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v-AMENABILITY OF BANACH ALGEBRAS

A. GHAFFARI® AND A. ALINEJAD

Communicated by Gholam Hossein Esslamzadeh

ABSTRACT. Let A be an arbitrary Banach algebra and ¢ a homo-
morphism from A onto C. Our first purpose in this paper is to
give some equivalent conditions under which guarantees a ¢-mean
of norm one. Then we find some conditions under which there ex-
ists a p-mean in the weak” cluster of {a € A4; ||a| = ¢(a) =1} in
AL

1. Introduction

In this paper, the second dual A** of a Banach algebra A will always
be equipped with the first Arens product. The first Arens product of
A™ is constructed in three steps as follows: Let a,b be in A; f in A*;
and m,n be in A**. We define the elements f.a, nf of A* and mn of
A** by the identities

(f.a,b) = (f,ab), (nf,a) = (n, f.a), and (mn, f) = (m,nf).

Ample information about Arens multiplications and Arens regularity
notion can be found in the books [6] and [7].

Let A be a Banach algebra, and let ¢ be a nonzero multiplicative
linear functional on A. Then A is called p-amenable if there exists a
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bounded linear functional m on A* satisfying (m, ¢) = 1 and

(m, f.a) = p(a){m, [)

for all f € A* and a € A. The functional m is called a ¢-mean. This
extends the notion of left amenability of a Lau algebra (or F-algebra)
which was first studied by Lau [14]. The concept of p-amenable Banach
algebras was introduced recently by Kaniuth, Lau and Pym [13] (see also
[12]). Kaniuth, Lau and Pym [13] characterized - amenability of A in
terms of vanishing cohomology groups H'(A, X*) for a particular class
of Banach A-bimodules X, and in terms of the existence of a bounded
net (aq)q in A satisfying ¢(aq) = 1 for each a and ||aaq — ¢(a)aq|| — 0
for each a € A. In some cases, these extend known results concern-
ing topologically invariant means on Fourier algebras, and properties of
group algebras of amenable locally compact groups. They established
several characterizations of p-amenability as well as some hereditary
properties. In particular, these involve the projective tensor product
A® B for Banach algebras A and B.

Character amenability has also been studied recently by Monfared in
[16] and by Hu, Monfared and Traynor [11]. In [16], Monfared studied
the character amenability of Lau product algebras. He also proved that
all bounded cohomologies H™ (A, E') vanish for a commutative character
amenable A when FE is a finite-dimensional Banach A-bimodule, and
thus deduces that all finite-dimensional extensions of A split strongly.
Both of theses concepts generalize the earlier concept of left amenability
for F-algebras introduced by Lau in [14]. Recently the notion of a-
amenable hypergroups was introduced and studied in [3, 4] and [8].

Throughout the paper, A(A) will denote the set of all non-zero homo-
morphisms from A into C. For notations and terminologies not explained
here, see [13] and also [12].

In this paper, we continue the study of p-amenable Banach algebras.
We present a few results in the theory of p-amenable Banach algebras,
and we obtain necessary and sufficient conditions for A* to have a -
mean. The relationship between g-amenability of a Banach algebra A
and amenability of a certain space of functions on S, := {a € A4; |ja|| =
p(a) = 1} are investigated. As a sample result, the following is proved:

The Banach algebra A* has a ¢-mean in ST;w if a special space of
functions on S, has a left invariant mean or, equivalently, if and only
if S, has the fixed point property for certain affine actions of S, on
compact convex sets.
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2. Main results

For a locally compact group G, L*(G) is its group algebra and L*°(G)
is the dual of L!(@). Note that f.¢ = ¢ f where ¢(z) = Az~ p(z1),
f € L*(G), and A is the Haar modulus function on G [10]. By Propo-
sition 14.5 in [18], G = SL(2,R) is non-amenable. If M is a mean on
L>®(@), then there exist f € L°(G) and ¢ € PY(G) = {¢ € L(GQ); ¢ >
0, [l6]lx = 1} such that (M, £.0) = (M, 6+ ) # (M, ). So L®(G)"
contains no 1-mean of norm 1.

