obtain

‖Fn+1wn − Fnωn‖ = ‖λn+1Fwn − λnFωn‖ → 0, as n→∞.

Step 3. ‖xn+1 − xn‖ → 0.
To prove it, define a sequence {un} by un = (xn+1 − (1− βn)xn)/βn

so that xn+1 = (1− βn)xn + βnun.
Now we compute

‖un+1−un‖ = ‖(xn+2−(1−βn+1)xn+1)/βn+1−(xn+1−(1−βn)xn)/βn‖
= ‖Fn+1zn+1 − Fnzn‖ ≤ ‖Fn+1zn+1 − Fn+1zn‖+ ‖Fn+1zn − Fnzn‖

≤ ‖zn+1 − zn‖+ ‖Fn+1zn − Fnzn‖
≤ αn+1‖Txn+1 − Txn‖+ |αn+1 − αn|‖Txn‖

+‖(1− αn+1)yn+1 + (1− αn)yn‖+ ‖Fn+1zn − Fnzn‖
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≤ ‖xn+1 − xn‖+ |αn+1 − αn|‖Txn‖
+‖(1− αn+1)yn+1 + (1− αn)yn‖+ ‖Fn+1zn − Fnzn‖.

Since (1−αn)→ 0 and the sequences {xn}, {yn} and {zn} are bounded,
applying Step 2, we obtain

lim sup
n

(‖un+1 − un‖ − ‖xn+1 − xn‖)

≤ lim sup
n
{|αn+1 − αn|‖Txn‖+ ‖(1− αn+1)yn+1 + (1− αn)yn‖

+‖Fn+1zn − Fnzn‖} ≤ 0.

Apply Lemma 2.5 to get limn ‖xn+1 − xn‖ = limn βn‖xn − zn‖ = 0.

Step 4. ‖TFnzn − Fnzn‖ → 0.
Indeed, by Step 3 and the conditions (C1) and (C3) we have

‖zn − Txn‖ = (1− αn)‖Txn − yn‖ → 0

and
βn‖xn − zn‖ ≤ ‖xn+1 − xn‖+ λn‖Fzn‖ → 0.

So, considering (C4), we obtain

‖Tzn − zn‖ ≤ ‖Tzn − Txn‖+ ‖zn − Txn‖
≤ ‖zn − xn‖+ ‖zn − Txn‖ → 0.

Consequently,

‖TFnzn − Fnzn‖ ≤ ‖TFnzn − Tzn‖+ ‖Tzn − Fnzn‖
≤ ‖Fnzn − zn‖+ ‖Tzn − zn‖+ ‖zn − Fnzn‖

= {2λn‖Fzn‖+ ‖Tzn − zn‖} → 0.

Step 5. lim supn→∞〈−Fx∗, J(Fnzn − x∗)〉 ≤ 0, where, x∗ is the unique
solution of the variational inequality V I∗(F,C).

To prove it, we pick a subsequence {Fni(zni)} of {Fnzn} so that

lim sup
n→∞

〈−Fx∗, J(Fnzn − x∗)〉 = lim
i→∞
〈−Fx∗, J(Fni(zni)− x∗)〉

Because X is reflexive and {Fnzn} is bounded, we may assume that
Fni(zni) ⇀ y∗ for some y∗ ∈ X. But by lemma 2.1 and Step 4, we have
y∗ ∈ Fix(T ) = C. Now, since x∗ solves V I∗(F,C), we obtain

lim sup
n→∞

〈−Fx∗, J(Fnzn − x∗)〉 = 〈−Fx∗, J(y∗ − x∗)〉 ≤ 0.

