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ON JORDAN LEFT DERIVATIONS AND

GENERALIZED JORDAN LEFT DERIVATIONS OF

MATRIX RINGS

N. M. GHOSSEIRI

Communicated by Omid Ali S. Karamzadeh

Abstract. Let R be a 2-torsion free ring with identity. In this
paper, first we prove that any Jordan left derivation (hence, any left
derivation) on the full matrix ring Mn(R) (n ≥ 2) is identically zero,
and any generalized left derivation on this ring is a right centralizer.
Next, we show that if R is also a prime ring and n ≥ 1, then any
Jordan left derivation on the ring Tn(R) of all n×n upper triangular
matrices over R is a left derivation, and any generalized Jordan left
derivation on Tn(R) is a generalized left derivation. Moreover, we
prove that any generalized left derivation on Tn(R) is decomposed
into the sum of a right centralizer and a Jordan left derivation.
Some related results are also obtained.

1. Introduction

Throughout, R will represent an associative ring with center Z(R). A
ring R is n-torsion free, where n > 1 is an integer, in case nx = 0, x ∈ R
implies x = 0. A ring R is prime if for a, b ∈ R, aRb = 0 implies that
either a = 0 or b = 0, and is semiprime if aRa = 0 implies that a = 0.
An additive mapping D : R → R, with R is an arbitrary ring, is called
a derivation if D(xy) = D(x)y + xD(y) holds for all pairs x, y ∈ R,
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and is called a Jordan derivation in case D(x2) = D(x)x + xD(x) is
fulfilled for all x ∈ R. Obviously, any derivation is a Jordan deriva-
tion. The converse is ,in general not true. A classical result of Herstein
[14] asserts that any Jordan derivation on a prime ring of characteris-
tic different from two is a derivation. A brief proof of Herstein’s result
can be found in [8]. Cusack [10] generalized Herstion’s theorem to 2-
torsion free semiprime rings (see [6] for an alternative proof). It should
be mentioned that Beidar, Brešar, Chebotar and Martidale [3] fairly
generalized Herstein’s theorem. Let R be a ring and let M be a left R-
module. An additive mapping D : R→M is said to be a left derivation
if D(xy) = xD(y) + yD(x) holds for all pairs x, y ∈ R, and is said to be
a Jordan left derivation (or left Jordan derivation) if D(x2) = 2xD(x)
is fulfilled for all x ∈ R. Obviously, any left derivation is a Jordan left
derivation, but in general the converse is not true (see [25], Example
1.1). The concepts of left derivation and Jordan left derivation were
introduced by Brešar and Vukman in [9]. One can easily prove that the
existence of a nonzero left derivation D : R → R, where R is a prime
ring of characteristic different from two, forces the ring R to be commu-
tative. Moreover, any Jordan derivation, which maps a noncommutative
prime ring R of characteristic different from two into itself, is zero. This
result was first proved by Brešar and Vukman in [9] under the additional
assumption that R is also of characteristic different from three. Later
on, Deng [11] removed the assumption that R is of characteristic differ-
ent from three. (See also [17].) Recently, Vukman [21] has proved that
in case D : R → R is a Jordan left derivation, where R is a 2-torsion
free semiprime ring, then D is a derivation which maps R into Z(R).
For results concerning Jordan left derivations we refer the readers to
[9, 11, 15, 16, 17, 18, 19, 21]. An additive mapping T : R → R, where
R is an arbitrary ring, is called a left centralizer in case T (xy) = T (x)y
holds for all pairs x, y ∈ R. In case R has an identity element, T : R→ R
is a left centralizer iff T is of the form T (x) = ax for all x ∈ R and some
fixed element a ∈ R. An additive mapping T : R → R is called a left
Jordan centralizer in case T (x2) = T (x)x holds for all x ∈ R. The def-
initions of right centralizer and right Jordan centralizer should be self
explanatory. An additive mapping T : R→ R is called a two-sided cen-
tralizer in case T is a left and a right centralizer. Following ideas from
[6], Zalar [26] has proved that any left (right) Jordan centralizer on a
semiprime ring is a left (right) centralizer. Vukman [18] has proved that
if there exists an additive mapping T : R → R, where R is a 2-torsion
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free semiprime ring, satisfying the relation 2T (x2) = T (x)x+ xT (x) for
all x ∈ R, then T is a two-sided centralizer. For results concerning cen-
tralizers the readers are referred to [4, 5, 12, 18, 22, 23, 24] for more
references. An additive mapping F , which maps a ring R into itself, is
called a generalized derivation in case F (xy) = F (x)y+xD(y) holds for
all pairs x, y ∈ R, where D : R → R is a derivation. Clearly, any gen-
eralized derivation is a generalized Jordan derivation, but the converse
is not necessarily true. The concept of generalized derivation, which
has been introduced by Brešar [7], covers two concepts: the concept
of derivation and the concept of left centralizer. Indeed, it is easy to
see that generalized derivations are exactly those additive mappings F
which can be written in the form F = D + T , where D is a derivation
and T is a left centralizer (see also Theorems 2.2 and 2.8 below). An
additive mapping F : R → R is called a generalized Jordan derivation
in case F (x2) = F (x)x+xD(x) holds for all x ∈ R, where D : R→ R is
a Jordan derivation. The concept of generalized Jordan derivation has
been introduced by Jing and Lu [16]. They conjectured that any general-
ized Jordan derivation, which maps a 2-torsion free semiprime ring into
itself, is a generalized derivation. This conjecture was proved by Vuk-
man [19]. Let M be a left R-module. An additive mapping G : R→M
is said to be a generalized left derivation (resp. generalized Jordan left
derivation) if there exists a Jordan left derivation D : R→M such that
G(xy) = xG(y) + yD(x) (resp. G(x2) = xG(x) + xD(x)) for all x, y in
R. Obviously, any generalized left derivation is a generalized Jordan left
derivation, but the converse may not hold in general (see Example 1.1
in [1]).

