Bulletin of the Iranian Mathematical Society Vol. 38 No. 3 (2012), pp 725-738.

φ -AMENABILITY OF BANACH ALGEBRAS

A. GHAFFARI* AND A. ALINEJAD

Communicated by Gholam Hossein Esslamzadeh

ABSTRACT. Let A be an arbitrary Banach algebra and φ a homomorphism from A onto C. Our first purpose in this paper is to give some equivalent conditions under which guarantees a φ -mean of norm one. Then we find some conditions under which there exists a φ -mean in the weak^{*} cluster of $\{a \in A; \|a\| = \varphi(a) = 1\}$ in A^{**} .

1. Introduction

In this paper, the second dual A^{**} of a Banach algebra A will always be equipped with the first Arens product. The first Arens product of A^{**} is constructed in three steps as follows: Let a, b be in A; f in A^{*} ; and m, n be in A^{**} . We define the elements f.a, nf of A^{*} and mn of A^{**} by the identities

$$\langle f.a,b\rangle = \langle f,ab\rangle, \ \langle nf,a\rangle = \langle n,f.a\rangle, \text{ and } \ \langle mn,f\rangle = \langle m,nf\rangle.$$

Ample information about Arens multiplications and Arens regularity notion can be found in the books [6] and [7].

Let A be a Banach algebra, and let φ be a nonzero multiplicative linear functional on A. Then A is called φ -amenable if there exists a

MSC(2010): Primary: 46H25; Secondary: 43H05.

Keywords: Amenability, Banach algebras, F-algebra,
 $\varphi\text{-amenability},$ $\varphi\text{-mean}.$

Received: 6 November 2010, Accepted: 9 April 2011.

^{*}Corresponding author

^{© 2012} Iranian Mathematical Society.

⁷²⁵

bounded linear functional m on A^* satisfying $\langle m, \varphi \rangle = 1$ and

$$\langle m, f.a \rangle = \varphi(a) \langle m, f \rangle$$

for all $f \in A^*$ and $a \in A$. The functional m is called a φ -mean. This extends the notion of left amenability of a Lau algebra (or F-algebra) which was first studied by Lau [14]. The concept of φ -amenable Banach algebras was introduced recently by Kaniuth, Lau and Pym [13] (see also [12]). Kaniuth, Lau and Pym [13] characterized φ - amenability of A in terms of vanishing cohomology groups $H^1(A, X^*)$ for a particular class of Banach A-bimodules X, and in terms of the existence of a bounded net $(a_{\alpha})_{\alpha}$ in A satisfying $\varphi(a_{\alpha}) = 1$ for each α and $||aa_{\alpha} - \varphi(a)a_{\alpha}|| \to 0$ for each $a \in A$. In some cases, these extend known results concerning topologically invariant means on Fourier algebras, and properties of group algebras of amenable locally compact groups. They established several characterizations of φ -amenability as well as some hereditary properties. In particular, these involve the projective tensor product $A \otimes B$ for Banach algebras A and B.

Character amenability has also been studied recently by Monfared in [16] and by Hu, Monfared and Traynor [11]. In [16], Monfared studied the character amenability of Lau product algebras. He also proved that all bounded cohomologies $H^n(A, E)$ vanish for a commutative character amenable A when E is a finite-dimensional Banach A-bimodule, and thus deduces that all finite-dimensional extensions of A split strongly. Both of theses concepts generalize the earlier concept of left amenability for F-algebras introduced by Lau in [14]. Recently the notion of α -amenable hypergroups was introduced and studied in [3, 4] and [8].

Throughout the paper, $\Delta(A)$ will denote the set of all non-zero homomorphisms from A into \mathbb{C} . For notations and terminologies not explained here, see [13] and also [12].

In this paper, we continue the study of φ -amenable Banach algebras. We present a few results in the theory of φ -amenable Banach algebras, and we obtain necessary and sufficient conditions for A^* to have a φ mean. The relationship between φ -amenability of a Banach algebra Aand amenability of a certain space of functions on $S_{\varphi} := \{a \in A; \|a\| = \varphi(a) = 1\}$ are investigated. As a sample result, the following is proved: The Banach algebra A^* has a φ -mean in $\overline{S_{\varphi}}^{w^*}$ if a special space of functions on S_{φ} has a left invariant mean or, equivalently, if and only if S_{φ} has the fixed point property for certain affine actions of S_{φ} on compact convex sets.

2. Main results

For a locally compact group G, $L^1(G)$ is its group algebra and $L^{\infty}(G)$ is the dual of $L^1(G)$. Note that $f.\phi = \widetilde{\phi} * f$ where $\widetilde{\phi}(x) = \Delta(x^{-1})\phi(x^{-1})$, $f \in L^{\infty}(G)$, and Δ is the Haar modulus function on G [10]. By Proposition 14.5 in [18], $G = SL(2, \mathbb{R})$ is non-amenable. If M is a mean on $L^{\infty}(G)$, then there exist $f \in L^{\infty}(G)$ and $\phi \in P^1(G) = \{\phi \in L^1(G); \phi \ge 0, \|\phi\|_1 = 1\}$ such that $\langle M, f.\widetilde{\phi} \rangle = \langle M, \phi * f \rangle \neq \langle M, f \rangle$. So $L^{\infty}(G)^*$ contains no 1-mean of norm 1.

Let G be a locally compact group and A(G) the Fourier algebra of G. Then $\Delta(A(G))$ consists of all point evaluations $\varphi_x, x \in G$. It is known that A(G) is φ_x -amenable for every $x \in G$ [13].

Let A be a Banach algebra and $\varphi \in \Delta(A)$. In this section, we establish several criteria for A to possess a φ -mean of norm 1.

