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RINGS WITH A SETWISE POLYNOMIAL-LIKE
CONDITION

A. TAVAKOLI, A. ABDOLLAHI∗ AND H. E. BELL

Communicated by Omid Ali Shehni Karamzadeh

Abstract. Let R be an infinite ring. Here, we prove that if 0R be-
longs to {x1x2 · · ·xn | x1, x2, . . . , xn ∈ X} for every infinite subset
X of R, then R satisfies the polynomial identity xn = 0. Also, we
prove that if 0R belongs to {x1x2 · · ·xn−xn+1 | x1, x2, . . . , xn, xn+1

∈ X} for every infinite subset X of R, then xn = x, for all x ∈ R.

1. Introduction

If X1, . . . , Xm are non-empty subsets of a ring, we define as usual
X1 · · ·Xm := {a1 · · · am | ai ∈ Xi, i = 1, . . . ,m},

m∑
i=1

Xi :=
{ m∑

i=1

ai | ai ∈ Xi, i = 1, . . . ,m
}
;

and if X1 = · · · = Xm, then we denote
∑m

i=1 Xi and X1 · · ·Xm by mX1

and Xm
1 , respectively. We denote the set {−x | x ∈ X1} by −X1 and

define (−n)X1 as the set −(nX1) for all positive integers n. Suppose that
h(x1, . . . , xn) is a nonzero polynomial in non-commuting indeterminates
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x1, . . . , xn with coefficients from the integers Z and zero constant. Then,
we define h∗(X1, . . . , Xn) as follows: if

h(x1, . . . , xn) =
t∑

i=1

hi(x1, . . . , xn),

where hi(x1, . . . , xn) = x
αi1
i1

· · ·xαin
in

are monomials of h, we define

h∗i (X1, . . . , Xn) = X
αi1
i1

· · ·Xαin
in

,

and

h∗(X1, . . . , Xn) :=
t∑

i=1

h∗i (X1, . . . , Xn).

A ring R is called an h-ring if h(r1, . . . , rn) = 0, for all r1, . . . , rn ∈ R. We
say that a ring R is an h∗-ring if for every n infinite subsets X1, . . . , Xn

(not necessarily distinct) of R, we have 0 ∈ h∗(X1, . . . , Xn).
In Theorem 1 of [2], it is proved that if XY ∩ Y X 6= ∅, for all

infinite subsets X and Y of an infinite ring R, then R is commutative.
In fact, if c(x1, x2) is the polynomial x1x2 − x2x1 in non-commuting
indeterminates x1, x2, then this result means that every infinite c∗-ring
is a c-ring. In [1], a ring is called a virtually h-ring, if in every n infinite
subsets X1, . . . , Xn of R, there exist elements ai ∈ Xi (i = 1, . . . , n)
such that h(a1, . . . , an) = 0. It is clear that every virtually h-ring is an
h∗-ring. It is asked in [1] if every infinite virtually h-ring is an h-ring.
We ask the same question for h∗-rings.

Suppose that α1, . . . , αt are positive integers and t > 0 is an inte-
ger such that either t > 1 or (t = 1 and α1 > 1). Suppose that
M(x1, . . . , xn) is the polynomial xα1

i1
· · ·xαt

it
in non-commuting indeter-

minates x1, . . . , xn; and let Jn(x) = xn − x, where n > 1 is a positive
integer. Our main results are the followings

Theorem 1. Every infinite M∗-ring is an M-ring.

Corollary 1. Let n > 1 be an integer and N (x) = xn. Then, every
infinite N ∗-ring is an N -ring.

Theorem 2. Every infinite J∗n-ring is a Jn-ring.

Theorem 1 generalizes Theorem 1.3 of [1], which says that every infi-
nite virtually M-ring is an M-ring. In [3], it is proved that every infinite
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virtually Jn-ring is a Jn-ring, and so Theorem 2 generalizes the latter
result.

Let R be a ring and Y be a non-empty subset or an element of R.
We denote the ring of all m × m matrices over R by Matm(R); J(R)
and A(Y ) denote the Jacobson radical of R and the annihilator of Y in
R, respectively; and for a left R-module V , EndR(V ) denotes the ring
of all left R-module endomorphisms of V . Following [7]; a ring R is
called an FZS-ring if every zero subring (i.e., every subring with trivial
multiplication) of R is finite.