Let G be a locally compact group and A(G) the Fourier algebra of G.
Then A(A(G)) consists of all point evaluations ¢,, z € G. It is known
that A(G) is ¢z-amenable for every z € G [13].

Let A be a Banach algebra and ¢ € A(A). In this section, we establish
several criteria for A to possess a p-mean of norm 1.

Theorem 2.1. Let A be any Banach algebra and ¢ € A(A). Let H
denote the real-linear span of the set {p(a)f.b— o(b)f.a; a,b€ A, f €
A*}. The following assertions are equivalent:

(i) There exists a p-mean m with |m| = 1.
(ii) For every e >0 and h € H,
sup {Re (h,c); p(c) =1, ||c] <1+4¢€} >0.
(iii) There exists m € A** such that ||m|| = (m,p) =1 and

p(b)(m, f.a) = p(a)(m, f.b)

for every f € A* and a,b € A.
(iv) For every f € A*, there exists my € A*™ such that |my| =

(myg,p) =1 and p(b)(my, f.a) = @(a)(my, f.b) for every a,b €
A.

Proof. (i) implies (ii). Let m be as (i), and let (an)o be a net in A
such that a, — m in the weak*-topology of A** and |las| < ||m| =1
for all @ [19]. Let us assume on the contrary that there exist ¢ > 0,
fi,, fn€ A" ay,...,an, € A and by, ...,b, € A such that

sup { Re (h,c); p(c) =1, [le] <1+e€} <0 (%)

for h = >0 p(ai) fi.bi — ¢(bi) fi-ai. Since (aq) — (m,¢) = 1, after
passing to a subnet and replacing a, by @aa, we can assume that
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v(aq) =1 and ||aq|| < 1+ € for all . We have

lién(h,a@ = Zligl<90(ai)fi~bi*So(bi)fi~aiaaa>
i=1

n

= Z(m, o(a;) fi-bi — @(b;) fi-aq)

=1

= 3" () m, fibi) — o(b)(m, fi.a;)
i=1

= > plaie®i) ((m. fi) — (m, fi)) =0.
=1

This shows that sup {Re(h,c); ¢(c) = 1, |lc] < 1+ €} > 0, which
contradicts (x). So that (i) implies (ii).

(ii) implies (iii). Before proving (iii), note that if X is a vector space
over C, it is also a vector space over R. Also, if f: X — C is complex-
linear functional, then Ref : X — R is real-linear functional. Assume
that the scalar field is R.

Let € > 0 be given. For each f € A* define

p(f) =sup {Re (f,c); o(c) =1, | < 1+¢€}.

Then p is a subadditive positively homogeneous function on the real-
linear space A*. By hypothesis, p(h) > 0 for all h € H. By the Hahn-
Banach theorem, there exists a real-linear functional ne on A* such that
(ne, h) =0 for all h € H and (ne, f) < p(f) for all f € A*. In particular,

(ne, ) < p(p) =sup{Re p(c); p(c) =1, [le <1+e} =1.
This together with linearity of n., imply that (n.,¢) = 1, and also
|ne]| <14 €. Similarly,

(ne, i) < plip) = sup {Re ip(c); p(c) =1, || <1+ e} = Rei=0,
and also —(ne,ip) = (ne, —ig) < p(—ip) < 0. This shows that (n.,ip) =
0. If a,b € A and f € A*, then p(a)f.b — p(b)f.a € H. Hence

p(a)(ne, f.b) = p(b)(ne, f.a).
Let n be a weak*-cluster point of the net (n¢)e. Then [|n| = (n,¢) =1,
(n,ip) =0 and ¢(a)(n, f.b) = ¢(b)(n, f.a) for all f € A* and a,b € A.
Assume that the scalar field is C. Let m be the complex-linear func-
tional on A* whose real part is n. Obviously (m,g) = (n,g) — i(n,ig)
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for any g € A*. Clearly (m,¢) =1, ||m|| =1 and

= @(b)(n, f.a) —ip(b)(n,if.a)
= @(0){m, f.a),
for all f € A* and a,b € A.
(iii) implies (iv). Trivial.
It remains to show that (iv) implies (i). Assume that (iv) holds.
Define a subset M of A** by
M= {m €A™ Im]| = (m, ) = 1} = {m €A™ ||Im] <1, (m,p) = 1}.
For every f € A*, let
My ={m e M; p(a)(m, f.b) = ¢(b)(m, f.a) for all a,b € A}.