Theorem 2.1. Let A be any Banach algebra and $\varphi \in \Delta(A)$. Let \mathcal{H} denote the real-linear span of the set $\{\varphi(a)f.b - \varphi(b)f.a; a, b \in A, f \in A^*\}$. The following assertions are equivalent:

- (i) There exists a φ -mean m with ||m|| = 1.
- (ii) For every $\epsilon > 0$ and $h \in \mathcal{H}$,

$$\sup \left\{ Re \ \langle h, c \rangle; \ \varphi(c) = 1, \ \|c\| \le 1 + \epsilon \right\} \ge 0.$$

(iii) There exists $m \in A^{**}$ such that $||m|| = \langle m, \varphi \rangle = 1$ and

$$\varphi(b)\langle m, f.a \rangle = \varphi(a)\langle m, f.b \rangle$$

for every $f \in A^*$ and $a, b \in A$.

(iv) For every $f \in A^*$, there exists $m_f \in A^{**}$ such that $||m_f|| = \langle m_f, \varphi \rangle = 1$ and $\varphi(b) \langle m_f, f.a \rangle = \varphi(a) \langle m_f, f.b \rangle$ for every $a, b \in A$.

Proof. (i) implies (ii). Let m be as (i), and let $(a_{\alpha})_{\alpha}$ be a net in A such that $a_{\alpha} \to m$ in the weak*-topology of A^{**} and $||a_{\alpha}|| \leq ||m|| = 1$ for all α [19]. Let us assume on the contrary that there exist $\epsilon > 0$, $f_1, \ldots, f_n \in A^*$, $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in A$ such that

$$\sup \left\{ Re \ \langle h, c \rangle; \ \varphi(c) = 1, \ \|c\| \le 1 + \epsilon \right\} < 0 \tag{(*)}$$

for $h = \sum_{i=1}^{n} \varphi(a_i) f_i b_i - \varphi(b_i) f_i a_i$. Since $\varphi(a_\alpha) \to \langle m, \varphi \rangle = 1$, after passing to a subnet and replacing a_α by $\frac{1}{\varphi(a_\alpha)} a_\alpha$, we can assume that

 $\varphi(a_{\alpha}) = 1$ and $||a_{\alpha}|| \leq 1 + \epsilon$ for all α . We have

$$\begin{split} \lim_{\alpha} \langle h, a_{\alpha} \rangle &= \sum_{i=1}^{n} \lim_{\alpha} \langle \varphi(a_{i}) f_{i}.b_{i} - \varphi(b_{i}) f_{i}.a_{i}, a_{\alpha} \rangle \\ &= \sum_{i=1}^{n} \langle m, \varphi(a_{i}) f_{i}.b_{i} - \varphi(b_{i}) f_{i}.a_{i} \rangle \\ &= \sum_{i=1}^{n} \varphi(a_{i}) \langle m, f_{i}.b_{i} \rangle - \varphi(b_{i}) \langle m, f_{i}.a_{i} \rangle \\ &= \sum_{i=1}^{n} \varphi(a_{i}) \varphi(b_{i}) \big(\langle m, f_{i} \rangle - \langle m, f_{i} \rangle \big) = 0. \end{split}$$

This shows that $\sup \{ Re(h,c); \varphi(c) = 1, \|c\| \le 1 + \epsilon \} \ge 0$, which contradicts (*). So that (i) implies (ii).

(ii) implies (iii). Before proving (iii), note that if X is a vector space over \mathbb{C} , it is also a vector space over \mathbb{R} . Also, if $f: X \to \mathbb{C}$ is complex-linear functional, then $Ref: X \to \mathbb{R}$ is real-linear functional. Assume that the scalar field is \mathbb{R} .

Let $\epsilon > 0$ be given. For each $f \in A^*$ define

$$p(f) = \sup \left\{ Re \ \langle f, c \rangle; \ \varphi(c) = 1, \ \|c\| \le 1 + \epsilon \right\}.$$

Then p is a subadditive positively homogeneous function on the reallinear space A^* . By hypothesis, $p(h) \ge 0$ for all $h \in \mathcal{H}$. By the Hahn-Banach theorem, there exists a real-linear functional n_{ϵ} on A^* such that $\langle n_{\epsilon}, h \rangle = 0$ for all $h \in \mathcal{H}$ and $\langle n_{\epsilon}, f \rangle \le p(f)$ for all $f \in A^*$. In particular,

$$\langle n_{\epsilon}, \varphi \rangle \le p(\varphi) = \sup \left\{ Re \ \varphi(c); \ \varphi(c) = 1, \ \|c\| \le 1 + \epsilon \right\} = 1$$

This together with linearity of n_{ϵ} , imply that $\langle n_{\epsilon}, \varphi \rangle = 1$, and also $||n_{\epsilon}|| \leq 1 + \epsilon$. Similarly,

$$\langle n_{\epsilon}, i\varphi \rangle \leq p(i\varphi) = \sup \left\{ Re \ i\varphi(c); \ \varphi(c) = 1, \ \|c\| \leq 1 + \epsilon \right\} = Re \ i = 0,$$

and also $-\langle n_{\epsilon}, i\varphi \rangle = \langle n_{\epsilon}, -i\varphi \rangle \leq p(-i\varphi) \leq 0$. This shows that $\langle n_{\epsilon}, i\varphi \rangle = 0$. If $a, b \in A$ and $f \in A^*$, then $\varphi(a)f.b - \varphi(b)f.a \in \mathcal{H}$. Hence

$$\varphi(a)\langle n_{\epsilon}, f.b\rangle = \varphi(b)\langle n_{\epsilon}, f.a\rangle.$$

Let *n* be a weak*-cluster point of the net $(n_{\epsilon})_{\epsilon}$. Then $||n|| = \langle n, \varphi \rangle = 1$, $\langle n, i\varphi \rangle = 0$ and $\varphi(a)\langle n, f.b \rangle = \varphi(b)\langle n, f.a \rangle$ for all $f \in A^*$ and $a, b \in A$.

Assume that the scalar field is \mathbb{C} . Let m be the complex-linear functional on A^* whose real part is n. Obviously $\langle m, g \rangle = \langle n, g \rangle - i \langle n, ig \rangle$

for any $g \in A^*$. Clearly $\langle m, \varphi \rangle = 1$, ||m|| = 1 and

$$\begin{array}{lll} \varphi(a)\langle m, f.b\rangle &=& \varphi(a)\langle n, f.b\rangle - i\varphi(a)\langle n, if.b\rangle \\ &=& \varphi(b)\langle n, f.a\rangle - i\varphi(b)\langle n, if.a\rangle \\ &=& \varphi(b)\langle m, f.a\rangle, \end{array}$$

for all $f \in A^*$ and $a, b \in A$.

