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ϕ-AMENABILITY OF BANACH ALGEBRAS

A. GHAFFARI∗ AND A. ALINEJAD

Communicated by Gholam Hossein Esslamzadeh

Abstract. Let A be an arbitrary Banach algebra and ϕ a homo-
morphism from A onto C. Our first purpose in this paper is to
give some equivalent conditions under which guarantees a ϕ-mean
of norm one. Then we find some conditions under which there ex-
ists a ϕ-mean in the weak∗ cluster of {a ∈ A; ‖a‖ = ϕ(a) = 1} in
A∗∗.

1. Introduction

In this paper, the second dual A∗∗ of a Banach algebra A will always
be equipped with the first Arens product. The first Arens product of
A∗∗ is constructed in three steps as follows: Let a, b be in A; f in A∗;
and m,n be in A∗∗. We define the elements f.a, nf of A∗ and mn of
A∗∗ by the identities

〈f.a, b〉 = 〈f, ab〉, 〈nf, a〉 = 〈n, f.a〉, and 〈mn, f〉 = 〈m,nf〉.

Ample information about Arens multiplications and Arens regularity
notion can be found in the books [6] and [7].

Let A be a Banach algebra, and let ϕ be a nonzero multiplicative
linear functional on A. Then A is called ϕ-amenable if there exists a
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bounded linear functional m on A∗ satisfying 〈m,ϕ〉 = 1 and

〈m, f.a〉 = ϕ(a)〈m, f〉

for all f ∈ A∗ and a ∈ A. The functional m is called a ϕ-mean. This
extends the notion of left amenability of a Lau algebra (or F-algebra)
which was first studied by Lau [14]. The concept of ϕ-amenable Banach
algebras was introduced recently by Kaniuth, Lau and Pym [13] (see also
[12]). Kaniuth, Lau and Pym [13] characterized ϕ- amenability of A in
terms of vanishing cohomology groups H1(A,X∗) for a particular class
of Banach A-bimodules X, and in terms of the existence of a bounded
net (aα)α in A satisfying ϕ(aα) = 1 for each α and ‖aaα−ϕ(a)aα‖ → 0
for each a ∈ A. In some cases, these extend known results concern-
ing topologically invariant means on Fourier algebras, and properties of
group algebras of amenable locally compact groups. They established
several characterizations of ϕ-amenability as well as some hereditary
properties. In particular, these involve the projective tensor product
A ⊗̂B for Banach algebras A and B.

Character amenability has also been studied recently by Monfared in
[16] and by Hu, Monfared and Traynor [11]. In [16], Monfared studied
the character amenability of Lau product algebras. He also proved that
all bounded cohomologies Hn(A,E) vanish for a commutative character
amenable A when E is a finite-dimensional Banach A-bimodule, and
thus deduces that all finite-dimensional extensions of A split strongly.
Both of theses concepts generalize the earlier concept of left amenability
for F -algebras introduced by Lau in [14]. Recently the notion of α-
amenable hypergroups was introduced and studied in [3, 4] and [8].

Throughout the paper, ∆(A) will denote the set of all non-zero homo-
morphisms from A into C. For notations and terminologies not explained
here, see [13] and also [12].

In this paper, we continue the study of ϕ-amenable Banach algebras.
We present a few results in the theory of ϕ-amenable Banach algebras,
and we obtain necessary and sufficient conditions for A∗ to have a ϕ-
mean. The relationship between ϕ-amenability of a Banach algebra A
and amenability of a certain space of functions on Sϕ := {a ∈ A; ‖a‖ =
ϕ(a) = 1} are investigated. As a sample result, the following is proved:

The Banach algebra A∗ has a ϕ-mean in Sϕ
w∗

if a special space of
functions on Sϕ has a left invariant mean or, equivalently, if and only
if Sϕ has the fixed point property for certain affine actions of Sϕ on
compact convex sets.



ϕ-amenability of Banach algebras 727

2. Main results

For a locally compact group G, L1(G) is its group algebra and L∞(G)

is the dual of L1(G). Note that f.φ = φ̃∗f where φ̃(x) = ∆(x−1)φ(x−1),
f ∈ L∞(G), and ∆ is the Haar modulus function on G [10]. By Propo-
sition 14.5 in [18], G = SL(2,R) is non-amenable. If M is a mean on
L∞(G), then there exist f ∈ L∞(G) and φ ∈ P 1(G) = {φ ∈ L1(G); φ ≥
0, ‖φ‖1 = 1} such that 〈M,f.φ̃〉 = 〈M,φ ∗ f〉 6= 〈M,f〉. So L∞(G)∗

contains no 1-mean of norm 1.
Let G be a locally compact group and A(G) the Fourier algebra of G.