By Theorem 3.15 in [19], M is a weak*-compact subset in A**. We
establish this part by showing that the family {/\/l o fe A*} has the
finite intersection property. By assumption, M # ) for all f € A*. Let
neN, fi,.., fn € A* and assume that ﬂ{Mfi; 1<i<n- 1} # (.
Let m; be a member of this intersection, and let mg € M,,, . Let
(aa)a be anet in A such that |jaq|| =1, ¢(aq) — 1 and aq — me in the
weak*-topology. If a,b € A and i € {1,...,n — 1} are fixed, then

@(baa)<m1, fi~aaa> = Qp(aaaxmla fi-baa>

for all . Taking the limit on «, we find that (b)(maemi, fi.a) =
o(a)(mamy, f;.b). This shows that mamy € {Mfﬁ 1<i<n-— 1}.
On the other hand,
@(b)(mamy, fn.a) = @(b)(ma, m1fn.a) = ¢(a)(ma, myfpn.b)
= p(a)(mamu, fp.b).

Consequently maom; € ﬂ{/\/lfi; 1<i< n} Thus {Mf; fe A*} has
the finite intersection property, as required.

Let m € ({My; f € A*}, and take any net (aq)s in A such that

llaa|| < 1 and a, — m in the weak*-topology. Then ¢(a,) — 1. For
every f € A* and a € A, we have

pla)(mm, f) = pla) lanm, f.a0) = lim p(a)p(aa) (m, f.a0)
= liglcp(aaa)<m,f.aa> = li('in v(an)(m, f.aaqy)

= lién(m, f.aay) = (mm, f.a).
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Since (mm, @) = (m,p)? = 1 and |m| = 1, so m satisfies all the re-
quirements in (i). The proof is finished. O

As an immediate application of the preceding result, we have the
following

Corollary 2.2. Let A be any Banach algebra and ¢ € A(A). Then the
following conditions are equivalent:

(i) A admits a o-mean of norm 1.

(ii) There exists a net (aq)q in{a € A; ||a|| = 1} such that p(ay) —
1 and also for every a,b € A, (gp(a)baa - go(b)aaa)a converges
to 0 in the weak*-topology.

(iii) There exists a net (aq)o in {a € A; ||al| = 1} such that p(ay) —
1 and also for every a,b € A, (p(a)baq — go(b)aaa)a converges
to 0 in the norm-topology.

Proof. Suppose that (i) holds. Then by Theorem 2.1, let m be such that
|m|| = (m,¢) =1 and p(a)(m, f.b) = p(b)(m, f.a) for all a,b € A. By
Goldstein’s theorem [6], there exists a net (aq)q in A such that aq, — m
in the weak*-topology and |jan| < 1 for all a. Passing to a subnet if
necessary, we replacing a, by ”Z—Z”, we can assume that p(ay) — 1 and
laa]| =1 for all a. So (i) implies (7).

Suppose that (i7) holds. An argument similar to the proof of Lemma
1.4 in [13], shows that there exists a net (aq)o in {a € A; |a] = 1}
such that p(aq) — 1 and also for every a,b € A, (¢(a)baq — p(baas),,
converges to 0 in the norm-topology. (iii) implies (7). By Banach-
Alaoglu’s theorem [19], the net (aq)o admits a subnet (ag) converging
to a p-mean m in the weak*-topology of A*. Hence for every f € A*
and every a,b € A, we have

p)m, fa) = p(B)lim(f.0.a5) = ¢(8) lim(f,aa5)
= (@) lim({.bas) = p(a)(m. [)

By Theorem 2.1, A is p-amenable. This completes the proof. O

Following Kaniuth, Lau and Pym [12], we say that an element a of
A is p-mazimal if it satisfies ||a|| = ¢(a) = 1. We define S, = {a €
A; |lal| = ¢(a) = 1}. Let X (A, ) be the closed vector space spanned
by S,. It is shown that if A is a commutative Banach algebra and
X (A, ) = A, then A is p-amenable, see Proposition 2.10 in [12].
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Definition 2.3. A right action of A on A* is an anti-homomorphism of
A into the algebra of linear operators in A*, denoted by T : Ax A* — A*
where (a, f) — To(f) (this means that (a, f) — To(f) is bilinear and
T = TyT, for any a,b € A) such that T,*(S,) € S, and T,(¢) = ¢ for
alla € S,.