(iii) implies (iv). Trivial.

It remains to show that (iv) implies (i). Assume that (iv) holds. Define a subset \mathcal{M} of A^{**} by

 $\mathcal{M} = \left\{ m \in A^{**}; \ \|m\| = \langle m, \varphi \rangle = 1 \right\} = \left\{ m \in A^{**}; \ \|m\| \le 1, \ \langle m, \varphi \rangle = 1 \right\}.$

For every $f \in A^*$, let

$$\mathcal{M}_f = \left\{ m \in \mathcal{M}; \ \varphi(a) \langle m, f.b \rangle = \varphi(b) \langle m, f.a \rangle \text{ for all } a, b \in A \right\}.$$

By Theorem 3.15 in [19], \mathcal{M}_f is a weak*-compact subset in A^{**} . We establish this part by showing that the family $\{\mathcal{M}_f; f \in A^*\}$ has the finite intersection property. By assumption, $\mathcal{M}_f \neq \emptyset$ for all $f \in A^*$. Let $n \in \mathbb{N}, f_1, ..., f_n \in A^*$ and assume that $\bigcap \{\mathcal{M}_{f_i}; 1 \leq i \leq n-1\} \neq \emptyset$. Let m_1 be a member of this intersection, and let $m_2 \in \mathcal{M}_{m_1 f_n}$. Let $(a_\alpha)_\alpha$ be a net in A such that $||a_\alpha|| = 1, \varphi(a_\alpha) \to 1$ and $a_\alpha \to m_2$ in the weak*-topology. If $a, b \in A$ and $i \in \{1, ..., n-1\}$ are fixed, then

$$\varphi(ba_{\alpha})\langle m_1, f_i.aa_{\alpha}\rangle = \varphi(aa_{\alpha})\langle m_1, f_i.ba_{\alpha}\rangle$$

for all α . Taking the limit on α , we find that $\varphi(b)\langle m_2m_1, f_{i.a}\rangle = \varphi(a)\langle m_2m_1, f_{i.b}\rangle$. This shows that $m_2m_1 \in \bigcap \{\mathcal{M}_{f_i}; 1 \leq i \leq n-1\}$. On the other hand,

$$\begin{aligned} \varphi(b)\langle m_2m_1, f_n.a\rangle &= \varphi(b)\langle m_2, m_1f_n.a\rangle = \varphi(a)\langle m_2, m_1f_n.b\rangle \\ &= \varphi(a)\langle m_2m_1, f_n.b\rangle. \end{aligned}$$

Consequently $m_2m_1 \in \bigcap \{\mathcal{M}_{f_i}; 1 \leq i \leq n\}$. Thus $\{\mathcal{M}_f; f \in A^*\}$ has the finite intersection property, as required.

Let $m \in \bigcap \{\mathcal{M}_f; f \in A^*\}$, and take any net $(a_\alpha)_\alpha$ in A such that $||a_\alpha|| \leq 1$ and $a_\alpha \to m$ in the weak*-topology. Then $\varphi(a_\alpha) \to 1$. For every $f \in A^*$ and $a \in A$, we have

$$\begin{split} \varphi(a)\langle mm, f \rangle &= \varphi(a) \lim_{\alpha} \langle m, f.a_{\alpha} \rangle = \lim_{\alpha} \varphi(a)\varphi(a_{\alpha})\langle m, f.a_{\alpha} \rangle \\ &= \lim_{\alpha} \varphi(aa_{\alpha})\langle m, f.a_{\alpha} \rangle = \lim_{\alpha} \varphi(a_{\alpha})\langle m, f.aa_{\alpha} \rangle \\ &= \lim_{\alpha} \langle m, f.aa_{\alpha} \rangle = \langle mm, f.a \rangle. \end{split}$$

Since $\langle mm, \varphi \rangle = \langle m, \varphi \rangle^2 = 1$ and ||m|| = 1, so *m* satisfies all the requirements in (i). The proof is finished.

As an immediate application of the preceding result, we have the following

Corollary 2.2. Let A be any Banach algebra and $\varphi \in \Delta(A)$. Then the following conditions are equivalent:

- (i) A admits a φ -mean of norm 1.
- (ii) There exists a net $(a_{\alpha})_{\alpha}$ in $\{a \in A; \|a\| = 1\}$ such that $\varphi(a_{\alpha}) \rightarrow 1$ and also for every $a, b \in A$, $(\varphi(a)ba_{\alpha} \varphi(b)aa_{\alpha})_{\alpha}$ converges to 0 in the weak*-topology.
- (iii) There exists a net $(a_{\alpha})_{\alpha}$ in $\{a \in A; \|a\| = 1\}$ such that $\varphi(a_{\alpha}) \rightarrow 1$ and also for every $a, b \in A$, $(\varphi(a)ba_{\alpha} \varphi(b)aa_{\alpha})_{\alpha}$ converges to 0 in the norm-topology.

Proof. Suppose that (i) holds. Then by Theorem 2.1, let m be such that $||m|| = \langle m, \varphi \rangle = 1$ and $\varphi(a) \langle m, f.b \rangle = \varphi(b) \langle m, f.a \rangle$ for all $a, b \in A$. By Goldstein's theorem [6], there exists a net $(a_{\alpha})_{\alpha}$ in A such that $a_{\alpha} \to m$ in the weak*-topology and $||a_{\alpha}|| \leq 1$ for all α . Passing to a subnet if necessary, we replacing a_{α} by $\frac{a_{\alpha}}{||a_{\alpha}||}$, we can assume that $\varphi(a_{\alpha}) \to 1$ and $||a_{\alpha}|| = 1$ for all α . So (i) implies (ii).