Then ∆(A(G)) consists of all point evaluations ϕx, x ∈ G. It is known
that A(G) is ϕx-amenable for every x ∈ G [13].

Let A be a Banach algebra and ϕ ∈ ∆(A). In this section, we establish
several criteria for A to possess a ϕ-mean of norm 1.

Theorem 2.1. Let A be any Banach algebra and ϕ ∈ ∆(A). Let H
denote the real-linear span of the set {ϕ(a)f.b− ϕ(b)f.a; a, b ∈ A, f ∈
A∗}. The following assertions are equivalent:

(i) There exists a ϕ-mean m with ‖m‖ = 1.
(ii) For every ε > 0 and h ∈ H,

sup
{
Re 〈h, c〉; ϕ(c) = 1, ‖c‖ ≤ 1 + ε

}
≥ 0.

(iii) There exists m ∈ A∗∗ such that ‖m‖ = 〈m,ϕ〉 = 1 and

ϕ(b)〈m, f.a〉 = ϕ(a)〈m, f.b〉

for every f ∈ A∗ and a, b ∈ A.
(iv) For every f ∈ A∗, there exists mf ∈ A∗∗ such that ‖mf‖ =

〈mf , ϕ〉 = 1 and ϕ(b)〈mf , f.a〉 = ϕ(a)〈mf , f.b〉 for every a, b ∈
A.

Proof. (i) implies (ii). Let m be as (i), and let (aα)α be a net in A
such that aα → m in the weak∗-topology of A∗∗ and ‖aα‖ ≤ ‖m‖ = 1
for all α [19]. Let us assume on the contrary that there exist ε > 0,
f1, ..., fn ∈ A∗, a1, ..., an ∈ A and b1, ..., bn ∈ A such that

sup
{
Re 〈h, c〉; ϕ(c) = 1, ‖c‖ ≤ 1 + ε

}
< 0 (∗)

for h =
∑n

i=1 ϕ(ai)fi.bi − ϕ(bi)fi.ai. Since ϕ(aα) → 〈m,ϕ〉 = 1, after

passing to a subnet and replacing aα by 1
ϕ(aα)aα, we can assume that
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ϕ(aα) = 1 and ‖aα‖ ≤ 1 + ε for all α. We have

lim
α
〈h, aα〉 =

n∑
i=1

lim
α
〈ϕ(ai)fi.bi − ϕ(bi)fi.ai, aα〉

=
n∑
i=1

〈m,ϕ(ai)fi.bi − ϕ(bi)fi.ai〉

=

n∑
i=1

ϕ(ai)〈m, fi.bi〉 − ϕ(bi)〈m, fi.ai〉

=

n∑
i=1

ϕ(ai)ϕ(bi)
(
〈m, fi〉 − 〈m, fi〉

)
= 0.

This shows that sup
{
Re〈h, c〉; ϕ(c) = 1, ‖c‖ ≤ 1 + ε

}
≥ 0, which

contradicts (∗). So that (i) implies (ii).
(ii) implies (iii). Before proving (iii), note that if X is a vector space

over C, it is also a vector space over R. Also, if f : X → C is complex-
linear functional, then Ref : X → R is real-linear functional. Assume
that the scalar field is R.

Let ε > 0 be given. For each f ∈ A∗ define

p(f) = sup
{
Re 〈f, c〉; ϕ(c) = 1, ‖c‖ ≤ 1 + ε

}
.

Then p is a subadditive positively homogeneous function on the real-
linear space A∗. By hypothesis, p(h) ≥ 0 for all h ∈ H. By the Hahn-
Banach theorem, there exists a real-linear functional nε on A∗ such that
〈nε, h〉 = 0 for all h ∈ H and 〈nε, f〉 ≤ p(f) for all f ∈ A∗. In particular,

〈nε, ϕ〉 ≤ p(ϕ) = sup
{
Re ϕ(c); ϕ(c) = 1, ‖c‖ ≤ 1 + ε

}
= 1.

This together with linearity of nε, imply that 〈nε, ϕ〉 = 1, and also
‖nε‖ ≤ 1 + ε. Similarly,

〈nε, iϕ〉 ≤ p(iϕ) = sup
{
Re iϕ(c); ϕ(c) = 1, ‖c‖ ≤ 1 + ε

}
= Re i = 0,

and also −〈nε, iϕ〉 = 〈nε,−iϕ〉 ≤ p(−iϕ) ≤ 0. This shows that 〈nε, iϕ〉 =
0. If a, b ∈ A and f ∈ A∗, then ϕ(a)f.b− ϕ(b)f.a ∈ H. Hence

ϕ(a)〈nε, f.b〉 = ϕ(b)〈nε, f.a〉.

