RINGS WITH A SETWISE POLYNOMIAL-LIKE CONDITION

A. TAVAKOLI, A. ABDOLLAHI* AND H. E. BELL

Communicated by Omid Ali Shehni Karamzadeh

ABSTRACT. Let R be an infinite ring. Here, we prove that if 0_R belongs to $\{x_1x_2\cdots x_n\mid x_1,x_2,\ldots,x_n\in X\}$ for every infinite subset X of R, then R satisfies the polynomial identity $x^n=0$. Also, we prove that if 0_R belongs to $\{x_1x_2\cdots x_n-x_{n+1}\mid x_1,x_2,\ldots,x_n,x_{n+1}\in X\}$ for every infinite subset X of R, then $x^n=x$, for all $x\in R$.

1. Introduction

If X_1, \ldots, X_m are non-empty subsets of a ring, we define as usual $X_1 \cdots X_m := \{a_1 \cdots a_m \mid a_i \in X_i, i = 1, \ldots, m\},\$

$$\sum_{i=1}^{m} X_i := \left\{ \sum_{i=1}^{m} a_i \mid a_i \in X_i, \ i = 1, \dots, m \right\};$$

and if $X_1 = \cdots = X_m$, then we denote $\sum_{i=1}^m X_i$ and $X_1 \cdots X_m$ by mX_1 and X_1^m , respectively. We denote the set $\{-x \mid x \in X_1\}$ by $-X_1$ and define $(-n)X_1$ as the set $-(nX_1)$ for all positive integers n. Suppose that $h(x_1, \ldots, x_n)$ is a nonzero polynomial in non-commuting indeterminates

 $\label{eq:MSC(2010):Primary: 16A38; Secondary: 16A20.} \\$

Keywords: Primitive rings, polynomial identities, combinatorial conditions.

Received: 20 April 2010, Accepted: 27 November 2010.

*Corresponding author

© 2012 Iranian Mathematical Society.

 x_1, \ldots, x_n with coefficients from the integers \mathbb{Z} and zero constant. Then, we define $h^*(X_1, \ldots, X_n)$ as follows: if

$$h(x_1, \dots, x_n) = \sum_{i=1}^t h_i(x_1, \dots, x_n),$$

where $h_i(x_1, \ldots, x_n) = x_{i_1}^{\alpha_{i_1}} \cdots x_{i_n}^{\alpha_{i_n}}$ are monomials of h, we define

$$h_i^*(X_1, \dots, X_n) = X_{i_1}^{\alpha_{i_1}} \cdots X_{i_n}^{\alpha_{i_n}},$$

and

$$h^*(X_1,\ldots,X_n) := \sum_{i=1}^t h_i^*(X_1,\ldots,X_n).$$

A ring R is called an h-ring if $h(r_1, \ldots, r_n) = 0$, for all $r_1, \ldots, r_n \in R$. We say that a ring R is an h^* -ring if for every n infinite subsets X_1, \ldots, X_n (not necessarily distinct) of R, we have $0 \in h^*(X_1, \ldots, X_n)$.

In Theorem 1 of [2], it is proved that if $XY \cap YX \neq \emptyset$, for all infinite subsets X and Y of an infinite ring R, then R is commutative. In fact, if $c(x_1, x_2)$ is the polynomial $x_1x_2 - x_2x_1$ in non-commuting indeterminates x_1, x_2 , then this result means that every infinite c^* -ring is a c-ring. In [1], a ring is called a virtually h-ring, if in every n infinite subsets X_1, \ldots, X_n of R, there exist elements $a_i \in X_i$ $(i = 1, \ldots, n)$ such that $h(a_1, \ldots, a_n) = 0$. It is clear that every virtually h-ring is an h^* -ring. It is asked in [1] if every infinite virtually h-ring is an h-ring. We ask the same question for h^* -rings.

Suppose that $\alpha_1, \ldots, \alpha_t$ are positive integers and t > 0 is an integer such that either t > 1 or $(t = 1 \text{ and } \alpha_1 > 1)$. Suppose that $\mathcal{M}(x_1, \ldots, x_n)$ is the polynomial $x_{i_1}^{\alpha_1} \cdots x_{i_t}^{\alpha_t}$ in non-commuting indeterminates x_1, \ldots, x_n ; and let $J_n(x) = x^n - x$, where n > 1 is a positive integer. Our main results are the followings

Theorem 1. Every infinite \mathcal{M}^* -ring is an \mathcal{M} -ring.