Let X be a subspace of A*, X is called S,-invariant under the right
action T if To(X) C X for all a € S,,.

Theorem 2.4. Let A be any Banach algebra and ¢ € A(A). Let
X(A,¢) = A. Then the following conditions are equivalent:

(i) There exists m € STDw* such that (m, f.a) = o(a)(m, f) for all

f e A" and a € A, where the closure is taken in weak*-topology.

(ii) For any weakly-weakly separately continuous right action T : A X

A* — A* of A on A*, and any S,-invariant subspace X of A*

containing ¢, any @-invariant n € @w on X ((n,T,(f)) =

(n,f) for any f € X and a € S,) can be extended to a -
invariant m € Spr* on A*.

Proof. (i) implies (ii). Assume that A has a p-mean, say m € STDw*,

and let T: A x A* — A* be any separately continuous right action of A

on A*. Assume that X is a S,-invariant subspace of A* containing ¢.

Let n € STPUJ* be a p-invariant on X, and let
M:{mESTOw ; mlx =n}.

In fact M is a weak*-closed convex subset of the unit ball in A** and
is therefore weak*-compact. For a € A, the mapping T, from A* to
itself is weakly-weakly continuous, and so T; is norm-norm continuous
[1]. Define T,,* : A** — A* by (T,*(F), f) = (F,T,(f)) where F' € A**
and f € A*. We claim that T,"(M) C M for any a € S,. Since T,"
is weak*-weak® continuous, by assumption Ta*(ST,w ) C ST(,w . Now let
mi1 €M, fe€ X and a € S,. Then

(Ta*(m1), f) = (m1, Ta(f)) = (n, Ta(f)) = (n, f).

Consequently 7,*(M) C M. By assumption, there is a net (aq)q in
S, such that |laaq — aql| — 0 (for all a € S,) and a, — m in the
weak*-topology, see Lemma 1.4 in [13] and its proof. Now choose m; €
M. Since M is weak*-compact, there is a subnet of (7}, *(m1))q which
converges to an element mqy of M in the weak*-topology. So without loss
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generality we assume that 75, *(mi) — mo. For each a € S,, f € A*
and «,

(Ta"Tay"(m1), f) = (m1,Tao (Ta(f))) = (M1, Taao (f))
= (m1, Taga—ao (f)) + (m1, Tu, (f))
= (M1, Taay—a, (f)) + (Ta"(m1), ).

By weakly-weakly separate continuity of 7', linearity of a — T, (f) and
the fact that ||aas — aq| — 0, we have T,*(mg) = mg. This shows that
(ma, To(f)) = (ma, f) for every f € A* and a € S,. On the other hand
X(A, o) = A, and so (me, To(f)) = p(a){me, f) for every f € A* and
a€ A

(73) implies (i): Define T': A x A* — A* by To(f) = f.a. Clearly
Ta(p) = @.a = ¢ for every a € S,. Since T,T}, = Ty, it is clear that T’
defines a right action of A on A*. Suppose a, — a in the weak-topology,
then for fixed f € A* and F' € A™*, we have

<F7Taa(f)>_<F7Ta<f)> :<F7f-aa>_<Faf'a>:<Ffaaa>_<Ffva>_>O‘

To show continuity in the other variable, let f, — f in the weak-
topology. Then for each a € A and o, (F,To(fa)) = (F, fa-a) = (aF, fo).
Thus T,(fo) — Ta(f) in the weak-topology, so the action of A on A* is
separately continuous.

Now, let X = {cp; ¢ € C}. Then X is obviously S,-invariant under
the separately continuous right action 7": A x A* — A*. Choose b € S,
and define (n,cp) = cp(b) = c. It is easy to see that (n,T,(cp)) =
(n,cp.a) = cp( )(n,cp) for all a € A and cp € X. Any invariant exten-

sion m € S of n to A* is necessarily a p-mean. This completes our
proof. O

Theorem 2.5. Let A be any Banach algebra and ¢ € A(A). Then the
following conditions are equivalent:

(i) A admits a ¢-mean of norm 1.