Step 6. xn → x∗.
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Observe that

‖xn+1 − x∗‖2 ≤ (1− βn)‖xn − x∗‖2 + βn‖Fnzn − x∗‖2

= (1− βn)‖xn − x∗‖2 + βn‖Fnzn − Fnx
∗ − λnFx∗‖2

≤ (1− βn)‖xn − x∗‖2 + βn{(1− λnτ)‖zn − x∗‖2

+2〈−λnFx∗, J(Fnzn − x∗)〉}
≤ (1−βn)‖xn−x∗‖2+βn(1−λnτ){αn‖Txn−x∗‖2+(1−αn)‖yn−x∗‖2}

+2βnλn〈−Fx∗, J(Fnzn − x∗)〉
≤ (1− βn)‖xn − x∗‖2 + βn(1− λnτ){‖xn − x∗‖2 + (1− αn)‖yn − x∗‖2}

+2βnλn〈−Fx∗, J(Fnzn − x∗)〉
≤ (1− βnλnτ)‖xn − x∗‖2 + βn(1− αn)‖yn − x∗‖2

+2βnλn〈−Fx∗, J(Fnzn − x∗)〉
Now, from conditions (C2) and (C3), Step 5 and the second part of

Lemma 2.6, we get ‖xn − x∗‖ → 0. �

Theorem 3.2. Let X, T , C and F be as in Theorem 3.1, and suppose
that {αn}, {βn} ⊂ [0, 1] and {λn} ⊂ (0, 1] satisfy the following condi-
tions:

(C1) λn → 0;
(C2)

∑∞
n=0 βnλn =∞;

(C3) λn/λn+1 → 1;
(C4) (1− αn)/λn → 0;
(C5)

∑∞
n=0 |βn − βn−1| <∞;

and {yn} is an arbitrary bounded sequence in X. Let x0 ∈ X and {xn}
be generated by{

zn = αnTxn + (1− αn)yn,
xn+1 = (1− βn)Txn + βn{zn − λnFzn}.

Then {xn} converges strongly to the unique solution x∗ of the variational
inequality V I∗(F,C).

Proof. Following the proof of Theorem 3.1, we may write

xn+1 = (1− βn)Txn + βnFnzn,

and, using a similar argument, prove the theorem according to the fol-
lowing steps:
Step 1. {xn} ia bounded;
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Step 2. ‖xn+1 − xn‖ → 0;
Step 3. ‖TFnzn − Fnzn‖ → 0;
Step 4. lim supn→∞〈−Fx∗, J(Fnzn − x∗)〉 ≤ 0, where, x∗ is the unique
solution of the variational inequality V I∗(F,C);
Step 5. xn → x∗.

To prove Step 1, it suffices to repeat the proof of Step 1 in Theorem
3.1. To prove Step 2, we estimate

‖xn+1 − xn‖
≤ (1− βn)‖Txn − Txn−1‖+ |βn − βn−1|‖Txn−1‖
+βn‖Fnzn − Fnzn−1‖+ |βn − βn−1|‖Fnzn−1‖
+βn−1‖Fnzn−1 − Fn−1zn−1‖
≤ (1− βn)‖xn − xn−1‖+ |βn − βn−1|‖Txn−1‖
+βn(1− λnτ)‖zn − zn−1‖
+|βn − βn−1|‖Fnzn−1‖+ βn−1|λn − λn−1|‖Fzn−1‖.(3.1)

Moreover, we have

βn(1− λnτ)‖zn − zn−1‖
≤ βn(1− λnτ){αn‖Txn − Txn−1‖+ |αn − αn−1|‖Txn−1‖
+(1− αn)‖yn − yn−1‖+ |αn − αn−1|‖yn−1‖}
≤ βn(1− λnτ)‖xn − xn−1‖+ βn|αn − αn−1|‖Txn−1‖
+βn(1− αn)‖yn − yn−1‖+ βn|αn − αn−1|‖yn−1‖,(3.2)

and

βn−1|λn − λn−1|‖Fzn−1‖

≤ βnλn|1−
λn−1
λn
|‖Fzn−1‖

+|βn − βn−1||λn − λn−1|‖Fzn−1‖.(3.3)