2. Some general results on h∗-rings

Throughout we assume that h(x1, . . . , xn) is a nonzero polynomial in
non-commuting indeterminates x1, . . . , xn with coefficients from Z and
zero constant. We need the following famous theorem due to Kaplansky
[6].

Kaplansky’s Theorem. [6] If R is a left primitive ring satisfying a
polynomial identity of degree d, then R is a finite dimensional simple
algebra over its center, of dimension at most [d/2]2.

The proof of the following lemma is similar to that of Lemma 2.4 of
[1].

Lemma 2.1. Every left primitive h∗-ring is Artinian.

Lemma 2.2. Let R be an infinite h∗-ring. If I is an infinite ideal of R,
then R/I is an h-ring.

Proof. Let r1, . . . , rn ∈ R and consider the infinite subsets Xi = ri + I,
for i ∈ {1, . . . , n}. Since R is an h∗-ring, 0 ∈ h∗(r1 + I, . . . , rn + I).
Since I is an ideal of R, it follows that h(r1, . . . , rn) ∈ I. Thus, R/I is
an h-ring. �

3. Proofs

Suppose that α1, . . . , αt are positive integers and t > 0 is an inte-
ger such that either t > 1 or (t = 1 and α1 > 1); and M(x1, . . . , xn) =
xα1

i1
· · ·xαt

it
. Also suppose that Jn(x) = xn−x, where n > 1 is an integer.
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Proof of Theorem 1. Let R be an infinite M∗-ring. We have that
R/J(R) is the subdirect product of R/Pi, where Pi is a left primitive
ideal of R, for all i ∈ I. By Lemma 2.1, R/Pi is Artinian, for all i ∈ I.
Since for every infinite division ring D, the full matrix ring Matk(D) is
not an M∗-ring (consider the set DIk which contains no non-zero zero
divisor, where Ik is the identity k× k matrix), it follows that R/Pi can-
not be infinite. Thus, Pi is infinite, for all i ∈ I.
Now, it follows from Lemma 2.2 that R/Pi is an M-ring, for all i ∈ I
and so R/J(R) is an M-ring. Thus, xα1+···+αt ∈ J(R), for all x ∈ R.
Now, we prove that R is periodic, that is, for every element x ∈ R, there
exist two distinct positive integers s and t such that xs = xt. Consider
the set X = {xk | k ∈ N} for an arbitrary element x ∈ R. If X is infinite,
then by the hypothesis, there are positive integers k1, . . . , kn such that
xk1+···+kt = 0. Thus, xk1+···+kt+1 = xk1+···+kt = 0. If X is finite, then
there exist two distinct integers t and s such that xt = xs. Hence, R is
periodic.
Now, we prove that R is a nil ring. Let a ∈ R. Since R is periodic,
there exist two distinct positive integers s and t such that s > t and
(ad)s = (ad)t, where d = α1 + · · · + αt. Thus, adt(s−t) is idempotent.
Since every idempotent element in J(R) is zero, adt(s−t) = 0. Let x ∈ R.
Then, by Lemma 2.6 of [4], A(x) is infinite and Theorem 1.3 of [1] im-
plies that A(x) contains an infinite zero subring T . Now, consider the
infinite set x + T . Thus, 0 ∈ (x + T )α1 · · · (x + T )αt , and so xd = 0. Let
S = Lev(R), the Levitski radical of R, i.e., the unique maximal locally
nilpotent ideal of R. It follows that R = R/S is a nil ring of degree
at most d. If R is non-zero, then it follows from Lemma 1.6.24 of [9]
that R contains a non-zero nilpotent ideal, which is not possible, since
Lev(R) = 0. Thus, R = 0 and R is locally nilpotent.
Now, let x1, . . . , xn ∈ R. Then, A(x1, . . . , xn) is infinite, by Lemma 2.6
of [4] and it contains an infinite zero subring T , by Theorem 1.3 of [1].
By the hypothesis, 0 ∈ (xi1 + T )α1 · · · (xit + T )αt , which implies that
M(x1, . . . , xn) = xα1

i1
· · ·xαt

it
= 0, as required. �

Proof of the Corollary 1. By considering t = n and α1 = · · · = αt = 1
in Theorem 1, the proof follows from Theorem 1. �

We need the following easy lemma in the proof of Lemma 3.2.
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Lemma 3.1. Let n > 1 be a positive integer, and let p be a prime
larger than n. Then, for all positive integers t1, . . . , tn, tn+1, we have
pt1 + · · ·+ ptn 6= ptn+1.