The main result of this article are as follows. First, we prove that
if R is a 2-torsion free ring with identity, then any Jordan left deriva-
tion (hence, any left derivation) on the full matrix ring Mn(R) (n ≥ 2)
is identically zero, and any generalized left derivation on this ring is
a right centralizer (Theorem 2.1). Next, motivated by a result of M.
Ashraf and S. Ali [1], which states that every generalized Jordan left
derivation on a prime ring R whose characteristic is different from two,
is a generalized left derivation, we prove that any Jordan left derivation
on the ring Tn(R) (n ≥ 1) of all n× n upper triangular matrices over R
is a left derivation (Theorem 2.8), and that any generalized Jordan left
derivation on Tn(R) is a generalized left derivation. Moreover, we show
that any generalized left derivation of Tn(R) is the sum of a right cen-
tralizer and a left derivation (Theorem 2.8). Some other related results
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are also established.
As usual, I denotes the identity matrix, and Eij denotes the usual

matrix unit. Moreover, the zero elements of the rings and modules,
zero subrings, and zero submodules are all denoted by 0. Recall that
EijErs = δjrEis, where δ is the Kronecker function.

2. Main results and proofs

Theorem 2.1. Let R be a 2-torsion free ring with identity and let n ≥ 2.
Then

(i) any Jordan left derivation (hence, any left derivation) D on the
ring Mn(R) is identically zero;

(ii) any generalized left derivation on Mn(R) is a right centralizer.

Proof. (i) Linearizing D(x2) = 2xD(x) and noting that Mn(R) is 2-
torsion free, we arrive at an equivalent expression for D which will be
used frequently:

D(xy + yx) = 2(xD(y) + yD(x)) for all x, y ∈Mn(R).(2.1)

Set N = {1, · · · , n}. It is easy to observe that for any (ars) in Mn(R)
and i ∈ N , the following conclusion holds:

if (ars) = 2Eii(ars), then (ars) = 0.(2.2)

Fix i ∈ N . From E2
ii = Eii we get D(Eii) = 2EiiD(Eii), whence, by

(2.2), we have

D(Eii) = 0 for all 1 ≤ i ≤ n.(2.3)

Now fix i 6= j in N . From Eij = EijEjj + EjjEij , (2.1) and (2.3) we
obtain

D(Eij) = 2(EijD(Ejj) + EjjD(Eij)) = 2EjjD(Eij).

Thus, by (2.2), D(Eij) = 0. Combining the latter result with (2.3), we
conclude that

(Eij) = 0 for all 0 ≤ i, j ≤ n.(2.4)

Next, we show that

for all r ∈ R and i 6= j in N,D(rEij) = 0.(2.5)

To do this, let r be in R and fix i 6= j in N . Then from rEij =
(rEij)Ejj + Ejj(rEij), (2.1) and (2.3) we obtain

D(rEij) = 2((rEij)D(Ejj) + EjjD(rEij)) = 2EjjD(rEij),
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so, by (2.2), (2.5) holds.
In the next step we show that for any r ∈ R and i ∈ N,D(rEii) = 0:

Fix i 6= j in N and set E = Eii + Ejj . In view of (2.1), (2.4) and (2.5),
we have

D(rE) = D(rEii + rEjj)
= D((rEij)Eji + Eji(rEij))
= 2((rEjj)D(Eji) + EjiD(rEij))
= 0.