Suppose that (*ii*) holds. An argument similar to the proof of Lemma 1.4 in [13], shows that there exists a net $(a_{\alpha})_{\alpha}$ in $\{a \in A; \|a\| = 1\}$ such that $\varphi(a_{\alpha}) \to 1$ and also for every $a, b \in A$, $(\varphi(a)ba_{\alpha} - \varphi(b)aa_{\alpha})_{\alpha}$ converges to 0 in the norm-topology. (*iii*) implies (*i*). By Banach-Alaoglu's theorem [19], the net $(a_{\alpha})_{\alpha}$ admits a subnet (a_{β}) converging to a φ -mean m in the weak*-topology of A^* . Hence for every $f \in A^*$ and every $a, b \in A$, we have

$$\begin{split} \varphi(b)\langle m, f.a \rangle &= \varphi(b) \lim_{\beta} \langle f.a, a_{\beta} \rangle = \varphi(b) \lim_{\beta} \langle f, aa_{\beta} \rangle \\ &= \varphi(a) \lim_{\beta} \langle f, ba_{\beta} \rangle = \varphi(a) \langle m, f.b \rangle. \end{split}$$

By Theorem 2.1, A is φ -amenable. This completes the proof.

Following Kaniuth, Lau and Pym [12], we say that an element a of A is φ -maximal if it satisfies $||a|| = \varphi(a) = 1$. We define $S_{\varphi} = \{a \in A; ||a|| = \varphi(a) = 1\}$. Let $X(A, \varphi)$ be the closed vector space spanned by S_{φ} . It is shown that if A is a commutative Banach algebra and $X(A, \varphi) = A$, then A is φ -amenable, see Proposition 2.10 in [12].

Definition 2.3. A right action of A on A^* is an anti-homomorphism of A into the algebra of linear operators in A^* , denoted by $T : A \times A^* \to A^*$ where $(a, f) \to T_a(f)$ (this means that $(a, f) \to T_a(f)$ is bilinear and $T_{ab} = T_b T_a$ for any $a, b \in A$) such that $T_a^*(S_{\varphi}) \subseteq S_{\varphi}$ and $T_a(\varphi) = \varphi$ for all $a \in S_{\varphi}$.

Let X be a subspace of A^* , X is called S_{φ} -invariant under the right action T if $T_a(X) \subseteq X$ for all $a \in S_{\varphi}$.

Theorem 2.4. Let A be any Banach algebra and $\varphi \in \Delta(A)$. Let $X(A, \varphi) = A$. Then the following conditions are equivalent:

- (i) There exists $m \in \overline{S_{\varphi}}^{w^*}$ such that $\langle m, f.a \rangle = \varphi(a) \langle m, f \rangle$ for all $f \in A^*$ and $a \in A$, where the closure is taken in weak*-topology.
- (ii) For any weakly-weakly separately continuous right action T : A× A* → A* of A on A*, and any S_φ-invariant subspace X of A* containing φ, any φ-invariant n ∈ S_φ^{w*} on X (⟨n, T_a(f)⟩ = ⟨n, f⟩ for any f ∈ X and a ∈ S_φ) can be extended to a φinvariant m ∈ S_φ^{w*} on A*.

Proof. (i) implies (ii). Assume that A has a φ -mean, say $m \in \overline{S_{\varphi}}^{w^*}$, and let $T : A \times A^* \to A^*$ be any separately continuous right action of A on A^* . Assume that X is a S_{φ} -invariant subspace of A^* containing φ . Let $n \in \overline{S_{\varphi}}^{w^*}$ be a φ -invariant on X, and let

$$M = \left\{ m \in \overline{S_{\varphi}}^{w^*}; \ m|_X = n \right\}.$$

In fact M is a weak*-closed convex subset of the unit ball in A^{**} and is therefore weak*-compact. For $a \in A$, the mapping T_a from A^* to itself is weakly-weakly continuous, and so T_a is norm-norm continuous [1]. Define $T_a^* : A^{**} \to A^{**}$ by $\langle T_a^*(F), f \rangle = \langle F, T_a(f) \rangle$ where $F \in A^{**}$ and $f \in A^*$. We claim that $T_a^*(M) \subseteq M$ for any $a \in S_{\varphi}$. Since T_a^* is weak*-weak* continuous, by assumption $T_a^*(\overline{S_{\varphi}}^{w^*}) \subseteq \overline{S_{\varphi}}^{w^*}$. Now let $m_1 \in M, f \in X$ and $a \in S_{\varphi}$. Then

$$\langle T_a^*(m_1), f \rangle = \langle m_1, T_a(f) \rangle = \langle n, T_a(f) \rangle = \langle n, f \rangle.$$

Consequently $T_a^*(M) \subseteq M$. By assumption, there is a net $(a_\alpha)_\alpha$ in S_{φ} such that $||aa_\alpha - a_\alpha|| \to 0$ (for all $a \in S_{\varphi}$) and $a_\alpha \to m$ in the weak*-topology, see Lemma 1.4 in [13] and its proof. Now choose $m_1 \in M$. Since M is weak*-compact, there is a subnet of $(T_{a_\alpha}^*(m_1))_\alpha$ which converges to an element m_2 of M in the weak*-topology. So without loss

generality we assume that $T_{a_{\alpha}}^{*}(m_{1}) \to m_{2}$. For each $a \in S_{\varphi}$, $f \in A^{*}$ and α ,

$$\langle T_a^* T_{a_\alpha}^*(m_1), f \rangle = \langle m_1, T_{a_\alpha}(T_a(f)) \rangle = \langle m_1, T_{aa_\alpha}(f) \rangle$$

= $\langle m_1, T_{aa_\alpha - a_\alpha}(f) \rangle + \langle m_1, T_{a_\alpha}(f) \rangle$
= $\langle m_1, T_{aa_\alpha - a_\alpha}(f) \rangle + \langle T_\alpha^*(m_1), f \rangle.$

By weakly-weakly separate continuity of T, linearity of $a \to T_a(f)$ and the fact that $||aa_{\alpha} - a_{\alpha}|| \to 0$, we have $T_a^*(m_2) = m_2$. This shows that $\langle m_2, T_a(f) \rangle = \langle m_2, f \rangle$ for every $f \in A^*$ and $a \in S_{\varphi}$. On the other hand $X(A, \varphi) = A$, and so $\langle m_2, T_a(f) \rangle = \varphi(a) \langle m_2, f \rangle$ for every $f \in A^*$ and $a \in A$.