Note that being a convex combination of two bounded sequences, {zn}
is bounded. Set

L = sup
n
{‖Fzn‖, ‖Fnzn−1‖, ‖Txn‖, ‖yn‖},
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by (3.1), (3.2) and (3.3), we obtain

‖xn+1 − xn‖
≤ (1− βn)‖xn − xn−1‖+ |βn − βn−1|‖Txn−1‖
+{βn(1− λnτ)‖xn − xn−1‖+ βn|αn − αn−1|‖Txn−1‖
+βn(1− αn)‖yn − yn−1‖+ βn|αn − αn−1|‖yn−1‖}

+|βn − βn−1|‖Fnzn−1‖+ {βnλn|1−
λn−1
λn
|‖Fzn−1‖

+|βn − βn−1||λn − λn−1|‖Fzn−1‖}
≤ (1− βnλnτ)‖xn − xn−1‖+ {|βn − βn−1|+ βn|αn − αn−1|
+βn(1− αn) + βn|αn − αn−1|+ |βn − βn−1|

+βnλn|1−
λn−1
λn
|+ |βn − βn−1||λn − λn−1|}L

≤ (1− βnλnτ)‖xn − xn−1‖+ {2βn|αn − αn−1|

+βn(1− αn) + βnλn|1−
λn−1
λn
|}L+ 3|βn − βn−1|L.(3.4)

Moreover, by (C5),

∞∑
n=0

3|βn − βn−1|L <∞(3.5)

and, by (C3) and (C4),

{2βn|αn − αn−1|+ βn(1− αn) + βnλn|1−
λn−1
λn
|}/βnλn

= 2
|αn − αn−1|

λn
+

1− αn

λn
+ |1− λn−1

λn
|

≤ 2{1− αn

λn
+

1− αn−1
λn

}+
1− αn

λn
+ |1− λn−1

λn
|

= 3
1− αn

λn
+ 2

1− αn−1
λn−1

× λn−1
λn

+ |1− λn−1
λn
| → 0.(3.6)

So, combining (3.4), (3.5), (3.6) and Lemma 2.6, we conclude that
‖xn+1 − xn‖ → 0.

Now we prove Step 3: First, note that

‖TFnzn − Fnzn‖ ≤ ‖TFnzn − Tzn‖+ ‖Tzn − Fnzn‖

≤ 2‖Fnzn − zn‖+ ‖Tzn − zn‖,
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and

‖Tzn − zn‖ ≤ ‖Tzn − T 2xn‖+ ‖T 2xn − Txn‖+ ‖Txn − zn‖
≤ 2‖zn − Txn‖+ ‖Txn − xn‖.

So,

‖TFnzn − Fnzn‖
≤ 2‖Fnzn − zn‖+ 2‖zn − Txn‖+ ‖Txn − xn‖.(3.7)

On the other hand,

‖Fnzn − zn‖ = λn‖Fzn‖ → 0,(3.8)

and, combining (C1) and (C4),

‖zn − Txn‖ = (1− αn)‖Txn − yn‖ → 0.(3.9)

Moreover, by (3.8) and (C1), we obtain

‖xn+1 − Txn‖ ≤ {‖zn − Txn‖+ λn‖Fzn‖} → 0.

From this inequality and Step 2, we get

‖Txn − xn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Txn‖ → 0.(3.10)

Now, considering (3.7)-(3.10), the desired result follows.
To prove Steps 4 and 5, it is enough to repeat the proofs of Steps 5

and 6 of Theorem 3.1. �

4. Iterative methods with functional errors admitting a center

The aim of this section is to obtain the results of Section 3 by replacing
the sequential error {yn} with functional errors for functions admitting
a center [8].