Proof. It is straightforward. �

Lemma 3.2. Let R be an infinite J∗n-ring. Then, R is a periodic FZS-
ring.

Proof. We first prove that R is a periodic ring. Let x be an element of
R. Let p > n be a prime number and suppose X = {xpt | t ∈ N}. If X is
finite, then xpt

= xps
, for some distinct integers t and s. Now, suppose

that X is infinite. Then, by the hypothesis, there exist positive integers
t1, . . . , tn, tn+1 such that xpt1+···+ptn = xptn+1 . Since p > n, it follows
from Lemma 3.1 that pt1 + · · · + ptn 6= ptn+1 . Thus, in any case there
are distinct positive integers r1 and r2 such that xr1 = xr2 , and so R is
periodic.
Now, we show that every zero subring of R is finite (i.e., R is an FZS-
ring). Suppose, for a contradiction, that S is an infinite zero subring.
By the hypothesis, there are n elements s1, . . . , sn, sn+1 ∈ S\{0} such
that s1 · · · sn = sn+1, and so sn+1 = 0, a contradiction. Thus, R is an
FZS-ring. �

Lemma 3.3. If F is a field which is a J∗n-ring, then F is finite.

Proof. Suppose, for a contradiction, that F is infinite. It follows from
Lemma 3.2 that F is a periodic ring, and so every nonzero element of F
satisfies a polynomial of the form xm − 1, for some positive integer m.
Thus, F has prime characteristic p, since the rational number 1

2 does
not satisfy a polynomial of the form xm − 1. Thus, for each element a

of F ∗ = F\{0}, there exists a positive integer k such that apk−1 = 1,
and so F ∗ is an infinite torsion locally cyclic group. It follows that there
exists an infinite sequence of positive integers n1 < n2 < · · · , such that
for each i ∈ N there is an element ai ∈ F ∗ of order pni − 1. Now, by
Theorems I and V of [5], for i > 6, each pni−1 has a prime divisor qi such
that qi ≡ 1 mod ni. Therefore, the set {qi | i > 6} of primes is infinite,
and so the abelian group F ∗ has infinitely many primary components.
It follows that F ∗ contains two infinite subgroups N and M such that
N ∩ M = 1. Now, let a ∈ F ∗ and consider the infinite sets aN and
aM . Since F is a J∗n-ring, there exist elements a1, . . . , an+1 ∈ N and
b1, . . . , bn+1 ∈ M such that

(aa1) · · · (aan) = aan+1 and (ab1) · · · (abn) = abn+1.
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It follows that an−1 ∈ N ∩M, and so an−1 = 1. Since a is an arbitrary
element of F ∗, it follows that each qi divides n−1, a contradiction. This
completes the proof. �

We will use the following result due to Herstein in the proof of The-
orem 2.

Theorem 3.4 (Herstein [8]). Let R be a periodic ring in which every
nilpotent element is central. Then, R is commutative.

Proof of Theorem 2. For any ring S, we will denote by N = N(S)
and Z = Z(S) the set of nilpotent elements and the center, respectively.
Let R be an infinite J∗n-ring. By Theorem 6 of [7], N is finite; and since
R is infinite, Z is infinite by Theorem 7 of [7]. For u ∈ N , consider the
additive homomorphism φ : Z → uZ, given by z 7→ uz. Since φ(Z) is
finite, W = ker φ = Z ∩ A(u) is of finite index in (Z,+), and hence is
infinite. Since u + W is infinite, there exist z1, z2, . . . , zn+1 ∈ W such
that

(u + z1)(u + z2) · · · (u + zn) = u + zn+1,

that is,
(∗) un + z1z2 · · · zn = u + zn+1.

Multiplying (∗) by u gives u2 = un+1, and it follows easily that u2 = 0,
and therefore un = 0. We now conclude from (∗) that u ∈ Z. Thus, by
Theorem 3.4, R is commutative.
Now, write R as a subdirect product of subdirectly irreducible rings Rα,
and note that each finite Rα is a Jn-ring by Lemma 2.2. Suppose that
there exists α = α0 such that Rα0 is infinite. Since Rα0 is subdirectly
irreducible and commutative, the only nonzero idempotent is 1; and
since Rα0 is periodic, each nonnilpotent element has a power which is
idempotent, i.e., it is invertible. Consequently, Rα0

N(Rα0 ) is a field, which
by Lemma 3.3 must be finite. Thus, Rα0 is finite, and so we have a
contradiction. Therefore, all Rα are finite and R is a Jn-ring. �
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