Let n be a weak∗-cluster point of the net (nε)ε. Then ‖n‖ = 〈n, ϕ〉 = 1,
〈n, iϕ〉 = 0 and ϕ(a)〈n, f.b〉 = ϕ(b)〈n, f.a〉 for all f ∈ A∗ and a, b ∈ A.

Assume that the scalar field is C. Let m be the complex-linear func-
tional on A∗ whose real part is n. Obviously 〈m, g〉 = 〈n, g〉 − i〈n, ig〉
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for any g ∈ A∗. Clearly 〈m,ϕ〉 = 1, ‖m‖ = 1 and

ϕ(a)〈m, f.b〉 = ϕ(a)〈n, f.b〉 − iϕ(a)〈n, if.b〉
= ϕ(b)〈n, f.a〉 − iϕ(b)〈n, if.a〉
= ϕ(b)〈m, f.a〉,

for all f ∈ A∗ and a, b ∈ A.
(iii) implies (iv). Trivial.
It remains to show that (iv) implies (i). Assume that (iv) holds.

Define a subset M of A∗∗ by

M =
{
m ∈ A∗∗; ‖m‖ = 〈m,ϕ〉 = 1

}
=
{
m ∈ A∗∗; ‖m‖ ≤ 1, 〈m,ϕ〉 = 1

}
.

For every f ∈ A∗, let

Mf =
{
m ∈M; ϕ(a)〈m, f.b〉 = ϕ(b)〈m, f.a〉 for all a, b ∈ A

}
.

By Theorem 3.15 in [19], Mf is a weak∗-compact subset in A∗∗. We
establish this part by showing that the family

{
Mf ; f ∈ A∗

}
has the

finite intersection property. By assumption,Mf 6= ∅ for all f ∈ A∗. Let
n ∈ N, f1, ..., fn ∈ A∗ and assume that

⋂{
Mfi ; 1 ≤ i ≤ n − 1

}
6= ∅.

Let m1 be a member of this intersection, and let m2 ∈ Mm1fn . Let
(aα)α be a net in A such that ‖aα‖ = 1, ϕ(aα)→ 1 and aα → m2 in the
weak∗-topology. If a, b ∈ A and i ∈ {1, ..., n− 1} are fixed, then

ϕ(baα)〈m1, fi.aaα〉 = ϕ(aaα)〈m1, fi.baα〉

for all α. Taking the limit on α, we find that ϕ(b)〈m2m1, fi.a〉 =
ϕ(a)〈m2m1, fi.b〉. This shows that m2m1 ∈

⋂{
Mfi ; 1 ≤ i ≤ n − 1

}
.

On the other hand,

ϕ(b)〈m2m1, fn.a〉 = ϕ(b)〈m2,m1fn.a〉 = ϕ(a)〈m2,m1fn.b〉
= ϕ(a)〈m2m1, fn.b〉.

Consequently m2m1 ∈
⋂{
Mfi ; 1 ≤ i ≤ n

}
. Thus

{
Mf ; f ∈ A∗

}
has

the finite intersection property, as required.
Let m ∈

⋂{
Mf ; f ∈ A∗

}
, and take any net (aα)α in A such that

‖aα‖ ≤ 1 and aα → m in the weak∗-topology. Then ϕ(aα) → 1. For
every f ∈ A∗ and a ∈ A, we have

ϕ(a)〈mm, f〉 = ϕ(a) lim
α
〈m, f.aα〉 = lim

α
ϕ(a)ϕ(aα)〈m, f.aα〉

= lim
α
ϕ(aaα)〈m, f.aα〉 = lim

α
ϕ(aα)〈m, f.aaα〉

= lim
α
〈m, f.aaα〉 = 〈mm, f.a〉.
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Since 〈mm,ϕ〉 = 〈m,ϕ〉2 = 1 and ‖m‖ = 1, so m satisfies all the re-
quirements in (i). The proof is finished. �

As an immediate application of the preceding result, we have the
following

Corollary 2.2. Let A be any Banach algebra and ϕ ∈ ∆(A). Then the
following conditions are equivalent:

(i) A admits a ϕ-mean of norm 1.
(ii) There exists a net (aα)α in {a ∈ A; ‖a‖ = 1} such that ϕ(aα)→

1 and also for every a, b ∈ A,
(
ϕ(a)baα − ϕ(b)aaα

)
α

converges
to 0 in the weak∗-topology.

(iii) There exists a net (aα)α in {a ∈ A; ‖a‖ = 1} such that ϕ(aα)→
1 and also for every a, b ∈ A,

(
ϕ(a)baα − ϕ(b)aaα

)
α

converges
to 0 in the norm-topology.