Theorem 4.1. Let X be a reflexive Banach space that admits a weak
sequentially continuous duality mapping J from X to X∗, T : X → X be
a nonexpansive mapping with C = Fix(T ) 6= ∅ and {Sn : n = 0, 1, 2, . . . }
be a family of mappings from X to X such that for some z0 ∈ C
and l ∈ (0,∞) we have ‖Snx − z0‖ ≤ l‖x − z0‖ for all x ∈ X and
n = 0, 1, 2, . . . . Suppose that F : X → X is a δ-strongly accretive and
λ-strictly pseudocontractive mapping with δ + λ > 1 and the sequences
{αn}, {βn} ⊂ [0, 1] and {λn} ⊂ (0, 1] satisfy the following conditions:

(C1) λn → 0;
(C2)

∑∞
n=0 λn =∞;
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(C3) (1− αn)/λn → 0;
(C4) 0 < lim infn→∞ βn and lim supn→∞ βn < 1.

Let x0 ∈ X and {xn} be generated by{
zn = αnTxn + (1− αn)Sn(xn),
xn+1 = (1− βn)xn + βn{zn − λnFzn}.

Then {xn} converges strongly to the unique solution x∗ of the variational
inequality V I∗(F,C).

Proof. By an argument similar to the one used in Step 1 of Theorem
3.1, we obtain that

‖xn+1 − z0‖
≤ (1− βnλnτ)‖xn − z0‖+ βn(1− αn)‖Snxn − z0‖+ βnλn‖Fz0‖,(4.1)

for n = 0, 1, 2, . . . and z0 ∈ C. From the our assumptions, we may
consider a fixed z0 in C such that

‖Snx− z0‖ ≤ l‖x− z0‖,(4.2)

for all x ∈ X and n = 0, 1, 2, . . . . Now, by (C3), we can choose N such
that

(1− αn) ≤ λn(τ/2l),(4.3)

for all n > N . So, combining (4.1), (4.2) and (4.3), we obtain

‖xn+1 − z0‖
≤ (1− βnλnτ)‖xn − z0‖+ βnλn(τ/2l)‖Snxn − z0‖+ βnλn‖Fz0‖
≤ (1− βnλnτ)‖xn − z0‖+ βnλn(τ/2l)l‖xn − z0‖+ βnλn‖Fz0‖
= (1− βnλnτ/2)‖xn − z0‖+ βnλn‖Fz0‖,(4.4)

for every n > N . So, combining (C2), (C4), (4.4) and Lemma 2.6, it
follows that {xn} is bounded. Consequently, (4.2) implies that {Snxn}
is bounded. Now, by taking {yn} = {Snxn} in Theorem 3.1, we get the
desired result. �

Applying Theorem 3.2 and using an argument similar to the one used
in Theorem 4.1, we get the following result:

Theorem 4.2. Let X, T , C, F and {Sn} be as in Theorem 4.1, and
suppose that {αn}, {βn} ⊂ [0, 1] and {λn} ⊂ (0, 1] satisfy the following
conditions:
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(C1) λn → 0;
(C2)

∑∞
n=0 βnλn =∞;

(C3) λn/λn+1 → 1;
(C4) (1− αn)/λn → 0;
(C5)

∑∞
n=0 |βn − βn−1| <∞.

Let x0 ∈ X and {xn} be generated by{
zn = αnTxn + (1− αn)Sn(xn),
xn+1 = (1− βn)Txn + βn{zn − λnFzn}.

Then {xn} converges strongly to the unique solution x∗ of the variational
inequality V I∗(F,C).

Remark 4.3. If Sn is defined for any x ∈ X, as any arbitrary element
of co{T ix : i = 0, 1, 2, . . . }, then the assertion

‖Snx− z0‖ ≤ ‖x− z0‖
holds for all x ∈ X and z0 ∈ C = Fix(T ). So, in Theorems 4.1 and
4.2, we may replace Snxn with some arbitrary element of co{T ixn : i =
0, 1, 2, . . . }.