(*ii*) implies (*i*): Define $T : A \times A^* \to A^*$ by $T_a(f) = f.a$. Clearly $T_a(\varphi) = \varphi.a = \varphi$ for every $a \in S_{\varphi}$. Since $T_a T_b = T_{ba}$, it is clear that T defines a right action of A on A^* . Suppose $a_{\alpha} \to a$ in the weak-topology, then for fixed $f \in A^*$ and $F \in A^{**}$, we have

$$\langle F, T_{a_{\alpha}}(f) \rangle - \langle F, T_{a}(f) \rangle = \langle F, f.a_{\alpha} \rangle - \langle F, f.a \rangle = \langle Ff, a_{\alpha} \rangle - \langle Ff, a \rangle \to 0.$$

To show continuity in the other variable, let $f_{\alpha} \to f$ in the weak-topology. Then for each $a \in A$ and α , $\langle F, T_a(f_{\alpha}) \rangle = \langle F, f_{\alpha}.a \rangle = \langle aF, f_{\alpha} \rangle$. Thus $T_a(f_{\alpha}) \to T_a(f)$ in the weak-topology, so the action of A on A^* is separately continuous.

Now, let $X = \{c\varphi; c \in \mathbb{C}\}$. Then X is obviously S_{φ} -invariant under the separately continuous right action $T : A \times A^* \to A^*$. Choose $b \in S_{\varphi}$, and define $\langle n, c\varphi \rangle = c\varphi(b) = c$. It is easy to see that $\langle n, T_a(c\varphi) \rangle =$ $\langle n, c\varphi.a \rangle = \varphi(a) \langle n, c\varphi \rangle$ for all $a \in A$ and $c\varphi \in X$. Any invariant extension $m \in \overline{S_{\varphi}}^{w^*}$ of n to A^* is necessarily a φ -mean. This completes our proof.

Theorem 2.5. Let A be any Banach algebra and $\varphi \in \Delta(A)$. Then the following conditions are equivalent:

- (i) A admits a φ -mean of norm 1.
- (ii) For every $f \in A^*$ and $a \in A$, there exists a mean $m_{f,a}$ on A^* such that $\langle m_{f,a}, \varphi \rangle = 1$, $||m_{f,a}|| = 1$ and $\varphi(b) \langle m_{f,a}, f.ab \rangle = \varphi(ab) \langle m_{f,a}, f.b \rangle$ whenever $b \in A$.
- (iii) For every two finite subset $F \subseteq A$ and $F^* \subseteq A^*$, and $\epsilon > 0$ there exists a $m_{F^*,F,\epsilon} \in A^{**}$ such that $||m_{F^*,F,\epsilon}|| = 1$, $\langle m_{F^*,F,\epsilon}, \varphi \rangle = 1$ and $|\langle m_{F^*,F,\epsilon}, f.a \rangle \varphi(a) \langle m_{F^*,F,\epsilon}, f \rangle| < \epsilon$ whenever $a \in F$ and $f \in F^*$.

Proof. Note first that (i) obviously implies (iii). Next suppose that (i) holds. If m is a φ -mean of norm 1, we can choose $m_{f,a} = m$ for all $f \in A^*$ and $a \in A$. Thus for every $b \in A$,

$$\langle m, f.ab \rangle = \varphi(ab) \langle m, f \rangle$$
 and $\varphi(ab) \langle m, f \rangle = \varphi(a) \langle m, f.b \rangle$.

Clearly $\varphi(b)\langle m, f.ab \rangle = \varphi(ab)\langle m, f.b \rangle$. Thus (i) implies (ii).

Now assume that (ii) holds. For every $f \in A^*$ and $a \in A$, let

$$\mathcal{M}_{f,a} = \left\{ m \in \mathcal{M}; \ \varphi(b) \langle m, f.ab \rangle = \varphi(ab) \langle m, f.b \rangle \text{ for all } b \in A \right\},\$$

where $\mathcal{M} = \{m \in A^{**}; \|m\| = \langle m, \phi \rangle = 1\}$. These sets are nonempty weak*-closed subsets of A^{**} and we want to show that $\bigcap \{\mathcal{M}_{f,a}; f \in A^*, a \in A\}$ is nonempty. Since $\{m \in A^{**}; \|m\| \leq 1\}$ is weak*-compact, it suffices to show that $\bigcap \{\mathcal{M}_{f,a}; f \in F^*, a \in F\} \neq \emptyset$ for any two finite subset $F^* \subseteq A^*$ and $F \subseteq A$. So assume that $m_1 \in \bigcap \{\mathcal{M}_{f,a}; f \in F^*, a \in F\}$ for finite subsets $F^* \subseteq A^*$ and $F \subseteq A$, and let $h \in A^*$ and $c \in A$. Let $m_2 \in \mathcal{M}_{m_1h,c}$. Let $(a_\alpha)_\alpha$ be a net in A such that $||a_\alpha|| = 1$ for all $\alpha, \varphi(a_\alpha) \to 1$ and $a_\alpha \to m_2$ in the weak*-topology. Then

$$\begin{aligned} \varphi(b)\langle m_2m_1, f.ab\rangle &= \lim_{\alpha} \varphi(ba_{\alpha})\langle m_1, f.aba_{\alpha}\rangle = \lim_{\alpha} \varphi(aba_{\alpha})\langle m_1, f.ba_{\alpha}\rangle \\ &= \varphi(ab)\langle m_2m_1, f.b\rangle. \end{aligned}$$

for every $f \in F^*$, $a \in F$ and $b \in A$. Thus $m_2m_1 \in \bigcap \{\mathcal{M}_{f,a}; f \in F^*, a \in F\}$. On the other hand, $\varphi(b)\langle m_2m_1, h.cb \rangle = \varphi(cb)\langle m_2m_1, h.b \rangle$ for all $b \in A$. This shows that $\{\mathcal{M}_{f,a}; f \in A^*, a \in A\}$ has the finite intersection property. Therefore there is some m in \mathcal{M} such that $\varphi(b)\langle m, f.ab \rangle = \varphi(ab)\langle m, f.b \rangle$ for all $f \in A^*$ and $a, b \in A$. It is easy to see that $mm \in A^{**}$ is a φ -mean of norm 1. Thus (i) and (ii) are equivalent.