Corollary 1. Let n > 1 be an integer and $\mathcal{N}(x) = x^n$. Then, every infinite \mathcal{N}^* -ring is an \mathcal{N} -ring.

Theorem 2. Every infinite J_n^* -ring is a J_n -ring.

Theorem 1 generalizes Theorem 1.3 of [1], which says that every infinite virtually \mathcal{M} -ring is an \mathcal{M} -ring. In [3], it is proved that every infinite

virtually J_n -ring is a J_n -ring, and so Theorem 2 generalizes the latter result.

Let R be a ring and Y be a non-empty subset or an element of R. We denote the ring of all $m \times m$ matrices over R by $\operatorname{Mat}_m(R)$; J(R) and A(Y) denote the Jacobson radical of R and the annihilator of Y in R, respectively; and for a left R-module V, $\operatorname{End}_R(V)$ denotes the ring of all left R-module endomorphisms of V. Following [7]; a ring R is called an FZS-ring if every zero subring (i.e., every subring with trivial multiplication) of R is finite.

2. Some general results on h^* -rings

Throughout we assume that $h(x_1, \ldots, x_n)$ is a nonzero polynomial in non-commuting indeterminates x_1, \ldots, x_n with coefficients from \mathbb{Z} and zero constant. We need the following famous theorem due to Kaplansky [6].

Kaplansky's Theorem. [6] If R is a left primitive ring satisfying a polynomial identity of degree d, then R is a finite dimensional simple algebra over its center, of dimension at most $\lceil d/2 \rceil^2$.

The proof of the following lemma is similar to that of Lemma 2.4 of [1].

Lemma 2.1. Every left primitive h^* -ring is Artinian.

Lemma 2.2. Let R be an infinite h^* -ring. If I is an infinite ideal of R, then R/I is an h-ring.

Proof. Let $r_1, \ldots, r_n \in R$ and consider the infinite subsets $X_i = r_i + I$, for $i \in \{1, \ldots, n\}$. Since R is an h^* -ring, $0 \in h^*(r_1 + I, \ldots, r_n + I)$. Since I is an ideal of R, it follows that $h(r_1, \ldots, r_n) \in I$. Thus, R/I is an h-ring.

3. Proofs

Suppose that $\alpha_1, \ldots, \alpha_t$ are positive integers and t > 0 is an integer such that either t > 1 or $(t = 1 \text{ and } \alpha_1 > 1)$; and $\mathcal{M}(x_1, \ldots, x_n) = x_{i_1}^{\alpha_1} \cdots x_{i_t}^{\alpha_t}$. Also suppose that $J_n(x) = x^n - x$, where n > 1 is an integer.

Proof of Theorem 1. Let R be an infinite \mathcal{M}^* -ring. We have that R/J(R) is the subdirect product of R/P_i , where P_i is a left primitive ideal of R, for all $i \in I$. By Lemma 2.1, R/P_i is Artinian, for all $i \in I$. Since for every infinite division ring D, the full matrix ring $\operatorname{Mat}_k(D)$ is not an \mathcal{M}^* -ring (consider the set DI_k which contains no non-zero zero divisor, where I_k is the identity $k \times k$ matrix), it follows that R/P_i cannot be infinite. Thus, P_i is infinite, for all $i \in I$.

Now, it follows from Lemma 2.2 that R/P_i is an \mathcal{M} -ring, for all $i \in I$ and so R/J(R) is an \mathcal{M} -ring. Thus, $x^{\alpha_1+\cdots+\alpha_t} \in J(R)$, for all $x \in R$. Now, we prove that R is periodic, that is, for every element $x \in R$, there exist two distinct positive integers s and t such that $x^s = x^t$. Consider the set $X = \{x^k \mid k \in \mathbb{N}\}$ for an arbitrary element $x \in R$. If X is infinite, then by the hypothesis, there are positive integers k_1, \ldots, k_n such that $x^{k_1+\cdots+k_t}=0$. Thus, $x^{k_1+\cdots+k_t+1}=x^{k_1+\cdots+k_t}=0$. If X is finite, then there exist two distinct integers t and s such that $x^t=x^s$. Hence, R is periodic.