5. Some results in Hilbert spaces

In this section, we deduce some results for a strongly monotone and
Lipschitzian mapping in the context of a Hilbert space H. Let F : H →
H be r-strongly monotone and µ-Lipschitzian. Let λ be a number in
[0, 1] and let 0 < η < 2r/µ2. Then

‖(I − ληF )x− (I − ληF )y‖ ≤ (1− λτ)‖x− y‖, x, y ∈ H,(5.1)

where τ = 1 −
√

1− η(2r − ηµ2) ∈ (0, 1). (See [18]). In addition, if
λ ≤ η then by (5.1) we have

‖(I − λF )x− (I − λF )y‖

= ‖(I − (λ/η)ηF )x− (I − (λ/η)ηF )y‖
≤ (1− (λ/η)τ)‖x− y‖

= (1− λτ ′)‖x− y‖, ∀x, y ∈ H,
where τ ′ = τ/η. Furthermore we may choose the above η so that 2r/µ2−
η < 1/µ2. Then, we have

τ ′ = τ/η = {1−
√

1− η(2r − ηµ2)}/η
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= (2r − ηµ2)/{1 +
√

1− η(2r − ηµ2)} < 1.

According to the discussion above, we get the following:

Lemma 5.1. Let F : H → H be r-strongly monotone and µ-Lipschitzian.
Then, there exist constants b ∈ (0, 1] and τ ′ ∈ (0, 1) such that

‖(I − λF )x− (I − λF )y‖ ≤ (1− λτ ′)‖x− y‖,

for all λ ∈ [0, b] and x, y ∈ H.

Theorem 5.2. Let T : H → H be a nonexpansive mapping with C =
Fix(T ) 6= ∅ and F : H → H be r-strongly monotone and µ-Lipschitzian.
Suppose that {αn}, {βn} ⊂ [0, 1] and {λn} ⊂ (0, 1] satisfy the following
conditions:

(C1) λn → 0;
(C2)

∑∞
n=0 λn =∞;

(C3) (1− αn)/λn → 0;
(C4) 0 < lim infn→∞ βn and lim supn→∞ βn < 1;

and either {yn} is an arbitrary bounded sequence in H or yn ∈ co{T ixn :
i = 0, 1, 2, . . . }, for all n. Let x0 ∈ H and {xn} be generated by{

zn = αnTxn + (1− αn)yn,
xn+1 = (1− βn)xn + βn{zn − λnFzn}.

Then {xn} converges strongly to the unique solution of the variational
inequality V I(F,C).

Proof. From Lemma 5.1, there are constants b ∈ (0, 1] and τ ′ ∈ (0, 1)
such that

‖(I − λF )x− (I − λF )y‖ ≤ (1− λτ ′)‖x− y‖,

for all λ ∈ [0, b] and x, y ∈ H. Since λn → 0, without lose of generality,
we may assume that λn ≤ b for all n. Now, taking Fn := (I − λnF ), we
have

‖Fnx− Fny‖ ≤ (1− λnτ ′)‖x− y‖,
for all x, y ∈ C. For the rest of the proof, it suffices to repeat the proof
of Theorem 3.1 and consider Remark 4.3 and Theorem 4.1. �

If we take αn = 1 for all n, then we obtain in some sense the result
of Theorem 3.1 in [18], without the assumption λn/λn+1 → 1.
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Corollary 5.3. Let T , C and F be as in Theorem 5.2, and suppose that
{βn} ⊂ [0, 1] and {λn} ⊂ (0, 1] satisfy the following conditions:

(C1) λn → 0;
(C2)

∑∞
n=0 λn =∞;

(C3) 0 < lim infn→∞ βn and lim supn→∞ βn < 1.

Let x0 ∈ H and {xn} be generated by

xn+1 = (1− βn)xn + βn{Txn − λnF (Txn)}.
Then {xn} converges strongly to the unique solution of the variational
inequality V I(F,C).