(iii) implies (i). We denote \mathcal{F}^* the family of finite subsets of A^* and by \mathcal{F} the family of finite subsets of A. For every $F^* \in \mathcal{F}^*$, $F \in \mathcal{F}$ and $\epsilon > 0$,

$$\mathcal{C}_{F^*,F,\epsilon} = \left\{ m \in \mathcal{M}; \ |\langle m, f.a \rangle - \varphi(a) \langle m, f \rangle| < \epsilon \text{ for all } f \in F^*, \ a \in F \right\} \neq \emptyset.$$

It is easy to see that $\bigcap \{\overline{\mathcal{C}_{F^*,F,\epsilon}}; F^* \in \mathcal{F}^*, F \in \mathcal{F}, \epsilon > 0\} \neq \emptyset$ where closure is taken in the weak*-topology. Now, let m be any member of this intersection, and let $f \in A^*$, $a \in A$ and $\epsilon > 0$ be given. The set of all $n \in A^{**}$ such that $|m - n| < \frac{\epsilon}{3(|\varphi(a)|+1)}$ at f.a and at f is a weak*-neighborhood of m. Therefore $\mathcal{C}_{\{f\},\{a\},\frac{\epsilon}{2}}$ contains such an n. We

have

$$\begin{split} |\langle m, f.a \rangle - \varphi(a) \langle m, f \rangle| &\leq |\langle m, f.a \rangle - \langle n, f.a \rangle| + |\langle n, f.a \rangle - \varphi(a) \langle n, f \rangle| \\ &+ |\varphi(a)|| \langle m, f \rangle - \langle n, f \rangle| < \epsilon. \end{split}$$

Since $\epsilon > 0$ is arbitrary, it follows that $\langle m, fa \rangle = \varphi(a) \langle m, f \rangle$. This completes our proof.

Remark 2.6. Let A be a Banach algebra and let $\varphi \in \Delta(A)$. Let $m \in \overline{S_{\varphi}}^{w^*}$ be a φ -mean on A^* . Let $a_1, ..., a_n \in A$ and let $\epsilon > 0$ be given. Since A has a φ -mean m, there exists a net $(a_{\alpha})_{\alpha}$ in S_{φ} such that $||a_i a_{\alpha} - \varphi(a_i)a_{\alpha}|| \to 0$ for all i (see Theorem 1.4 in [13] and its proof).

By the first paragraph, there exists $a \in S_{\varphi}$ such that $||a_i a - \varphi(a_i)a|| < \epsilon$ whenever $i \in \{1, ..., n\}$. Hence

$$\sup\{\|a_i a\|; \ 1 \le i \le n\} < \epsilon + \sup\{|\varphi(a_i)|; \ 1 \le i \le n\}.$$

Since $\epsilon > 0$ may be chosen arbitrarily, we have

$$\inf \{ \sup \{ \|a_i a\|; \ 1 \le i \le n \}; \ a \in S_{\varphi} \} \le \sup \{ |\varphi(a_i)|; \ 1 \le i \le n \}$$

The converse is also true. Indeed, fix $b \in S_{\varphi}$. For every $\epsilon > 0$ and every finite subset $F = \{a_1, ..., a_n\}$ in A, there exists $a \in S_{\varphi}$ such that $||a_i a - \varphi(a_i) ba|| < \epsilon$, whenever $1 \le i \le n$ (since $\varphi(a_i - \varphi(a_i)b) = 0$ for all $i \in \{1, ..., n\}$). An argument similar to the proof of Theorem 2.5 ((iii) \rightarrow (i)), shows that there exists $n \in \overline{S_{\varphi}}^{w^*}$ such that $\langle n, f.a \rangle = \varphi(a) \langle n, f.b \rangle$ for every $a \in A$. Finally, let m = bn. Then $bn \in \overline{S_{\varphi}}^{w^*}$. Moreover,

$$\langle m, f.a \rangle = \langle bn, f.a \rangle = \langle n, f.ab \rangle = \varphi(ab) \langle n, f.b \rangle = \varphi(a) \langle m, f \rangle$$

for all $f \in A^*$ and $a \in A$. So m is a φ -mean on A^* . Note that this is in fact Proposition 15.5 of [18] which was proved for group algebras.

By the same argument as above, one can prove that A has a φ -mean of norm 1 if and only if for all $n \in \mathbb{N}$, $a_1, ..., a_n \in A$ and $\gamma > 1$,

$$\inf \{ \sup\{ \|a_i a\|; \ 1 \le i \le n \}; \ \|a\| < \gamma, \ \varphi(a) = 1 \} \\ \le \sup\{ |\varphi(a_i)|; \ 1 \le i \le n \}.$$

Let K be a convex set in a locally convex linear topological space E, and let A(K) denote the Banach space of bounded continuous affine functions on K under the supremum norm.

Let A be a Banach algebra, and let S_{φ} be the set of all φ -maximal elements of A. Under the norm topology, S_{φ} is a semi-topological semigroup. Let $C_b(S_{\varphi})$ be the space of bounded continuous functions on S_{φ} with usual sup norm. For $a \in S_{\varphi}$, the translation L_a of $C_b(S_{\varphi})$ by a

is given by $L_a f(b) = f(ab)$, where $f \in C_b(S_{\varphi})$ and $b \in S_{\varphi}$. Denote by $U(S_{\varphi})$ the space of all functions $f \in C_b(S_{\varphi})$ such that the map $a \mapsto L_a f$ of S_{φ} into $C_b(S_{\varphi})$ is uniformly continuous with respect to the uniformity induced on S_{φ} and uniformity induced on $C_b(S_{\varphi})$. An element $M \in (A(S_{\varphi}) \cap U(S_{\varphi}))^*$ is a mean on $A(S_{\varphi}) \cap U(S_{\varphi})$ if $||M|| = \langle M, 1 \rangle = 1$. A mean M on $A(S_{\varphi}) \cap U(S_{\varphi})$ is left invariant if $\langle M, L_a f \rangle = \langle M, f \rangle$ for all $f \in A(S_{\varphi}) \cap U(S_{\varphi})$ and $a \in S_{\varphi}$. More information on this matter can be found in [5, 9, 17].