Proof. Suppose that (i) holds. Then by Theorem 2.1, let m be such that
‖m‖ = 〈m,ϕ〉 = 1 and ϕ(a)〈m, f.b〉 = ϕ(b)〈m, f.a〉 for all a, b ∈ A. By
Goldstein’s theorem [6], there exists a net (aα)α in A such that aα → m
in the weak∗-topology and ‖aα‖ ≤ 1 for all α. Passing to a subnet if
necessary, we replacing aα by aα

‖aα‖ , we can assume that ϕ(aα)→ 1 and

‖aα‖ = 1 for all α. So (i) implies (ii).
Suppose that (ii) holds. An argument similar to the proof of Lemma

1.4 in [13], shows that there exists a net (aα)α in {a ∈ A; ‖a‖ = 1}
such that ϕ(aα)→ 1 and also for every a, b ∈ A,

(
ϕ(a)baα − ϕ(b)aaα

)
α

converges to 0 in the norm-topology. (iii) implies (i). By Banach-
Alaoglu’s theorem [19], the net (aα)α admits a subnet (aβ) converging
to a ϕ-mean m in the weak∗-topology of A∗. Hence for every f ∈ A∗
and every a, b ∈ A, we have

ϕ(b)〈m, f.a〉 = ϕ(b) lim
β
〈f.a, aβ〉 = ϕ(b) lim

β
〈f, aaβ〉

= ϕ(a) lim
β
〈f, baβ〉 = ϕ(a)〈m, f.b〉.

By Theorem 2.1, A is ϕ-amenable. This completes the proof. �

Following Kaniuth, Lau and Pym [12], we say that an element a of
A is ϕ-maximal if it satisfies ‖a‖ = ϕ(a) = 1. We define Sϕ = {a ∈
A; ‖a‖ = ϕ(a) = 1}. Let X(A,ϕ) be the closed vector space spanned
by Sϕ. It is shown that if A is a commutative Banach algebra and
X(A,ϕ) = A, then A is ϕ-amenable, see Proposition 2.10 in [12].
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Definition 2.3. A right action of A on A∗ is an anti-homomorphism of
A into the algebra of linear operators in A∗, denoted by T : A×A∗ → A∗

where (a, f) → Ta(f) (this means that (a, f) → Ta(f) is bilinear and
Tab = TbTa for any a, b ∈ A) such that Ta

∗(Sϕ) ⊆ Sϕ and Ta(ϕ) = ϕ for
all a ∈ Sϕ.

Let X be a subspace of A∗, X is called Sϕ-invariant under the right
action T if Ta(X) ⊆ X for all a ∈ Sϕ.

Theorem 2.4. Let A be any Banach algebra and ϕ ∈ ∆(A). Let
X(A,ϕ) = A. Then the following conditions are equivalent:

(i) There exists m ∈ Sϕ
w∗

such that 〈m, f.a〉 = ϕ(a)〈m, f〉 for all
f ∈ A∗ and a ∈ A, where the closure is taken in weak∗-topology.

(ii) For any weakly-weakly separately continuous right action T : A×
A∗ → A∗ of A on A∗, and any Sϕ-invariant subspace X of A∗

containing ϕ, any ϕ-invariant n ∈ Sϕ
w∗

on X (〈n, Ta(f)〉 =
〈n, f〉 for any f ∈ X and a ∈ Sϕ) can be extended to a ϕ-

invariant m ∈ Sϕ
w∗

on A∗.

Proof. (i) implies (ii). Assume that A has a ϕ-mean, say m ∈ Sϕ
w∗

,
and let T : A×A∗ → A∗ be any separately continuous right action of A
on A∗. Assume that X is a Sϕ-invariant subspace of A∗ containing ϕ.

Let n ∈ Sϕ
w∗

be a ϕ-invariant on X, and let

M =
{
m ∈ Sϕ

w∗
; m|X = n

}
.

In fact M is a weak∗-closed convex subset of the unit ball in A∗∗ and
is therefore weak∗-compact. For a ∈ A, the mapping Ta from A∗ to
itself is weakly-weakly continuous, and so Ta is norm-norm continuous
[1]. Define Ta

∗ : A∗∗ → A∗∗ by 〈Ta∗(F ), f〉 = 〈F, Ta(f)〉 where F ∈ A∗∗
and f ∈ A∗. We claim that Ta

∗(M) ⊆ M for any a ∈ Sϕ. Since Ta
∗

is weak∗-weak∗ continuous, by assumption Ta
∗(Sϕ

w∗
) ⊆ Sϕ

w∗
. Now let

m1 ∈M , f ∈ X and a ∈ Sϕ. Then

〈Ta∗(m1), f〉 = 〈m1, Ta(f)〉 = 〈n, Ta(f)〉 = 〈n, f〉.