(ii) For every f € A* and a € A, there exists a mean my, on A*
such that (my @) = 1, mpal = 1 and 9(b)(mya fab) =
p(ab)(my.q, f.b) whenever b € A.

(iii) For every two finite subset FF C A and F* C A*, and € > 0 there
exists a mp= g € A such that |mp« pe|| =1, (mp+ pe,0) =1
and |(mp« pe, f.a) — @(a)(mp+ Fe, f)| < € whenever a € F and
feFr.
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Proof. Note first that (i) obviously implies (iii). Next suppose that (i)
holds. If m is a ¢-mean of norm 1, we can choose mys, = m for all
f e A" and a € A. Thus for every b € A,

(m, f.ab) = p(ab){m, f) and p(ab){m, f) = ¢(a)(m, f.b).

Clearly (b)(m, f.ab) = @(ab)(m, f.b). Thus (i) implies (ii).
Now assume that (ii) holds. For every f € A* and a € A, let

Mya={me M; ¢(b)(m, f.ab) = p(ab)(m, f.b) for all b€ A},

where M = {m € A*; ||m| = (m,¢) = 1}. These sets are nonempty
weak*-closed subsets of A** and we want to show that (\{M;q; f €
A* a€ A} is nonempty. Since {m € A |Im| < 1} is weak*-compact,
it suffices to show that (\{My.; f € F*, a € F} # 0 for any two
finite subset F* C A* and F' C A. So assume that my € ) {./\/lf,a; fe
F* ae F} for finite subsets F* C A* and FF C A, and let h € A* and
ce A Let myg € My, e Let (aq)a be a net in A such that |jaq| =1
for all a, p(as) — 1 and a, — mo in the weak*-topology. Then

p(b){mam, f.ab) = limp(ban)(mi, f.aban) = limp(abaq)(mi, f.baa)
= o(ab){(mamy, f.b).

forevery f € F*,a € Fandb € A. Thus mam; € [ {./\/lf,a; feF* ac
F}. On the other hand, ¢(b)(mami, h.cb) = ¢(cb){mamy, h.b) for all b €
A. This shows that {Mf,a; feA* ae A} has the finite intersection
property. Therefore there is some m in M such that ¢(b)(m, f.ab) =
w(ab)(m, f.b) for all f € A* and a,b € A. It is easy to see that mm € A**
is a p-mean of norm 1. Thus (i) and (ii) are equivalent.

(iii) implies (i). We denote F* the family of finite subsets of A* and
by F the family of finite subsets of A. For every F* € F*, F' € F and
€ >0,

Crepe = {m € M; |(m. J.a)~p(a)(m, f)| < cfor all f€ F*, a € F} #0.

It is easy to see that ﬂ{CF*,F,e; F*e F*, Fe F, e¢> O} # () where
closure is taken in the weak*-topology. Now, let m be any member of
this intersection, and let f € A*, a € A and ¢ > 0 be given. The
set of all n € A* such that |m — n| < oy &t f.a and at fis a
weak*-neighborhood of m. Therefore Cy fhiah,s contains such an n. We
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have

l(m, f.a) —p(a)(m, )| < [(m,f.a)— (n, f.a)|+ |(n, f.a) —@(a)(n, f)|
+  [e(@)[[{m, f) = (n, )] <e

Since € > 0 is arbitrary, it follows that (m, fa) = ¢(a)(m, f). This
completes our proof. O

Remark 2.6. Let A be a Banach algebra and let ¢ € A(A). Let m €

STaw* be a p-mean on A*. Letay,...,an, € A and let € > 0 be given. Since
A has a p-mean m, there exists a net (aq)a i Sy such that |a;aq —
o(ai)agl| = 0 for all i (see Theorem 1.4 in [13] and its proof).