Theorem 2.7. Suppose A is a Banach algebra and $\varphi \in \Delta(A)$. Among the following two properties, the implication $(i) \rightarrow (ii)$ hold. If $X(A, \varphi) =$ A, then also $(ii) \rightarrow (i)$.

- (i) There exists a φ-mean m in S_φ^{w*}.
 (ii) A(S_φ) ∩ U(S_φ) has a left invariant mean.

Proof. We can prove Theorem 2.7 by using an argument similar to the proof of Lemma 2.1 in [15].

(i) implies (ii). Let $m \in \overline{S_{\varphi}}^{w^*}$ be a mean on A^* . By Theorem 1.4 in [13] and its proof, there exists a net $(a_{\alpha})_{\alpha}$ in S_{φ} such that $||aa_{\alpha} \varphi(a)a_{\alpha} \parallel \to 0$ for every $a \in A$. Let $\delta_{a_{\alpha}}$ denote evaluation at a_{α} . By possibility passing to subnets we can assume that $f(a_{\alpha}) = \delta_{a_{\alpha}}(f) \rightarrow$ M(f) for all $f \in A(S_{\varphi}) \cap U(S_{\varphi})$ to some mean M on $A(S_{\varphi}) \cap U(S_{\varphi})$ (see Theorem 1.8 in [5]). Fix $f \in A(S_{\varphi}) \cap U(S_{\varphi})$ and define $M_l f(a) =$ $\langle M, L_a f \rangle$ where $a \in S_{\varphi}$. Then $a \mapsto M_l f(a)$ is obviously in $A(S_{\varphi}) \cap$ $U(S_{\varphi})$. Define $MM : A(S_{\varphi}) \cap U(S_{\varphi}) \to \mathbb{C}$ by $\langle MM, f \rangle = \langle M, M_l f \rangle$. It is easy to see that MM is a mean on $A(S_{\varphi}) \cap U(S_{\varphi})$. Let $f \in$ $A(S_{\varphi}) \cap U(S_{\varphi}), a \in S_{\varphi}$ and let $\epsilon > 0$ be given. There is a $\delta > 0$ such that $b, c \in S_{\varphi}$, and $||b - c|| < \delta$ implies

$$|\langle M, L_b f \rangle - \langle M, L_c f \rangle| \le ||L_b f - L_c f|| < \epsilon.$$

Also, there is some α_0 such that $\alpha \geq \alpha_0$ implies $||aa_\alpha - a_\alpha|| < \delta$. For every $\alpha \geq \alpha_0$,

$$|M_l(L_a f)(a_\alpha) - M_l(f)(a_\alpha)| = |\langle M, L_{a_\alpha} L_a f \rangle - \langle M, L_{a_\alpha} f \rangle|$$

= $|\langle M, L_{aa_\alpha} f \rangle - \langle M, L_{a_\alpha} f \rangle| < \epsilon,$

which implies that $\langle MM, L_a f \rangle = \langle MM, f \rangle$, i.e., MM is a left invariant mean on $A(S_{\varphi}) \cap U(S_{\varphi})$.

(*ii*) implies (*i*). Let M be a left invariant mean on $A(S_{\varphi}) \cap U(S_{\varphi})$. Any element in $co\{\delta_a; a \in S_{\varphi}\}$ is said to be a finite mean. The finite means on $A(S_{\varphi}) \cap U(S_{\varphi})$ are weak^{*}-dense in the weak^{*}-compact convex set of means on $A(S_{\varphi}) \cap U(S_{\varphi})$ (see Theorem 1.8 in [5]). If $\sum_{i=1}^{n} \alpha_i \delta_{a_i}$ is a finite mean on $A(S_{\varphi}) \cap U(S_{\varphi})$, then

$$\sum_{i=1}^{n} \alpha_i \delta_{a_i} = \delta_{\sum_{i=1}^{n} \alpha_i a_i} \in \{\delta_a; \ a \in S_{\varphi}\}.$$

This shows that $\{\delta_a; a \in S_{\varphi}\} = co\{\delta_a; a \in S_{\varphi}\}$. Hence, there is a net $a_{\alpha} \in S_{\varphi}$ such that $\delta_{a_{\alpha}} \to M$ in the weak*-topology. We define $\Lambda(A^*)$ to be the set of all functions $\Lambda(f)$ with domain S_{φ} , that arise from an $f \in A^*$ by formula $\Lambda(f)(a) = \langle f, a \rangle$. The mapping $f \mapsto \Lambda(f)$ is a linear map of A^* into $A(S_{\varphi}) \cap U(S_{\varphi})$ which is continuous.

Let $\Lambda^* : (A(S_{\varphi}) \cap U(S_{\varphi}))^* \to A^{**}$ denote the adjoint map of Λ . Since Λ^* is weak*-weak* continuous, $a_{\alpha} = \Lambda^*(\delta_{a_{\alpha}}) \to \Lambda^*(M)$ in the weak*-topology. Thus $\Lambda^*(M) \in \overline{S_{\varphi}}^{w^*}$. Let $f \in A^*$ and $a \in S$. Left invariance of M gives

This shows that $\Lambda^*(M)$ is a φ -mean on A^* . This completes the proof. \Box

Let K be a compact convex set in a locally convex linear topological space E. Associate to each $T_0 \in \mathcal{B}(A(K), A(K)), h \in A(K), k \in K$ and to each positive real ϵ the set

$$V(T_0, h, k, \epsilon) = \{T \in \mathcal{B}(A(K), A(K)); |T(h)(k) - T_0(h)(k)| < \epsilon\}.$$

Let \mathcal{B} be the collection of all finite intersections of the sets $V(T_0, h, x, \epsilon)$. Then \mathcal{B} is a convex balanced local base for a topology τ on $\mathcal{B}(A(K), A(K))$.

