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RINGS WITH A SETWISE POLYNOMIAL-LIKE
CONDITION

A. TAVAKOLI, A. ABDOLLAHI* AND H. E. BELL

Communicated by Omid Ali Shehni Karamzadeh

ABSTRACT. Let R be an infinite ring. Here, we prove that if O be-
longs to {z1z2 - Tn | 1,22,...,2n € X} for every infinite subset
X of R, then R satisfies the polynomial identity =" = 0. Also, we
prove that if Og belongs to {z122 -+ Tn —Tnt1 | T1,T2,. .., Tn, Tnt1
€ X} for every infinite subset X of R, then z" = z, for all z € R.

1. Introduction

If X4,...,X,, are non-empty subsets of a ring, we define as usual
X1 Xpi={ar-an|a €X;, i=1,...,m},

m m
ZXZ' ::{Zai\aieXi, i=1,...,m};
i=1 i=1

and if X; = --- = X,,, then we denote > ;" | X; and X --- X, by mXy
and X7", respectively. We denote the set {—z | z € X1} by —X; and
define (—n)X; as the set —(nX1) for all positive integers n. Suppose that
h(z1,...,x,) is a nonzero polynomial in non-commuting indeterminates
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T1,..., T, with coeflicients from the integers Z and zero constant. Then,
we define h*(X,...,X,) as follows: if

t

h(l‘l, e ,l’n) = Zhl’(l'l, e ,iEn),

i=1
Qg [e'7} .
where hi(z1,...,z,) =2, -+ 2, ™ are monomials of h, we define
(2 9 yn 11 in )
* _ @iy QXin
WE (X1, Xp) = X0 X
and

t
W (X1, Xn) =) B(Xa, ., X).
=1

A ring R is called an h-ring if h(ry,...,r,) =0, forallry,...,r, € R. We
say that a ring R is an h*-ring if for every n infinite subsets X1,..., X,
(not necessarily distinct) of R, we have 0 € h*(X1,...,X,).

In Theorem 1 of [2], it is proved that if XY NYX # @, for all
infinite subsets X and Y of an infinite ring R, then R is commutative.
In fact, if ¢(x1,x2) is the polynomial zjz9 — xox1 in non-commuting
indeterminates x1, x2, then this result means that every infinite c*-ring
is a c-ring. In [1], a ring is called a virtually h-ring, if in every n infinite
subsets Xi,..., X, of R, there exist elements a; € X; (i = 1,...,n)
such that h(ai,...,a,) = 0. It is clear that every virtually h-ring is an
h*-ring. It is asked in [1] if every infinite virtually h-ring is an h-ring.
We ask the same question for A*-rings.

Suppose that ai,...,a; are positive integers and ¢ > 0 is an inte-
ger such that either ¢ > 1 or (¢ = 1 and oy > 1). Suppose that
M(zy,...,xy,) is the polynomial xf‘ll e xioit in non-commuting indeter-

minates x1,...,%,; and let J,(z) = 2™ — x, where n > 1 is a positive
integer. Our main results are the followings

Theorem 1. Every infinite M*-ring is an M-ring.

Corollary 1. Let n > 1 be an integer and N (x) = z™. Then, every
infinite N**-ring is an N -ring.

Theorem 2. Every infinite J}-ring is a Jp-ring.

Theorem 1 generalizes Theorem 1.3 of [1], which says that every infi-
nite virtually M-ring is an M-ring. In [3], it is proved that every infinite
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virtually J,-ring is a J,-ring, and so Theorem 2 generalizes the latter
result.

Let R be a ring and Y be a non-empty subset or an element of R.
We denote the ring of all m x m matrices over R by Mat,,(R); J(R)
and A(Y) denote the Jacobson radical of R and the annihilator of ¥ in
R, respectively; and for a left R-module V', Endg(V') denotes the ring
of all left R-module endomorphisms of V. Following [7]; a ring R is
called an FZS-ring if every zero subring (i.e., every subring with trivial
multiplication) of R is finite.

2. Some general results on h*-rings

Throughout we assume that h(zq,...,z,) is a nonzero polynomial in
non-commuting indeterminates x1,...,x, with coefficients from Z and
zero constant. We need the following famous theorem due to Kaplansky
[6].