Therefore, from 2rEii = 2rEEii = (rE)Eii + Eii(rE) and (2.3) we find
that

2D(rEii) = (rE)D(Eii) + EiiD(rE) = 0,

so that D(rEii) = 0. The latter conclusion together with (2.5) and
additivity of D complete the proof of (i).
(ii) Since, by (i), any left derivation on Mn(R) is zero, any generalized
left derivation G on this ring satisfies G(xy) = xG(y) for all x, y in
Mn(R). Therefore, setting G(I) = a, we have G(x) = xa for all x in
Mn(R). �

Let R and S be 2-torsion free rings with identity, M be a 2-torsion free

(R,S)-bimodule, and T be the upper triangular matrix ring

(
R M
0 S

)
with the usual addition and multiplication of matrices. The following
theorem describes the structure of Jordan left derivations of T .

Theorem 2.2. Let the ring T be as above, and let D : T → T be a
Jordan left derivation. Then there exist Jordan left derivations

δ : R→ R, λ : R→M, γ : S → S

such that Mγ(S) = 0, and for every

(
r m
0 s

)
in T ,

D

(
r m
0 s

)
=

(
δ(r) λ(r)

0 γ(s)

)
.

Proof. Linearizing D(x2) = 2xD(x) and noting that T is 2-torsion free,
we arrive at an equivalent expression for D which will be used frequently:

D(xy + yx) = 2(xD(y) + yD(x)) for all x, y ∈ T.(2.6)

Applying D on I2 = I and E2
ii = Eii (i = 1, 2), it is easily observed

that

D(E11) = D(E22) = D(I) = 0.(2.7)
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Let m be in M . From mE12 = E11(mE12) + (mE12)E11 , (2.6) and
(2.7) we find that

D(mE12) = 0 for all m ∈M.(2.8)

Now, let s be in S and suppose D(sE22) = (aij) ∈ T . Applying D
on both sides of 2sE22 = (sE22)E22 + E22(sE22) and using (2.7), we
conclude that 2a11 = 2a12 = 0, so that a11 = a12 = 0. Therefore, D
induces a mapping γ : S → S such that

d(sE22) = γ(s)E22 for all s ∈ S.(2.9)

Since D is additive, so is γ. Applying D on s2E22 = (sE22)
2, we observe

that γ(s2) = 2sγ(s) for all s ∈ S, proving that γ is a Jordan left deriva-
tion on S.

Next, let r ∈ R and assume that D(rE11) = (bij) ∈ T . Then from
2rE11 = (rE11)E11 + E11(rE11), (2.6), (2.7) and using the torsion as-
sumption on S, we see that b22 = 0, whence D induces the mappings
δ : R→ R and λ : R→M such that

D(rE11) = δ(r)E11 + λ(r)E12 for all r ∈ R.(2.10)

By a similar argument as above, one can show that δ and λ are also
Jordan left derivations . Now, in view of (2.8), (2.9) and (2.10), for

every

(
r m
0 s

)
in T we have

D

(
r m
0 s

)
= D(rE11) +D(mE12) +D(sE22)

= δ(r)E11 + λ(r)E11 + γ(s)E22

=

(
δ(r) λ(r)

0 γ(s)

)
.

Finally, to prove that Mγ(S) = 0, let m ∈M and s ∈ S be arbitrary.
Then, in view of (2.8) and (2.9), applying D on both sides of (ms)E12 =
(mE12)(sE22) + (sE22)(mE12), we obtain

0 = 2((mE12)D(sE22) + (sE22)D(mE22))
= 2(mE12)(γ(s)E22)
= 2(mγ(s))E12,

so that, by the torsion assumption on M , mγ(s) = 0. �

The following corollary is immediate:

Corollary 2.3. Let T and D be as above and assume thatM is a faithful
right S-module. Then γ = 0.



On Jordan left derivations 695

Our next goal is to describe Jordan left derivations of Tn(R). To do
this, the following lemma is needed.

Lemma 2.4. Let R be any ring, n ≥ 1, and let δ : R→ Rn be a Jordan
left derivation. Then, considering Rn as a left R-module, there exist
Jordan left derivations δ1, · · · , δn : R→ R such that

δ(r) = (δ1(r), · · · , δn(r)) for all r ∈ R.

