RINGS WITH A SETWISE POLYNOMIAL-LIKE CONDITION

A. TAVAKOLI, A. ABDOLLAHI* AND H. E. BELL

Communicated by Omid Ali Shehni Karamzadeh

Abstract

Let R be an infinite ring. Here, we prove that if 0_{R} belongs to $\left\{x_{1} x_{2} \cdots x_{n} \mid x_{1}, x_{2}, \ldots, x_{n} \in X\right\}$ for every infinite subset X of R, then R satisfies the polynomial identity $x^{n}=0$. Also, we prove that if 0_{R} belongs to $\left\{x_{1} x_{2} \cdots x_{n}-x_{n+1} \mid x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right.$ $\in X\}$ for every infinite subset X of R, then $x^{n}=x$, for all $x \in R$.

1. Introduction

If X_{1}, \ldots, X_{m} are non-empty subsets of a ring, we define as usual $X_{1} \cdots X_{m}:=\left\{a_{1} \cdots a_{m} \mid a_{i} \in X_{i}, i=1, \ldots, m\right\}$,

$$
\sum_{i=1}^{m} X_{i}:=\left\{\sum_{i=1}^{m} a_{i} \mid a_{i} \in X_{i}, i=1, \ldots, m\right\}
$$

and if $X_{1}=\cdots=X_{m}$, then we denote $\sum_{i=1}^{m} X_{i}$ and $X_{1} \cdots X_{m}$ by $m X_{1}$ and X_{1}^{m}, respectively. We denote the set $\left\{-x \mid x \in X_{1}\right\}$ by $-X_{1}$ and define $(-n) X_{1}$ as the set $-\left(n X_{1}\right)$ for all positive integers n. Suppose that $h\left(x_{1}, \ldots, x_{n}\right)$ is a nonzero polynomial in non-commuting indeterminates

MSC(2010): Primary: 16A38; Secondary: 16A20.
Keywords: Primitive rings, polynomial identities, combinatorial conditions.
Received: 20 April 2010, Accepted: 27 November 2010.
*Corresponding author
(c) 2012 Iranian Mathematical Society.
x_{1}, \ldots, x_{n} with coefficients from the integers \mathbb{Z} and zero constant. Then, we define $h^{*}\left(X_{1}, \ldots, X_{n}\right)$ as follows: if

$$
h\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{t} h_{i}\left(x_{1}, \ldots, x_{n}\right),
$$

where $h_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i_{1}}^{\alpha_{i_{1}}} \cdots x_{i_{n}}^{\alpha_{i n}}$ are monomials of h, we define

$$
h_{i}^{*}\left(X_{1}, \ldots, X_{n}\right)=X_{i_{1}}^{\alpha_{i_{1}}} \cdots X_{i_{n}}^{\alpha_{i_{n}}}
$$

and

$$
h^{*}\left(X_{1}, \ldots, X_{n}\right):=\sum_{i=1}^{t} h_{i}^{*}\left(X_{1}, \ldots, X_{n}\right) .
$$

A ring R is called an h-ring if $h\left(r_{1}, \ldots, r_{n}\right)=0$, for all $r_{1}, \ldots, r_{n} \in R$. We say that a ring R is an h^{*}-ring if for every n infinite subsets X_{1}, \ldots, X_{n} (not necessarily distinct) of R, we have $0 \in h^{*}\left(X_{1}, \ldots, X_{n}\right)$.

In Theorem 1 of [2], it is proved that if $X Y \cap Y X \neq \varnothing$, for all infinite subsets X and Y of an infinite ring R, then R is commutative. In fact, if $c\left(x_{1}, x_{2}\right)$ is the polynomial $x_{1} x_{2}-x_{2} x_{1}$ in non-commuting indeterminates x_{1}, x_{2}, then this result means that every infinite c^{*}-ring is a c-ring. In [1], a ring is called a virtually h-ring, if in every n infinite subsets X_{1}, \ldots, X_{n} of R, there exist elements $a_{i} \in X_{i}(i=1, \ldots, n)$ such that $h\left(a_{1}, \ldots, a_{n}\right)=0$. It is clear that every virtually h-ring is an h^{*}-ring. It is asked in [1] if every infinite virtually h-ring is an h-ring. We ask the same question for h^{*}-rings.