Considering Theorems 3.2 and 4.2, using an argument similar to the
one used in Theorem 5.2, we get the following result which is a gen-
eralization of [ [18], Theorem 3.1] in the sense that, with the same as-
sumptions on coefficients, an arbitrary sequence will be inserted in the
algorithm.

Theorem 5.4. Let T , C and F be as in Theorem 5.2, and suppose that
{αn} ⊂ [0, 1] and {λn} ⊂ (0, 1] satisfy the following conditions:

(C1) λn → 0;
(C2)

∑∞
n=0 λn =∞;

(C3) λn/λn+1 → 1;
(C4) (1− αn)/λn → 0;

and either {yn} is an arbitrary bounded sequence in H or yn ∈ co{T ixn :
i = 0, 1, 2, . . . }, for all n. Let x0 ∈ H and {xn} be generated by{

zn = αnTxn + (1− αn)yn,
xn+1 = zn − λnFzn.

Then {xn} converges strongly to the unique solution of the variational
inequality V I(F,C).

6. Application in minimization

Let K be a nonempty closed and convex subset of a real Hilbert space
H. Let A be a bounded linear operator on H. Given an element b ∈ H,
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consider the minimization problem

min
x∈K
‖Ax− b‖2.(6.1)

Let Sb denote the solution set of (6.1). Then, Sb is closed convex. In
the sequel, it is assumed that Sb 6= ∅. (It is known that Sb 6= ∅ if and
only if P

A(K)
(b) ∈ A(K)).

For each λ > 0, define a mapping T : H → H by

Tx = PK(A∗b+ (I − λA∗A)x), ∀x ∈ H,(6.2)

where A∗ is the adjoint of A. It is shown that Fix(T ) = Sb and for
λ ∈ (0, 2‖A‖−2) the mapping T is nonexpansive (see [18]).

Let θ : H → R be a differentiable convex function such that θ′ is a
µ-Lipschitzian and r-strongly monotone operator for some µ > 0 and
r > 0. Under these assumptions, there exists a unique point x̃ ∈ Sb such
that

θ(x̃) = min{θ(x) : x ∈ Sb}.(6.3)

The minimization problem (6.3) is equivalent to the following variational
inequality problem:

〈θ′(x̃), x− x̃〉 ≥ 0, x ∈ Sb.
We now apply the results in Section 5 for finding the unique solution

of the minimization problem (6.3).

Theorem 6.1. Suppose that {αn}, {βn} ⊂ [0, 1] and {λn} ⊂ (0, 1] sat-
isfy the following conditions:

(C1) λn → 0;
(C2)

∑∞
n=0 λn =∞;

(C3) (1− αn)/λn → 0;
(C4) 0 < lim infn→∞ βn and lim supn→∞ βn < 1;

and either {yn} is an arbitrary bounded sequence in H or yn ∈ co{T ixn :
i = 0, 1, 2, . . . }, for all n, where T is given in (6.2). Let x0 ∈ H and
{xn} be generated by{

zn = αnTxn + (1− αn)yn,
xn+1 = (1− βn)xn + βn{zn − λnθ′(zn)}.

Then, {xn} strongly converges to the unique solution x̃ of the minimiza-
tion problem (6.3).
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Theorem 6.2. Suppose that {αn} ⊂ [0, 1] and {λn} ⊂ (0, 1] satisfy the
following conditions:

(C1) λn → 0;
(C2)

∑∞
n=0 λn =∞;

(C3) λn/λn+1 → 1;
(C4) (1− αn)/λn → 0;

and either {yn} is an arbitrary bounded sequence in H or yn ∈ co{T ixn :
i = 0, 1, 2, . . . }, for all n, where T is given in (6.2). Let x0 ∈ H and
{xn} be generated by{

zn = αnTxn + (1− αn)yn,
xn+1 = zn − λnθ′zn.

Then, {xn} strongly converges to the unique solution x̃ of the minimiza-
tion problem (6.3).
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