Kaplansky’s Theorem. [6] If R is a left primitive ring satisfying a
polynomial identity of degree d, then R is a finite dimensional simple
algebra over its center, of dimension at most [d/2]%.

The proof of the following lemma is similar to that of Lemma 2.4 of
[1].

Lemma 2.1. FEvery left primitive h*-ring is Artinian.

Lemma 2.2. Let R be an infinite h*-ring. If I is an infinite ideal of R,
then R/I is an h-ring.

Proof. Let rq,...,r, € R and consider the infinite subsets X; = r; + I,
for i € {1,...,n}. Since R is an h*-ring, 0 € h*(ry + I,...,r, + I).
Since [ is an ideal of R, it follows that h(rq,...,r,) € I. Thus, R/I is
an h-ring. g

3. Proofs

Suppose that aj,...,a; are positive integers and ¢ > 0 is an inte-
ger such that either ¢ > 1 or (t =1 and oy > 1); and M(xq,...,z,) =

:L’f‘ll S xgt. Also suppose that J,(z) = 2™ —z, where n > 1 is an integer.
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Proof of Theorem 1. Let R be an infinite M*-ring. We have that
R/J(R) is the subdirect product of R/P;, where P; is a left primitive
ideal of R, for all i € I. By Lemma 2.1, R/P; is Artinian, for all ¢ € I.
Since for every infinite division ring D, the full matrix ring Maty(D) is
not an M*-ring (consider the set DI, which contains no non-zero zero
divisor, where I} is the identity k x k matrix), it follows that R/P; can-
not be infinite. Thus, P; is infinite, for all i € I.

Now, it follows from Lemma 2.2 that R/P; is an M-ring, for all i € I
and so R/J(R) is an M-ring. Thus, 21+t ¢ J(R), for all x € R.
Now, we prove that R is periodic, that is, for every element = € R, there
exist two distinct positive integers s and t such that x° = 2. Consider
the set X = {2* | k € N} for an arbitrary element = € R. If X is infinite,
then by the hypothesis, there are positive integers ki, ..., k, such that
ghittk — 0. Thus, ghittketl = ghittk — 0 If X is finite, then
there exist two distinct integers ¢ and s such that 2* = 2%, Hence, R is
periodic.

Now, we prove that R is a nil ring. Let a € R. Since R is periodic,
there exist two distinct positive integers s and ¢ such that s > t and
(a®)® = (a)t, where d = aj + - + ay. Thus, a®*~? is idempotent.
Since every idempotent element in J(R) is zero, a®>~*) = 0. Let = € R.
Then, by Lemma 2.6 of [4], A(z) is infinite and Theorem 1.3 of [1] im-
plies that A(z) contains an infinite zero subring 7. Now, consider the
infinite set  + 7. Thus, 0 € (z +T)% --- (x + T)*, and so ¢ = 0. Let
S = Lev(R), the Levitski radical of R, i.e., the unique maximal locally
nilpotent ideal of R. It follows that R = R/S is a nil ring of degree
at most d. If R is non-zero, then it follows from Lemma 1.6.24 of [9]
that R contains a non-zero nilpotent ideal, which is not possible, since
Lev(R) = 0. Thus, R = 0 and R is locally nilpotent.

Now, let z1,...,z, € R. Then, A(x1,...,z,) is infinite, by Lemma 2.6
of [4] and it contains an infinite zero subring 7', by Theorem 1.3 of [1].
By the hypothesis, 0 € (x;;, + 1) --- (x;, + T)*, which implies that

M(z1, ... 2p) = 2" -2t = 0, as required. O
Proof of the Corollary 1. By consideringt =nanda; =--- =a; =1
in Theorem 1, the proof follows from Theorem 1. O

We need the following easy lemma in the proof of Lemma 3.2.
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Lemma 3.1. Let n > 1 be a positive integer, and let p be a prime

larger than n. Then, for all positive integers ti,...,tn,tht1, we have
Pt i £ piE
Proof. It is straightforward. O

Lemma 3.2. Let R be an infinite J;-ring. Then, R is a periodic FZS-
TIng.