Now, we prove that R is a nil ring. Let $a \in R$. Since R is periodic, there exist two distinct positive integers s and t such that s > t and $(a^d)^s = (a^d)^t$, where $d = \alpha_1 + \dots + \alpha_t$. Thus, $a^{dt(s-t)}$ is idempotent. Since every idempotent element in J(R) is zero, $a^{dt(s-t)} = 0$. Let $x \in R$. Then, by Lemma 2.6 of [4], A(x) is infinite and Theorem 1.3 of [1] implies that A(x) contains an infinite zero subring T. Now, consider the infinite set x + T. Thus, $0 \in (x + T)^{\alpha_1} \cdots (x + T)^{\alpha_t}$, and so $x^d = 0$. Let S = Lev(R), the Levitski radical of R, i.e., the unique maximal locally nilpotent ideal of R. It follows that $\overline{R} = R/S$ is a nil ring of degree at most d. If \overline{R} is non-zero, then it follows from Lemma 1.6.24 of [9] that \overline{R} contains a non-zero nilpotent ideal, which is not possible, since $\text{Lev}(\overline{R}) = 0$. Thus, $\overline{R} = 0$ and R is locally nilpotent.

Now, let $x_1, \ldots, x_n \in R$. Then, $A(x_1, \ldots, x_n)$ is infinite, by Lemma 2.6 of [4] and it contains an infinite zero subring T, by Theorem 1.3 of [1]. By the hypothesis, $0 \in (x_{i_1} + T)^{\alpha_1} \cdots (x_{i_t} + T)^{\alpha_t}$, which implies that $\mathcal{M}(x_1, \ldots, x_n) = x_{i_1}^{\alpha_1} \cdots x_{i_t}^{\alpha_t} = 0$, as required.

Proof of the Corollary 1. By considering t = n and $\alpha_1 = \cdots = \alpha_t = 1$ in Theorem 1, the proof follows from Theorem 1.

We need the following easy lemma in the proof of Lemma 3.2.

Lemma 3.1. Let n > 1 be a positive integer, and let p be a prime larger than n. Then, for all positive integers $t_1, \ldots, t_n, t_{n+1}$, we have $p^{t_1} + \cdots + p^{t_n} \neq p^{t_{n+1}}$.

Proof. It is straightforward.

Lemma 3.2. Let R be an infinite J_n^* -ring. Then, R is a periodic FZS-ring.

Proof. We first prove that R is a periodic ring. Let x be an element of R. Let p>n be a prime number and suppose $X=\{x^{p^t}\mid t\in\mathbb{N}\}$. If X is finite, then $x^{p^t}=x^{p^s}$, for some distinct integers t and s. Now, suppose that X is infinite. Then, by the hypothesis, there exist positive integers t_1,\ldots,t_n,t_{n+1} such that $x^{p^{t_1}+\cdots+p^{t_n}}=x^{p^{t_{n+1}}}$. Since p>n, it follows from Lemma 3.1 that $p^{t_1}+\cdots+p^{t_n}\neq p^{t_{n+1}}$. Thus, in any case there are distinct positive integers r_1 and r_2 such that $x^{r_1}=x^{r_2}$, and so R is periodic.

Now, we show that every zero subring of R is finite (i.e., R is an FZS-ring). Suppose, for a contradiction, that S is an infinite zero subring. By the hypothesis, there are n elements $s_1, \ldots, s_n, s_{n+1} \in S \setminus \{0\}$ such that $s_1 \cdots s_n = s_{n+1}$, and so $s_{n+1} = 0$, a contradiction. Thus, R is an FZS-ring.

Lemma 3.3. If F is a field which is a J_n^* -ring, then F is finite.

Proof. Suppose, for a contradiction, that F is infinite. It follows from Lemma 3.2 that F is a periodic ring, and so every nonzero element of Fsatisfies a polynomial of the form $x^m - 1$, for some positive integer m. Thus, F has prime characteristic p, since the rational number $\frac{1}{2}$ does not satisfy a polynomial of the form x^m-1 . Thus, for each element a of $F^* = F \setminus \{0\}$, there exists a positive integer k such that $a^{p^k-1} = 1$, and so F^* is an infinite torsion locally cyclic group. It follows that there exists an infinite sequence of positive integers $n_1 < n_2 < \cdots$, such that for each $i \in \mathbb{N}$ there is an element $a_i \in F^*$ of order $p^{n_i} - 1$. Now, by Theorems I and V of [5], for i > 6, each $p^{n_i} - 1$ has a prime divisor q_i such that $q_i \equiv 1 \mod n_i$. Therefore, the set $\{q_i \mid i > 6\}$ of primes is infinite, and so the abelian group F^* has infinitely many primary components. It follows that F^* contains two infinite subgroups N and M such that $N \cap M = 1$. Now, let $a \in F^*$ and consider the infinite sets aN and aM. Since F is a J_n^* -ring, there exist elements $a_1, \ldots, a_{n+1} \in N$ and $b_1, \ldots, b_{n+1} \in M$ such that

$$(aa_1)\cdots(aa_n) = aa_{n+1}$$
 and $(ab_1)\cdots(ab_n) = ab_{n+1}$.