By the first paragraph, there exists a € S, such that ||a;a—¢(a;)al| < €
whenever i € {1,...,n}. Hence

sup{flasall; 1< < n} < e+ supfle(a)l; 1< <n}.
Since € > 0 may be chosen arbitrarily, we have

inf { sup{|laia|; 1 <i<n}; a€ S@} < sup{|p(a;)|; 1 <i<n}.
The converse is also true. Indeed, fix b € S,. For every e > 0 and
every finite subset F' = {a1,...,a,} in A, there ezists a € S, such that
la;a—(a;)bal| < €, whenever 1 < i < n (since p(a;—¢(a;)b) =0 for all
i€ {l,...,n}). An argument similar to the proof of Theorem 2.5 ((iii) —
(1)), shows that there exists n € S, such that (n, f.a) = ¢(a)(n, f.b)
for every a € A. Finally, let m = bn. Then bn € Spr . Moreowver,

(m, f.a) = (bn, f.a) = (n, f.ab) = p(ab)(n, f.b) = p(a)(m, [)
for all f € A* and a € A. So m is a p-mean on A*. Note that this is
in fact Proposition 15.5 of [18] which was proved for group algebras.
By the same argument as above, one can prove that A has a p-mean
of norm 1 if and only if for alln € N, a1,...,a, € A and v > 1,

inf { sup{flazall: 1<i<n}; fa] <. oa) =1}
< supf{fea;)l: 1< <n}.

Let K be a convex set in a locally convex linear topological space
E, and let A(K) denote the Banach space of bounded continuous affine
functions on K under the supremum norm.

Let A be a Banach algebra, and let S, be the set of all p-maximal
elements of A. Under the norm topology, S, is a semi-topological semi-
group. Let Cy(S,) be the space of bounded continuous functions on S,
with usual sup norm. For a € S, the translation L, of Cy(S,) by a
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is given by L,f(b) = f(ab), where f € Cy(S,) and b € S,. Denote by
U(S,) the space of all functions f € Cy,(S,) such that the map a — L f
of S, into Cy(S,) is uniformly continuous with respect to the unifor-
mity induced on S, and uniformity induced on Cy(Sy,). An element
M e (A(S,)NU(S,))* is a mean on A(Sy,)NU(S,) if |M|| = (M, 1) = 1.
A mean M on A(S,) NU(Sy) is left invariant if (M, L, f) = (M, f) for
all f e A(S,)NU(S,) and a € S,. More information on this matter
can be found in [5, 9, 17].

Theorem 2.7. Suppose A is a Banach algebra and ¢ € A(A). Among
the following two properties, the implication (i) — (i1) hold. If X (A, ) =
A, then also (ii) — (7).

(i) There exists a p-mean m in S, .
(ii) A(Sy) NU(S,) has a left invariant mean.

*

Proof. We can prove Theorem 2.7 by using an argument similar to the
proof of Lemma 2.1 in [15].

(i) implies (i7). Let m € S," be a mean on A*. By Theorem 1.4
in [13] and its proof, there exists a net (aq)q in S, such that |aaq —
o(a)aq|] — 0 for every a € A. Let d,, denote evaluation at a,. By
possibility passing to subnets we can assume that f(an) = 04, (f) —
M(f) for all f € A(S,) NU(S,) to some mean M on A(S,) NU(S
(see Theorem 1.8 in [5]). Fix f € A(S,) NU(S,) and define M, f(a) =
(M, Lqf) where a € S,. Then a — M;f(a) is obviously in A(S,) N
U(S,). Define MM : A(S,) NU(S,) — C by (MM, f) = (M, M.f).
It is easy to see that MM is a mean on A(S,) NU(S,). Let f €
A(Sy,)NU(Sy), a € S, and let € > 0 be given. There is a 6 > 0 such
that b,c € Sy, and ||b — c|| < 0 implies

’<MaLbf> - <M,ch>’ < HLbf - LCfH <€
Also, there is some o such that o > g implies |laaq — aq|| < 6. For
every a > ag,
[Mi(Laf)(aa) = Mi(f)(aa)| = [(M, Lo, Laf) = (M, Lao f)|
’<M7Lallaf> - <M7 Laaf)’ <€
which implies that (MM, L, f) = (MM, f), i.e., MM is a left invariant
mean on A(S,) NU(S,).
(¢7) implies (7). Let M be a left invariant mean on A(S,) N U(S,).