Proof. We first prove that R is a periodic ring. Let z be an element of
R. Let p > n be a prime number and suppose X = {x”t |t € N}. If X is
finite, then 2P = xP”, for some distinct integers t and s. Now, suppose
that X is infinite. Then, by the hypothesis, there exist positive integers
t1,. . tn,tni1 such that z? 4" = 271 Qince p > n, it follows
from Lemma 3.1 that p’* + .- 4 pl» # pl»+1. Thus, in any case there
are distinct positive integers r; and ro such that 2™ = 2", and so R is
periodic.

Now, we show that every zero subring of R is finite (i.e., R is an FZS-
ring). Suppose, for a contradiction, that S is an infinite zero subring.
By the hypothesis, there are n elements si,..., sy, Snt+1 € S\{0} such
that s1--- s, = spt1, and so sp4+1 = 0, a contradiction. Thus, R is an
FZS-ring. O

Lemma 3.3. If I is a field which is a J}-ring, then F is finite.

Proof. Suppose, for a contradiction, that F' is infinite. It follows from
Lemma 3.2 that F' is a periodic ring, and so every nonzero element of F
satisfies a polynomial of the form z" — 1, for some positive integer m.
Thus, F has prime characteristic p, since the rational number % does
not satisfy a polynomial of the form =" — 1. Thus, for each element a
of F* = F\{0}, there exists a positive integer k such that a? ~! = 1,
and so F™* is an infinite torsion locally cyclic group. It follows that there
exists an infinite sequence of positive integers ny < no < ---, such that
for each ¢ € N there is an element a; € F* of order p™ — 1. Now, by
Theorems I and V of [5], for i > 6, each p™ —1 has a prime divisor g; such
that ¢; =1 mod n;. Therefore, the set {g; | i > 6} of primes is infinite,
and so the abelian group F* has infinitely many primary components.
It follows that F* contains two infinite subgroups N and M such that
NNM = 1. Now, let a € F* and consider the infinite sets a/N and
aM. Since F' is a J}-ring, there exist elements ai,...,ap+1 € N and
b1,...,bpr1 € M such that

(aay) - (aay) = aant1 and (aby) - - (aby) = abyy1.
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It follows that a”~' € N N M, and so a” ! = 1. Since a is an arbitrary
element of F*, it follows that each ¢; divides n—1, a contradiction. This
completes the proof. O

We will use the following result due to Herstein in the proof of The-
orem 2.

Theorem 3.4 (Herstein [8]). Let R be a periodic ring in which every
nilpotent element is central. Then, R is commutative.

Proof of Theorem 2. For any ring S, we will denote by N = N(S5)
and Z = Z(S) the set of nilpotent elements and the center, respectively.
Let R be an infinite J-ring. By Theorem 6 of [7], NV is finite; and since
R is infinite, Z is infinite by Theorem 7 of [7]. For u € N, consider the
additive homomorphism ¢ : Z — uZ, given by z — uz. Since ¢(Z) is
finite, W = ker¢ = Z N A(u) is of finite index in (Z,+), and hence is
infinite. Since w 4+ W is infinite, there exist z1,22,...,2,4+1 € W such
that

(u+z1)(u+22) - (u+ 2n) = u+ 2py1,
that is,

(%) u"+z129 - 2p = U+ Zpg1.

Multiplying (¥) by u gives u? = u"*!, and it follows easily that u? = 0,
and therefore u” = 0. We now conclude from (x) that v € Z. Thus, by
Theorem 3.4, R is commutative.
Now, write R as a subdirect product of subdirectly irreducible rings R,
and note that each finite R, is a J,-ring by Lemma 2.2. Suppose that
there exists a = g such that R,, is infinite. Since R, is subdirectly
irreducible and commutative, the only nonzero idempotent is 1; and
since R,, is periodic, each nonnilpotent element has a power which is

idempotent, i.e., it is invertible. Consequently, MR%;)@) is a field, which

by Lemma 3.3 must be finite. Thus, R,, is finite, and so we have a

contradiction. Therefore, all R, are finite and R is a J,-ring. U
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