Suppose that $\alpha_{1}, \ldots, \alpha_{t}$ are positive integers and $t>0$ is an integer such that either $t>1$ or $\left(t=1\right.$ and $\left.\alpha_{1}>1\right)$. Suppose that $\mathcal{M}\left(x_{1}, \ldots, x_{n}\right)$ is the polynomial $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{t}}^{\alpha_{t}}$ in non-commuting indeterminates x_{1}, \ldots, x_{n}; and let $J_{n}(x)=x^{n}-x$, where $n>1$ is a positive integer. Our main results are the followings

Theorem 1. Every infinite \mathcal{M}^{*}-ring is an \mathcal{M}-ring.
Corollary 1. Let $n>1$ be an integer and $\mathcal{N}(x)=x^{n}$. Then, every infinite \mathcal{N}^{*}-ring is an \mathcal{N}-ring.

Theorem 2. Every infinite J_{n}^{*}-ring is a J_{n}-ring.
Theorem 1 generalizes Theorem 1.3 of [1], which says that every infinite virtually \mathcal{M}-ring is an \mathcal{M}-ring. In [3], it is proved that every infinite
virtually J_{n}-ring is a J_{n}-ring, and so Theorem 2 generalizes the latter result.

Let R be a ring and Y be a non-empty subset or an element of R. We denote the ring of all $m \times m$ matrices over R by $\operatorname{Mat}_{m}(R) ; J(R)$ and $\mathrm{A}(Y)$ denote the Jacobson radical of R and the annihilator of Y in R, respectively; and for a left R-module $V, \operatorname{End}_{R}(V)$ denotes the ring of all left R-module endomorphisms of V. Following [7]; a ring R is called an FZS-ring if every zero subring (i.e., every subring with trivial multiplication) of R is finite.

2. Some general results on h^{*}-rings

Throughout we assume that $h\left(x_{1}, \ldots, x_{n}\right)$ is a nonzero polynomial in non-commuting indeterminates x_{1}, \ldots, x_{n} with coefficients from \mathbb{Z} and zero constant. We need the following famous theorem due to Kaplansky [6].

Kaplansky's Theorem. [6] If R is a left primitive ring satisfying a polynomial identity of degree d, then R is a finite dimensional simple algebra over its center, of dimension at most $[d / 2]^{2}$.

The proof of the following lemma is similar to that of Lemma 2.4 of [1].
Lemma 2.1. Every left primitive h^{*}-ring is Artinian.
Lemma 2.2. Let R be an infinite h^{*}-ring. If I is an infinite ideal of R, then R / I is an h-ring.

Proof. Let $r_{1}, \ldots, r_{n} \in R$ and consider the infinite subsets $X_{i}=r_{i}+I$, for $i \in\{1, \ldots, n\}$. Since R is an h^{*}-ring, $0 \in h^{*}\left(r_{1}+I, \ldots, r_{n}+I\right)$. Since I is an ideal of R, it follows that $h\left(r_{1}, \ldots, r_{n}\right) \in I$. Thus, R / I is an h-ring.

3. Proofs

Suppose that $\alpha_{1}, \ldots, \alpha_{t}$ are positive integers and $t>0$ is an integer such that either $t>1$ or $\left(t=1\right.$ and $\left.\alpha_{1}>1\right)$; and $\mathcal{M}\left(x_{1}, \ldots, x_{n}\right)=$ $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{t}}^{\alpha_{t}}$. Also suppose that $J_{n}(x)=x^{n}-x$, where $n>1$ is an integer.