Consequently Ta
∗(M) ⊆ M . By assumption, there is a net (aα)α in

Sϕ such that ‖aaα − aα‖ → 0 (for all a ∈ Sϕ) and aα → m in the
weak∗-topology, see Lemma 1.4 in [13] and its proof. Now choose m1 ∈
M . Since M is weak∗-compact, there is a subnet of (Taα

∗(m1))α which
converges to an element m2 of M in the weak∗-topology. So without loss
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generality we assume that Taα
∗(m1) → m2. For each a ∈ Sϕ, f ∈ A∗

and α,

〈Ta∗Taα∗(m1), f〉 = 〈m1, Taα(Ta(f))〉 = 〈m1, Taaα(f)〉
= 〈m1, Taaα−aα(f)〉+ 〈m1, Taα(f)〉
= 〈m1, Taaα−aα(f)〉+ 〈Tα∗(m1), f〉.

By weakly-weakly separate continuity of T , linearity of a → Ta(f) and
the fact that ‖aaα − aα‖ → 0, we have Ta

∗(m2) = m2. This shows that
〈m2, Ta(f)〉 = 〈m2, f〉 for every f ∈ A∗ and a ∈ Sϕ. On the other hand
X(A,ϕ) = A, and so 〈m2, Ta(f)〉 = ϕ(a)〈m2, f〉 for every f ∈ A∗ and
a ∈ A.

(ii) implies (i): Define T : A × A∗ → A∗ by Ta(f) = f.a. Clearly
Ta(ϕ) = ϕ.a = ϕ for every a ∈ Sϕ. Since TaTb = Tba, it is clear that T
defines a right action of A on A∗. Suppose aα → a in the weak-topology,
then for fixed f ∈ A∗ and F ∈ A∗∗, we have

〈F, Taα(f)〉− 〈F, Ta(f)〉 = 〈F, f.aα〉− 〈F, f.a〉 = 〈Ff, aα〉− 〈Ff, a〉 → 0.

To show continuity in the other variable, let fα → f in the weak-
topology. Then for each a ∈ A and α, 〈F, Ta(fα)〉 = 〈F, fα.a〉 = 〈aF, fα〉.
Thus Ta(fα)→ Ta(f) in the weak-topology, so the action of A on A∗ is
separately continuous.

Now, let X = {cϕ; c ∈ C}. Then X is obviously Sϕ-invariant under
the separately continuous right action T : A×A∗ → A∗. Choose b ∈ Sϕ,
and define 〈n, cϕ〉 = cϕ(b) = c. It is easy to see that 〈n, Ta(cϕ)〉 =
〈n, cϕ.a〉 = ϕ(a)〈n, cϕ〉 for all a ∈ A and cϕ ∈ X. Any invariant exten-

sion m ∈ Sϕ
w∗

of n to A∗ is necessarily a ϕ-mean. This completes our
proof. �

Theorem 2.5. Let A be any Banach algebra and ϕ ∈ ∆(A). Then the
following conditions are equivalent:

(i) A admits a ϕ-mean of norm 1.
(ii) For every f ∈ A∗ and a ∈ A, there exists a mean mf,a on A∗

such that 〈mf,a, ϕ〉 = 1, ‖mf,a‖ = 1 and ϕ(b)〈mf,a, f.ab〉 =
ϕ(ab)〈mf,a, f.b〉 whenever b ∈ A.

(iii) For every two finite subset F ⊆ A and F ∗ ⊆ A∗, and ε > 0 there
exists a mF ∗,F,ε ∈ A∗∗ such that ‖mF ∗,F,ε‖ = 1, 〈mF ∗,F,ε, ϕ〉 = 1
and |〈mF ∗,F,ε, f.a〉 − ϕ(a)〈mF ∗,F,ε, f〉| < ε whenever a ∈ F and
f ∈ F ∗.
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Proof. Note first that (i) obviously implies (iii). Next suppose that (i)
holds. If m is a ϕ-mean of norm 1, we can choose mf,a = m for all
f ∈ A∗ and a ∈ A. Thus for every b ∈ A,

〈m, f.ab〉 = ϕ(ab)〈m, f〉 and ϕ(ab)〈m, f〉 = ϕ(a)〈m, f.b〉.

Clearly ϕ(b)〈m, f.ab〉 = ϕ(ab)〈m, f.b〉. Thus (i) implies (ii).
Now assume that (ii) holds. For every f ∈ A∗ and a ∈ A, let

Mf,a =
{
m ∈M; ϕ(b)〈m, f.ab〉 = ϕ(ab)〈m, f.b〉 for all b ∈ A

}
,

where M = {m ∈ A∗∗; ‖m‖ = 〈m,φ〉 = 1}. These sets are nonempty
weak∗-closed subsets of A∗∗ and we want to show that