It follows that $a^{n-1} \in N \cap M$, and so $a^{n-1} = 1$. Since a is an arbitrary element of F^* , it follows that each q_i divides n-1, a contradiction. This completes the proof.

We will use the following result due to Herstein in the proof of Theorem 2.

Theorem 3.4 (Herstein [8]). Let R be a periodic ring in which every nilpotent element is central. Then, R is commutative.

Proof of Theorem 2. For any ring S, we will denote by N=N(S) and Z=Z(S) the set of nilpotent elements and the center, respectively. Let R be an infinite J_n^* -ring. By Theorem 6 of [7], N is finite; and since R is infinite, Z is infinite by Theorem 7 of [7]. For $u \in N$, consider the additive homomorphism $\phi: Z \to uZ$, given by $z \mapsto uz$. Since $\phi(Z)$ is finite, $W = \ker \phi = Z \cap A(u)$ is of finite index in (Z, +), and hence is infinite. Since u + W is infinite, there exist $z_1, z_2, \ldots, z_{n+1} \in W$ such that

$$(u+z_1)(u+z_2)\cdots(u+z_n) = u+z_{n+1},$$

that is,

(*)
$$u^n + z_1 z_2 \cdots z_n = u + z_{n+1}$$
.

Multiplying (*) by u gives $u^2 = u^{n+1}$, and it follows easily that $u^2 = 0$, and therefore $u^n = 0$. We now conclude from (*) that $u \in Z$. Thus, by Theorem 3.4, R is commutative.

Now, write R as a subdirect product of subdirectly irreducible rings R_{α} , and note that each finite R_{α} is a J_n -ring by Lemma 2.2. Suppose that there exists $\alpha = \alpha_0$ such that R_{α_0} is infinite. Since R_{α_0} is subdirectly irreducible and commutative, the only nonzero idempotent is 1; and since R_{α_0} is periodic, each nonnilpotent element has a power which is idempotent, i.e., it is invertible. Consequently, $\frac{R_{\alpha_0}}{N(R_{\alpha_0})}$ is a field, which by Lemma 3.3 must be finite. Thus, R_{α_0} is finite, and so we have a contradiction. Therefore, all R_{α} are finite and R is a J_n -ring.

Acknowledgments

The research of the first author was in part supported by a grant from Islamic Azad University (No. 52193860829002). The research of the second author was in part supported by a grant from IPM (No. 88050040) as well as by the Center of Excellence for Mathematics, University of Isfahan.

References

- [1] A. Abdollahi and S. Akbari, Rings virtually satisfying a polynomial identity, *J. Pure Appl. Algebra* **198** (2005), no. 1-3, 9–19.
- [2] A. Abdollahi, H. E. Bell and A. A. Klein, On commutativity and centrality in infinite rings, Comm. Algebra 35 (2007), no. 4, 1323–1332.
- [3] A. Abdollahi and B. Taeri, A combinatorial condition on infinite rings, *Proceedings* of the 31st Iranian Mathematics Conference (Tehran, 2000), pp. 23–27, Univ. Tehran, Tehran, 2000.
- [4] A. Abdollahi and B. Taeri, On a class of infinite rings, Algebra Colloq. 8 (2001), no. 2, 153-157.
- [5] G. D. Birkhoff and H. S. Vandiver, On the integral divisors of $a^n b^n$, Ann. of Math. (2) 5 (1904), no. 4, 173–180.
- [6] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), no. 6, 575–580.
- [7] A. A. Klein and H. E. Bell, Rings with finitely many nilpotent elements, Comm. Algebra 22 (1994), no. 1, 349–354.
- [8] I. N. Herstein, A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954), 620.
- [9] L. H. Rowen, Polynomial Identities in Ring Theory, Academic Press Inc., New York-London, 1980.

Ali Tavakoli

Department of Mathematics, Majlesi Branch - Islamic Azad University, Majlesi New Town, Isfahan, Iran

Email: ali_tavakoli_targhi@yahoo.com

Alireza Abdollahi

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Isfahan, Iran

and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran

Email: a.abdollahi@math.ui.ac.ir

Howard E. Bell

Department of Mathematics, Brock University, St. Catharines, Ontario, Canada L2S $3\mathrm{A}1$

Email: hbell@brocku.ca