Proof of Theorem 1. Let R be an infinite \mathcal{M}^{*}-ring. We have that $R / J(R)$ is the subdirect product of R / P_{i}, where P_{i} is a left primitive ideal of R, for all $i \in I$. By Lemma $2.1, R / P_{i}$ is Artinian, for all $i \in I$. Since for every infinite division ring D, the full matrix $\operatorname{ring} \operatorname{Mat}_{k}(D)$ is not an \mathcal{M}^{*}-ring (consider the set $D I_{k}$ which contains no non-zero zero divisor, where I_{k} is the identity $k \times k$ matrix), it follows that R / P_{i} cannot be infinite. Thus, P_{i} is infinite, for all $i \in I$.
Now, it follows from Lemma 2.2 that R / P_{i} is an \mathcal{M}-ring, for all $i \in I$ and so $R / J(R)$ is an \mathcal{M}-ring. Thus, $x^{\alpha_{1}+\cdots+\alpha_{t}} \in J(R)$, for all $x \in R$. Now, we prove that R is periodic, that is, for every element $x \in R$, there exist two distinct positive integers s and t such that $x^{s}=x^{t}$. Consider the set $X=\left\{x^{k} \mid k \in \mathbb{N}\right\}$ for an arbitrary element $x \in R$. If X is infinite, then by the hypothesis, there are positive integers k_{1}, \ldots, k_{n} such that $x^{k_{1}+\cdots+k_{t}}=0$. Thus, $x^{k_{1}+\cdots+k_{t}+1}=x^{k_{1}+\cdots+k_{t}}=0$. If X is finite, then there exist two distinct integers t and s such that $x^{t}=x^{s}$. Hence, R is periodic.
Now, we prove that R is a nil ring. Let $a \in R$. Since R is periodic, there exist two distinct positive integers s and t such that $s>t$ and $\left(a^{d}\right)^{s}=\left(a^{d}\right)^{t}$, where $d=\alpha_{1}+\cdots+\alpha_{t}$. Thus, $a^{d t(s-t)}$ is idempotent. Since every idempotent element in $J(R)$ is zero, $a^{d t(s-t)}=0$. Let $x \in R$. Then, by Lemma 2.6 of [4], $A(x)$ is infinite and Theorem 1.3 of [1] implies that $A(x)$ contains an infinite zero subring T. Now, consider the infinite set $x+T$. Thus, $0 \in(x+T)^{\alpha_{1}} \cdots(x+T)^{\alpha_{t}}$, and so $x^{d}=0$. Let $S=\operatorname{Lev}(R)$, the Levitski radical of R, i.e., the unique maximal locally nilpotent ideal of R. It follows that $\bar{R}=R / S$ is a nil ring of degree at most d. If \bar{R} is non-zero, then it follows from Lemma 1.6.24 of [9] that \bar{R} contains a non-zero nilpotent ideal, which is not possible, since $\operatorname{Lev}(\bar{R})=0$. Thus, $\bar{R}=0$ and R is locally nilpotent.
Now, let $x_{1}, \ldots, x_{n} \in R$. Then, $A\left(x_{1}, \ldots, x_{n}\right)$ is infinite, by Lemma 2.6 of [4] and it contains an infinite zero subring T, by Theorem 1.3 of [1]. By the hypothesis, $0 \in\left(x_{i_{1}}+T\right)^{\alpha_{1}} \cdots\left(x_{i_{t}}+T\right)^{\alpha_{t}}$, which implies that $\mathcal{M}\left(x_{1}, \ldots, x_{n}\right)=x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{t}}^{\alpha_{t}}=0$, as required.

Proof of the Corollary 1. By considering $t=n$ and $\alpha_{1}=\cdots=\alpha_{t}=1$ in Theorem 1, the proof follows from Theorem 1.

We need the following easy lemma in the proof of Lemma 3.2.