Any element in co{dq; a € Sy} is said to be a finite mean. The finite
means on A(S,) NU(S,) are weak*-dense in the weak*-compact convex



736 Ghaffari and Alinejad

set of means on A(S,) NU(S,) (see Theorem 1.8 in [5]). If 37 | «;dq,
is a finite mean on A(S,) NU(S,), then

Zaz a; a; € {0a; a € 8,}.

This shows that {d,; a € S,} = co{da; a € S,}. Hence, there is a net
aq € S, such that §,, — M in the weak*-topology. We define A(A*)
to be the set of all functions A(f) with domain S, that arise from an
f € A* by formula A(f)(a) = (f,a). The mapping f — A(f) is a linear
map of A* into A(S,) NU(S,) which is continuous.

Let A* : (A(S,)NU(S,))* — A* denote the adjoint map of A. Since
A* is weak*-weak* continuous, a, = A*(d,,) — A*(M) in the weak*-
topology. Thus A*(M) € STDw . Let f € A* and a € S. Left invariance
of M gives

(A*(M), f.a) = (M,A(f.a)) = (M, LaA(f))
= (M, A(f)) = (A" (M), f).

This shows that A*(M) is a ¢-mean on A*. This completes the proof. O

Let K be a compact convex set in a locally convex linear topological
space E. Associate to each Ty € B(A(K), A(K)), h € A(K), k € K and
to each positive real € the set

V(To, h, k,€) = {T € B(A(K), A(K)); |T(h)(k) = To(h)(F)| < €}.

Let B be the collection of all finite intersections of the sets V (T, h, x, €).
Then B is a convex balanced local base for a topology 7 on B(A(K), A(K)).

Some additional definitions are needed in order to state our results
of the paper. An affine action of S, on K isamap T : S, x K — K
(denoted by (a, k) — Ty (k), a € Sy, k € K) such that T, = T,0T, for all
a,b e S, and a — T,(k) is an affine continuous map for each k € K. If T’
is an affine action, then 7" induces an anti-action 7 : S, x A(K) — A(K)
of S, on the Banach space A(K), defined by 7,(h) = hoTg. 7 is said to be
uniformly continuous if to each neighborhood W of 0 in B(A(K), A(K))
corresponds a 0 > 0 such that ||a — b|| < € implies 7, — 7, € W.

The relationship between an affine action 7' and its induced anti-
action 7 with respect to measurability, continuity, and compactness con-
ditions on them have been studied by Wong in [20].
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Theorem 2.8. Let A be a Banach algebra and ¢ € A(A). Among the
following two properties, the implication (i) — (ii) hold. If X (A, ¢) = A,
then also (ii) — (i).

*

(i) There exists a p-mean m in Sy .

(ii) For any affine action T : S, x K — K such that the induced
anti-action T : Sy, x A(K) — A(K) is uniformly continuous,
there is some k € K such that T,(k) =k for all a € S,.

Proof. Assume that A has a ¢- mean, say m € Spr*. By Theorem 2.7,
A(Sy,) NU(S,) has a left invariant mean. Let T': S, x K — K be any
affine action such that the induced anti-action 7 : S, x A(K) — A(K)
is uniformly continuous. Select a specific £ € K. Define a map Tk :
A(K) — Cy(S,) by Tk(h)(a) = h(Ty(k)) for h € A(K) and a € S,,.
Designate Tk(h) by f. Then for a,b € Sy, we have

Laf(b) = f(ab) = Tk(h)(ab) = h(Tup(k)) = Tap(h)(F)-

Since 7 is uniformly continuous, it follows that Tk(h) € A(S,) NU(S,).
Hence by Theorem 1 in [2], there is some k € K such that T, (k) = k for
all a € S,.

(1) implies (7). Let E = A** with weak*-topology and put K = 5, .
Define an affine action of S, on K by T,(m) = am fora € S, and m € K.
Clearly the induced anti-action 7 : S, x A(K) — A(K) of S, on A(K)
is uniformly continuous. By assumption, there exists m € K such that
am = m for all a € S,. m is a p-mean on A*. O
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