Proof. Obviously, δ determines additive mappings δi : R→ R, 1 ≤ i ≤ n,
such that for every r in R, δ(r) = (δ1(r), · · · , δn(r)). Now, we have

(δ1(r
2), · · · , δn(r2)) = δ(r2) = 2rδ(r)

= 2r(δ1(r), · · · , δn(r))
= (2rδ1(r), · · · , 2rδn(r)).

�

In [13], the author has proved that if R is a 2-torsion free ring with
identity, n ≥ 2, and D is a Jordan derivation on Tn(R), then D is
a derivation. The following theorem together with the example given
below show however that the situation for the case when D is a Jordan
left derivation is not much the same.

Theorem 2.5. Let R be a ring with identity, n ≥ 1, and assume that
D is a Jordan left derivation on Tn(R). Then there exist Jordan left
derivations δi : R→ R, 1 ≤ i ≤ n, such that

D(aij) =
n∑

j=1

δj(a11)E1j for all (aij) ∈ Tn(R).

In particular, if R is a prime ring of characteristic not 2, then D is a
left derivation.

Proof. By [1], for n = 1 there is nothing to prove. So, let n ≥ 2. Then
we have the obvious ring isomorphism

Tn(R) ∼=
(
R Rn−1

0 Tn−1(R)

)
,

where Rn−1 is considered as an (R, Tn−1(R))-bimodule with the obvious
scaler multiplications. Since Rn−1 is a faithful right Tn−1(R)-module,
in view of Theorem 2.2, Corollary 2.3, and upon identifying the matrix
rings above, there exist Jordan left derivations δ : R → R and λ :
R → Rn−1 such that for every (aij) ∈ Tn(R), D(aij) = δ(a11)E11 +
λ(a11)E12. By Lemma 2.4, λ decomposes into a product of n−1 Jordan
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left derivations λ1, · · · , λn−1 on R. Now, set δ1 = δ and δj = λj−1 for
all j = 2, · · · , n.

For the special case when R is prime and charR 6= 2, note that, by
Theorem 3.2 in [1] , each δi (hence D) is a left derivation. �

Remark 2.6. Let R be a prime ring of characteristic not equal to 2
and assume that the ring Tn(R) admits a nonzero Jordan left deriva-
tion. Then the theorem above and Corollary 3.2 in [1] imply that R is
commutative.

Example 2.7. Let R be a ring and assume that R admits a Jordan left
derivation δ that is not a left derivation (see Example 1.1 in [25]), and
let n ≥ 2. Then it can be easily verified that the mapping D : Tn(R)→
Tn(R) given by

D(aij) =

n∑
j=1

δ(a11)E1j for all (aij) ∈ Tn(R)

is a Jordan left derivation that is not a left derivation.

Now we are ready to prove our last result:

Theorem 2.8. Let R be a prime ring of characteristic not 2, D be a
Jordan left derivation on Tn(R) (n ≥ 1) , and let G be a generalized
Jordan left derivation on Tn(R) associated with D. Then G is a gener-
alized left derivation and there exists a (unique) right centralizer F on
Tn(R) such that G = F +D.

Proof. Note that by Theorem 2.5, D is a left derivation. Linearizing
G(x2) = xG(x) + xD(x), we find that

G(xy + yx) = xG(y) + yG(x) + xD(y) + yD(x)(2.11)

for all x, y ∈ Tn(R). Put a = G(I). So, from (2.11) and the fact that
D(I) = 0, it follows that, for each x in Tn(R), we have

2G(x) = G(2x) = G(Ix+ xI)
= IG(x) + xG(I) + ID(x) + xD(I)
= G(x) + xa+D(x).

That is,

G(x) = xa+D(x) for all x ∈ Tn(R).(2.12)



On Jordan left derivations 697

Therefore noting that D is a left derivation, for every x, y ∈ Tn(R), we
have

G(xy) = (xy)a+D(xy)
= x(ya) + xD(y) + yD(x)
= x(ya+D(y)) + yD(x)
= xG(y) + yD(x).

Thus G is a generalized left derivation associated with D. Now, (2.12)
shows that G = F +D, where F is the right centralizer induced by the
matrix a = G(I). The uniqueness of F is evident. �

Remark 2.9. Although any left derivation D on any ring R is a gener-
alized left derivation (associated with D itself), the proof of the theorem
above shows that in general the converse is not true : simply let D be a
left derivation on Tn(R), and let a be a nonzero matrix in Tn(R). Then
the mapping

G : Tn(R)→ Tn(R), x 7→ xa+D(x) (x ∈ Tn(R))

is a generalized left derivation (associated with D) for which G(I) = a 6=
0, whence G is not a left derivation.
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