Lemma 3.1. Let $n>1$ be a positive integer, and let p be a prime larger than n. Then, for all positive integers $t_{1}, \ldots, t_{n}, t_{n+1}$, we have $p^{t_{1}}+\cdots+p^{t_{n}} \neq p^{t_{n+1}}$.
Proof. It is straightforward.
Lemma 3.2. Let R be an infinite J_{n}^{*}-ring. Then, R is a periodic FZSring.
Proof. We first prove that R is a periodic ring. Let x be an element of R. Let $p>n$ be a prime number and suppose $X=\left\{x^{p^{t}} \mid t \in \mathbb{N}\right\}$. If X is finite, then $x^{p^{t}}=x^{p^{s}}$, for some distinct integers t and s. Now, suppose that X is infinite. Then, by the hypothesis, there exist positive integers $t_{1}, \ldots, t_{n}, t_{n+1}$ such that $x^{p^{t_{1}}+\cdots+p^{t_{n}}}=x^{p^{t_{n+1}}}$. Since $p>n$, it follows from Lemma 3.1 that $p^{t_{1}}+\cdots+p^{t_{n}} \neq p^{t_{n+1}}$. Thus, in any case there are distinct positive integers r_{1} and r_{2} such that $x^{r_{1}}=x^{r_{2}}$, and so R is periodic.
Now, we show that every zero subring of R is finite (i.e., R is an FZSring). Suppose, for a contradiction, that S is an infinite zero subring. By the hypothesis, there are n elements $s_{1}, \ldots, s_{n}, s_{n+1} \in S \backslash\{0\}$ such that $s_{1} \cdots s_{n}=s_{n+1}$, and so $s_{n+1}=0$, a contradiction. Thus, R is an FZS-ring.
Lemma 3.3. If F is a field which is a J_{n}^{*}-ring, then F is finite.
Proof. Suppose, for a contradiction, that F is infinite. It follows from Lemma 3.2 that F is a periodic ring, and so every nonzero element of F satisfies a polynomial of the form $x^{m}-1$, for some positive integer m. Thus, F has prime characteristic p, since the rational number $\frac{1}{2}$ does not satisfy a polynomial of the form $x^{m}-1$. Thus, for each element a of $F^{*}=F \backslash\{0\}$, there exists a positive integer k such that $a^{p^{k}-1}=1$, and so F^{*} is an infinite torsion locally cyclic group. It follows that there exists an infinite sequence of positive integers $n_{1}<n_{2}<\cdots$, such that for each $i \in \mathbb{N}$ there is an element $a_{i} \in F^{*}$ of order $p^{n_{i}}-1$. Now, by Theorems I and V of [5], for $i>6$, each $p^{n_{i}}-1$ has a prime divisor q_{i} such that $q_{i} \equiv 1 \bmod n_{i}$. Therefore, the set $\left\{q_{i} \mid i>6\right\}$ of primes is infinite, and so the abelian group F^{*} has infinitely many primary components. It follows that F^{*} contains two infinite subgroups N and M such that $N \cap M=1$. Now, let $a \in F^{*}$ and consider the infinite sets $a N$ and $a M$. Since F is a J_{n}^{*}-ring, there exist elements $a_{1}, \ldots, a_{n+1} \in N$ and $b_{1}, \ldots, b_{n+1} \in M$ such that

$$
\left(a a_{1}\right) \cdots\left(a a_{n}\right)=a a_{n+1} \text { and }\left(a b_{1}\right) \cdots\left(a b_{n}\right)=a b_{n+1}
$$

It follows that $a^{n-1} \in N \cap M$, and so $a^{n-1}=1$. Since a is an arbitrary element of F^{*}, it follows that each q_{i} divides $n-1$, a contradiction. This completes the proof.

We will use the following result due to Herstein in the proof of Theorem 2.