⋂{
Mf,a; f ∈

A∗, a ∈ A
}

is nonempty. Since
{
m ∈ A∗∗; ‖m‖ ≤ 1

}
is weak∗-compact,

it suffices to show that
⋂{
Mf,a; f ∈ F ∗, a ∈ F

}
6= ∅ for any two

finite subset F ∗ ⊆ A∗ and F ⊆ A. So assume that m1 ∈
⋂{
Mf,a; f ∈

F ∗, a ∈ F
}

for finite subsets F ∗ ⊆ A∗ and F ⊆ A, and let h ∈ A∗ and
c ∈ A. Let m2 ∈ Mm1h,c. Let (aα)α be a net in A such that ‖aα‖ = 1
for all α, ϕ(aα)→ 1 and aα → m2 in the weak∗-topology. Then

ϕ(b)〈m2m1, f.ab〉 = lim
α
ϕ(baα)〈m1, f.abaα〉 = lim

α
ϕ(abaα)〈m1, f.baα〉

= ϕ(ab)〈m2m1, f.b〉.

for every f ∈ F ∗, a ∈ F and b ∈ A. Thusm2m1 ∈
⋂{
Mf,a; f ∈ F ∗, a ∈

F
}

. On the other hand, ϕ(b)〈m2m1, h.cb〉 = ϕ(cb)〈m2m1, h.b〉 for all b ∈
A. This shows that

{
Mf,a; f ∈ A∗, a ∈ A

}
has the finite intersection

property. Therefore there is some m in M such that ϕ(b)〈m, f.ab〉 =
ϕ(ab)〈m, f.b〉 for all f ∈ A∗ and a, b ∈ A. It is easy to see that mm ∈ A∗∗
is a ϕ-mean of norm 1. Thus (i) and (ii) are equivalent.

(iii) implies (i). We denote F∗ the family of finite subsets of A∗ and
by F the family of finite subsets of A. For every F ∗ ∈ F∗, F ∈ F and
ε > 0,

CF ∗,F,ε =
{
m ∈M; |〈m, f.a〉−ϕ(a)〈m, f〉| < ε for all f∈ F ∗, a ∈ F

}
6= ∅.

It is easy to see that
⋂{
CF ∗,F,ε; F

∗ ∈ F∗, F ∈ F , ε > 0
}
6= ∅ where

closure is taken in the weak∗-topology. Now, let m be any member of
this intersection, and let f ∈ A∗, a ∈ A and ε > 0 be given. The
set of all n ∈ A∗∗ such that |m − n| < ε

3(|ϕ(a)|+1) at f.a and at f is a

weak∗-neighborhood of m. Therefore C{f},{a}, ε
3

contains such an n. We



734 Ghaffari and Alinejad

have

|〈m, f.a〉 − ϕ(a)〈m, f〉| ≤ |〈m, f.a〉 − 〈n, f.a〉|+ |〈n, f.a〉 − ϕ(a)〈n, f〉|
+ |ϕ(a)||〈m, f〉 − 〈n, f〉| < ε.

Since ε > 0 is arbitrary, it follows that 〈m, fa〉 = ϕ(a)〈m, f〉. This
completes our proof. �

Remark 2.6. Let A be a Banach algebra and let ϕ ∈ ∆(A). Let m ∈
Sϕ

w∗
be a ϕ-mean on A∗. Let a1, ..., an ∈ A and let ε > 0 be given. Since

A has a ϕ-mean m, there exists a net (aα)α in Sϕ such that ‖aiaα −
ϕ(ai)aα‖ → 0 for all i (see Theorem 1.4 in [13] and its proof).

By the first paragraph, there exists a ∈ Sϕ such that ‖aia−ϕ(ai)a‖ < ε
whenever i ∈ {1, ..., n}. Hence

sup{‖aia‖; 1 ≤ i ≤ n} < ε+ sup{|ϕ(ai)|; 1 ≤ i ≤ n}.
Since ε > 0 may be chosen arbitrarily, we have

inf
{

sup{‖aia‖; 1 ≤ i ≤ n}; a ∈ Sϕ
}
≤ sup{|ϕ(ai)|; 1 ≤ i ≤ n}.

The converse is also true. Indeed, fix b ∈ Sϕ. For every ε > 0 and
every finite subset F = {a1, ..., an} in A, there exists a ∈ Sϕ such that
‖aia−ϕ(ai)ba‖ < ε, whenever 1 ≤ i ≤ n (since ϕ

(
ai−ϕ(ai)b

)
= 0 for all

i ∈ {1, ..., n}). An argument similar to the proof of Theorem 2.5 ((iii)→
(i)), shows that there exists n ∈ Sϕ

w∗
such that 〈n, f.a〉 = ϕ(a)〈n, f.b〉

for every a ∈ A. Finally, let m = bn. Then bn ∈ Sϕ
w∗

. Moreover,

〈m, f.a〉 = 〈bn, f.a〉 = 〈n, f.ab〉 = ϕ(ab)〈n, f.b〉 = ϕ(a)〈m, f〉
for all f ∈ A∗ and a ∈ A. So m is a ϕ-mean on A∗. Note that this is
in fact Proposition 15.5 of [18] which was proved for group algebras.