Some additional definitions are needed in order to state our results of the paper. An affine action of S_{φ} on K is a map $T: S_{\varphi} \times K \to K$ (denoted by $(a, k) \mapsto T_a(k), a \in S_{\varphi}, k \in K$) such that $T_{ab} = T_a o T_b$ for all $a, b \in S_{\varphi}$ and $a \mapsto T_a(k)$ is an affine continuous map for each $k \in K$. If Tis an affine action, then T induces an anti-action $\tau: S_{\varphi} \times A(K) \to A(K)$ of S_{φ} on the Banach space A(K), defined by $\tau_a(h) = hoT_a$. τ is said to be uniformly continuous if to each neighborhood W of 0 in $\mathcal{B}(A(K), A(K))$ corresponds a $\delta > 0$ such that $||a - b|| < \epsilon$ implies $\tau_a - \tau_b \in W$.

The relationship between an affine action T and its induced antiaction τ with respect to measurability, continuity, and compactness conditions on them have been studied by Wong in [20].

Theorem 2.8. Let A be a Banach algebra and $\varphi \in \Delta(A)$. Among the following two properties, the implication $(i) \to (ii)$ hold. If $X(A, \varphi) = A$, then also $(ii) \to (i)$.

- (i) There exists a φ -mean m in $\overline{S_{\varphi}}^{w^*}$.
- (ii) For any affine action $T: S_{\varphi} \times K \to K$ such that the induced anti-action $\tau: S_{\varphi} \times A(K) \to A(K)$ is uniformly continuous, there is some $k \in K$ such that $T_a(k) = k$ for all $a \in S_{\varphi}$.

Proof. Assume that A has a φ - mean, say $m \in \overline{S_{\varphi}}^{w^*}$. By Theorem 2.7, $A(S_{\varphi}) \cap U(S_{\varphi})$ has a left invariant mean. Let $T: S_{\varphi} \times K \to K$ be any affine action such that the induced anti-action $\tau: S_{\varphi} \times A(K) \to A(K)$ is uniformly continuous. Select a specific $k \in K$. Define a map $Tk: A(K) \to C_b(S_{\varphi})$ by $Tk(h)(a) = h(T_a(k))$ for $h \in A(K)$ and $a \in S_{\varphi}$. Designate Tk(h) by f. Then for $a, b \in S_{\varphi}$, we have

$$L_a f(b) = f(ab) = Tk(h)(ab) = h(T_{ab}(k)) = \tau_{ab}(h)(k).$$

Since τ is uniformly continuous, it follows that $Tk(h) \in A(S_{\varphi}) \cap U(S_{\varphi})$. Hence by Theorem 1 in [2], there is some $k \in K$ such that $T_a(k) = k$ for all $a \in S_{\varphi}$.

(*ii*) implies (*i*). Let $E = A^{**}$ with weak*-topology and put $K = \overline{S_{\varphi}}^{w^*}$. Define an affine action of S_{φ} on K by $T_a(m) = am$ for $a \in S_{\varphi}$ and $m \in K$. Clearly the induced anti-action $\tau : S_{\varphi} \times A(K) \to A(K)$ of S_{φ} on A(K) is uniformly continuous. By assumption, there exists $m \in K$ such that am = m for all $a \in S_{\varphi}$. m is a φ -mean on A^* .

Acknowledgments

The second author would like to thank the office of gifted students at the Semnan university for financial support.

References

- C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press Inc., Orlando, FL, 1985.
- [2] L. N. Argabright, Invariant means and fixed points: A sequel to Mitchell's paper, Trans. Amer. Math. Soc. 130 (1968) 127–130.
- [3] A. Azimifard, α -amenable hypergroups, Math. Z. 265 (2010), no. 4, 971–982.
- [4] A. Azimifard, On the α-amenability of hypergroups, Monatsh. Math. 115 (2008), no. 1, 1–13.

- [5] J. F. Berglund, H. D. Junghenn and P. Milnes, Analysis on Semigroups, Function Spaces, Compactifications, Representions, John Wiley & Sons, Inc., New York, 1989.
- [6] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York-Heidelberg, 1973.
- [7] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
- [8] F. Filbir, R. Lasser and R. Szwarc, Reiter's condition P_1 and approximate identities for polynomial hypergroups, *Monatsh. Math.* **143** (2004), no. 3, 189–203.
- [9] A. Ghaffari, Strongly and weakly almost periodic linear maps on semigroup algebras, Semigroup Forum 76 (2008), no. 1, 95–106.
- [10] E. Hewitt and K. A. Ross, Abstract Harmonic analysis, Vol. I, Springer Verlage, Berlin, 1963; Vol. II, Springer-Verlage, Berlin-New York, 1970.
- [11] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (2009), no. 1, 53–78.
- [12] E. Kaniuth, A. T. Lau and J. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), no. 2, 942–955.
- [13] E. Kaniuth, A. T. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 85–96.
- [14] A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, *Fund. Math.* **118** (1983), no. 3, 161–175.
- [15] A. T. Lau and James C. S. Wong, Invariant subspaces for algebras of linear operators and amenable locally compact groups, *Proc. Amer. Math. Soc.* 102 (1988), no. 3, 581–586.
- [16] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Phil. Soc. 144 (2008), no. 3, 697–706.
- [17] A. L. T. Paterson, Amenability, American Mathematical Society, Providence, RI, 1988.
- [18] J. P. Pier, Amenable Locally Compact Groups, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1984.
- [19] W. Rudin, Functional Analysis, McGraw-Hill, Inc., New York, 1991.
- [20] James C. S. Wong, Fixed point theorems for measurable semigroups of operations, Canad. J. Math. 44 (1992), no. 3, 652–664.

Ali Ghaffari

Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran Email: aghaffari@semnan.ac.ir

Ahmad Alinejad

Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran Email: alinejad34br@yahoo.com