Theorem 3.4 (Herstein [8]). Let R be a periodic ring in which every nilpotent element is central. Then, R is commutative.
Proof of Theorem 2. For any ring S, we will denote by $N=N(S)$ and $Z=Z(S)$ the set of nilpotent elements and the center, respectively. Let R be an infinite J_{n}^{*}-ring. By Theorem 6 of $[7], N$ is finite; and since R is infinite, Z is infinite by Theorem 7 of $[7]$. For $u \in N$, consider the additive homomorphism $\phi: Z \rightarrow u Z$, given by $z \mapsto u z$. Since $\phi(Z)$ is finite, $W=\operatorname{ker} \phi=Z \cap A(u)$ is of finite index in $(Z,+)$, and hence is infinite. Since $u+W$ is infinite, there exist $z_{1}, z_{2}, \ldots, z_{n+1} \in W$ such that

$$
\left(u+z_{1}\right)\left(u+z_{2}\right) \cdots\left(u+z_{n}\right)=u+z_{n+1}
$$

that is,

$$
\text { (*) } u^{n}+z_{1} z_{2} \cdots z_{n}=u+z_{n+1} \text {. }
$$

Multiplying (*) by u gives $u^{2}=u^{n+1}$, and it follows easily that $u^{2}=0$, and therefore $u^{n}=0$. We now conclude from ($*$) that $u \in Z$. Thus, by Theorem 3.4, R is commutative.
Now, write R as a subdirect product of subdirectly irreducible rings R_{α}, and note that each finite R_{α} is a J_{n}-ring by Lemma 2.2. Suppose that there exists $\alpha=\alpha_{0}$ such that $R_{\alpha_{0}}$ is infinite. Since $R_{\alpha_{0}}$ is subdirectly irreducible and commutative, the only nonzero idempotent is 1 ; and since $R_{\alpha_{0}}$ is periodic, each nonnilpotent element has a power which is idempotent, i.e., it is invertible. Consequently, $\frac{R_{\alpha_{0}}}{N\left(R_{\alpha_{0}}\right)}$ is a field, which by Lemma 3.3 must be finite. Thus, $R_{\alpha_{0}}$ is finite, and so we have a contradiction. Therefore, all R_{α} are finite and R is a J_{n}-ring.

Acknowledgments

The research of the first author was in part supported by a grant from Islamic Azad University (No. 52193860829002). The research of the second author was in part supported by a grant from IPM (No. 88050040) as well as by the Center of Excellence for Mathematics, University of Isfahan.

References

[1] A. Abdollahi and S. Akbari, Rings virtually satisfying a polynomial identity, J. Pure Appl. Algebra 198 (2005), no. 1-3, 9-19.
[2] A. Abdollahi, H. E. Bell and A. A. Klein, On commutativity and centrality in infinite rings, Comm. Algebra 35 (2007), no. 4, 1323-1332.
[3] A. Abdollahi and B. Taeri, A combinatorial condition on infinite rings, Proceedings of the 31st Iranian Mathematics Conference (Tehran, 2000), pp. 23-27, Univ. Tehran, Tehran, 2000.
[4] A. Abdollahi and B. Taeri, On a class of infinite rings, Algebra Colloq. 8 (2001), no. 2, 153-157.
[5] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. of Math. (2) 5 (1904), no. 4, 173-180.
[6] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), no. 6, 575-580.
[7] A. A. Klein and H. E. Bell, Rings with finitely many nilpotent elements, Comm. Algebra 22 (1994), no. 1, 349-354.
[8] I. N. Herstein, A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954), 620.
[9] L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press Inc., New York-London, 1980.

Ali Tavakoli
Department of Mathematics, Majlesi Branch - Islamic Azad University, Majlesi New Town, Isfahan, Iran
Email: ali_tavakoli_targhi@yahoo.com

Alireza Abdollahi

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Isfahan, Iran
and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran

Email: a.abdollahi@math.ui.ac.ir
Howard E. Bell
Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S 3A1
Email: hbell@brocku.ca