By the same argument as above, one can prove that A has a ϕ-mean
of norm 1 if and only if for all n ∈ N, a1, ..., an ∈ A and γ > 1,

inf
{

sup{‖aia‖; 1 ≤ i ≤ n}; ‖a‖ < γ, ϕ(a) = 1
}

≤ sup{|ϕ(ai)|; 1 ≤ i ≤ n}.

Let K be a convex set in a locally convex linear topological space
E, and let A(K) denote the Banach space of bounded continuous affine
functions on K under the supremum norm.

Let A be a Banach algebra, and let Sϕ be the set of all ϕ-maximal
elements of A. Under the norm topology, Sϕ is a semi-topological semi-
group. Let Cb(Sϕ) be the space of bounded continuous functions on Sϕ
with usual sup norm. For a ∈ Sϕ, the translation La of Cb(Sϕ) by a
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is given by Laf(b) = f(ab), where f ∈ Cb(Sϕ) and b ∈ Sϕ. Denote by
U(Sϕ) the space of all functions f ∈ Cb(Sϕ) such that the map a 7→ Laf
of Sϕ into Cb(Sϕ) is uniformly continuous with respect to the unifor-
mity induced on Sϕ and uniformity induced on Cb(Sϕ). An element
M ∈ (A(Sϕ)∩U(Sϕ))∗ is a mean on A(Sϕ)∩U(Sϕ) if ‖M‖ = 〈M, 1〉 = 1.
A mean M on A(Sϕ) ∩ U(Sϕ) is left invariant if 〈M,Laf〉 = 〈M,f〉 for
all f ∈ A(Sϕ) ∩ U(Sϕ) and a ∈ Sϕ. More information on this matter
can be found in [5, 9, 17].

Theorem 2.7. Suppose A is a Banach algebra and ϕ ∈ ∆(A). Among
the following two properties, the implication (i)→ (ii) hold. If X(A,ϕ) =
A, then also (ii)→ (i).

(i) There exists a ϕ-mean m in Sϕ
w∗

.
(ii) A(Sϕ) ∩ U(Sϕ) has a left invariant mean.

Proof. We can prove Theorem 2.7 by using an argument similar to the
proof of Lemma 2.1 in [15].

(i) implies (ii). Let m ∈ Sϕ
w∗

be a mean on A∗. By Theorem 1.4
in [13] and its proof, there exists a net (aα)α in Sϕ such that ‖aaα −
ϕ(a)aα‖ → 0 for every a ∈ A. Let δaα denote evaluation at aα. By
possibility passing to subnets we can assume that f(aα) = δaα(f) →
M(f) for all f ∈ A(Sϕ) ∩ U(Sϕ) to some mean M on A(Sϕ) ∩ U(Sϕ)
(see Theorem 1.8 in [5]). Fix f ∈ A(Sϕ) ∩ U(Sϕ) and define Mlf(a) =
〈M,Laf〉 where a ∈ Sϕ. Then a 7→ Mlf(a) is obviously in A(Sϕ) ∩
U(Sϕ). Define MM : A(Sϕ) ∩ U(Sϕ) → C by 〈MM,f〉 = 〈M,Mlf〉.
It is easy to see that MM is a mean on A(Sϕ) ∩ U(Sϕ). Let f ∈
A(Sϕ) ∩ U(Sϕ), a ∈ Sϕ and let ε > 0 be given. There is a δ > 0 such
that b, c ∈ Sϕ, and ‖b− c‖ < δ implies

|〈M,Lbf〉 − 〈M,Lcf〉| ≤ ‖Lbf − Lcf‖ < ε.

Also, there is some α0 such that α ≥ α0 implies ‖aaα − aα‖ < δ. For
every α ≥ α0,

|Ml(Laf)(aα)−Ml(f)(aα)| = |〈M,LaαLaf〉 − 〈M,Laαf〉|
= |〈M,Laaαf〉 − 〈M,Laαf〉| < ε,

which implies that 〈MM,Laf〉 = 〈MM,f〉, i.e., MM is a left invariant
mean on A(Sϕ) ∩ U(Sϕ).

(ii) implies (i). Let M be a left invariant mean on A(Sϕ) ∩ U(Sϕ).
Any element in co{δa; a ∈ Sϕ} is said to be a finite mean. The finite
means on A(Sϕ)∩U(Sϕ) are weak∗-dense in the weak∗-compact convex
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set of means on A(Sϕ) ∩ U(Sϕ) (see Theorem 1.8 in [5]). If
∑n

i=1 αiδai
is a finite mean on A(Sϕ) ∩ U(Sϕ), then

n∑
i=1

αiδai = δ∑n
i=1 αiai

∈ {δa; a ∈ Sϕ}.

This shows that {δa; a ∈ Sϕ} = co{δa; a ∈ Sϕ}. Hence, there is a net
aα ∈ Sϕ such that δaα → M in the weak∗-topology. We define Λ(A∗)
to be the set of all functions Λ(f) with domain Sϕ, that arise from an
f ∈ A∗ by formula Λ(f)(a) = 〈f, a〉. The mapping f 7→ Λ(f) is a linear
map of A∗ into A(Sϕ) ∩ U(Sϕ) which is continuous.

Let Λ∗ : (A(Sϕ)∩U(Sϕ))∗ → A∗∗ denote the adjoint map of Λ. Since
Λ∗ is weak∗-weak∗ continuous, aα = Λ∗(δaα) → Λ∗(M) in the weak∗-

topology. Thus Λ∗(M) ∈ Sϕ
w∗

. Let f ∈ A∗ and a ∈ S. Left invariance
of M gives

〈Λ∗(M), f.a〉 = 〈M,Λ(f.a)〉 = 〈M,LaΛ(f)〉
= 〈M,Λ(f)〉 = 〈Λ∗(M), f〉.

This shows that Λ∗(M) is a ϕ-mean on A∗. This completes the proof. �

Let K be a compact convex set in a locally convex linear topological
space E. Associate to each T0 ∈ B(A(K), A(K)), h ∈ A(K), k ∈ K and
to each positive real ε the set

V (T0, h, k, ε) = {T ∈ B(A(K), A(K)); |T (h)(k)− T0(h)(k)| < ε}.

Let B be the collection of all finite intersections of the sets V (T0, h, x, ε).
Then B is a convex balanced local base for a topology τ on B(A(K), A(K)).

Some additional definitions are needed in order to state our results
of the paper. An affine action of Sϕ on K is a map T : Sϕ × K → K
(denoted by (a, k) 7→ Ta(k), a ∈ Sϕ, k ∈ K) such that Tab = TaoTb for all
a, b ∈ Sϕ and a 7→ Ta(k) is an affine continuous map for each k ∈ K. If T
is an affine action, then T induces an anti-action τ : Sϕ×A(K)→ A(K)
of Sϕ on the Banach space A(K), defined by τa(h) = hoTa. τ is said to be
uniformly continuous if to each neighborhood W of 0 in B(A(K), A(K))
corresponds a δ > 0 such that ‖a− b‖ < ε implies τa − τb ∈W .

The relationship between an affine action T and its induced anti-
action τ with respect to measurability, continuity, and compactness con-
ditions on them have been studied by Wong in [20].
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Theorem 2.8. Let A be a Banach algebra and ϕ ∈ ∆(A). Among the
following two properties, the implication (i)→ (ii) hold. If X(A,ϕ) = A,
then also (ii)→ (i).

(i) There exists a ϕ-mean m in Sϕ
w∗

.
(ii) For any affine action T : Sϕ × K → K such that the induced

anti-action τ : Sϕ × A(K) → A(K) is uniformly continuous,
there is some k ∈ K such that Ta(k) = k for all a ∈ Sϕ.

Proof. Assume that A has a ϕ- mean, say m ∈ Sϕ
w∗

. By Theorem 2.7,
A(Sϕ) ∩ U(Sϕ) has a left invariant mean. Let T : Sϕ ×K → K be any
affine action such that the induced anti-action τ : Sϕ × A(K) → A(K)
is uniformly continuous. Select a specific k ∈ K. Define a map Tk :
A(K) → Cb(Sϕ) by Tk(h)(a) = h(Ta(k)) for h ∈ A(K) and a ∈ Sϕ.
Designate Tk(h) by f . Then for a, b ∈ Sϕ, we have

Laf(b) = f(ab) = Tk(h)(ab) = h(Tab(k)) = τab(h)(k).

Since τ is uniformly continuous, it follows that Tk(h) ∈ A(Sϕ)∩U(Sϕ).
Hence by Theorem 1 in [2], there is some k ∈ K such that Ta(k) = k for
all a ∈ Sϕ.

(ii) implies (i). Let E = A∗∗ with weak∗-topology and put K = Sϕ
w∗

.
Define an affine action of Sϕ onK by Ta(m) = am for a ∈ Sϕ andm ∈ K.
Clearly the induced anti-action τ : Sϕ × A(K)→ A(K) of Sϕ on A(K)
is uniformly continuous. By assumption, there exists m ∈ K such that
am = m for all a ∈ Sϕ. m is a ϕ-mean on A∗. �
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