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AN ELEMENTARY METHOD FOR COMPUTING THE
KOSTKA COEFFICIENTS

M. SHAHRYARI

Communicated by Freydoon Shahidi

Abstract. We present a simple and elementary method for com-
puting the Kostka numbers. We use this method to give compact
formulas for Kπ,µ in some special cases.

1. Introduction

Kostka coefficients appear in combinatorics and representation theory
and they are very important from a physical point of view. The Kostka
number Kπ,µ is the number of semi-standard Young tableaux of shape
π and content µ (see Section 2 below). It is also the multiplicity with
which the weight µ appears in the irreducible representation of sln(C)
with highest weight π. Similarly, in the representation theory of sym-
metric groups we encounter the Kostka numbers as the multiplicity of
irreducible character χµ in the induction of the principal character of
the Young subgroup Sπ to Sm. The Kostka coefficients are also impor-
tant in the study of Schur functions. This work is devoted to computing
these numbers in some special cases using an elementary method.
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2. Generalities

Let m be a positive integer. By a partition of m, we mean an s-tuple
π = [a1, a2, . . . , as] of positive integers with

a1 ≥ a2 ≥ · · · ≥ as,

and
a1 + a2 + · · ·+ as = m.

We say that s is the height of π and we denote it by h(π). To any
partition π of m we associate a Ferrer’s diagram consisting of m boxes
arranged in s rows in such a way that the ith row contains ai boxes.
For example, the following is the Ferrer’s diagram associated with the
partition π = [7, 5, 3, 3]:

Now, let µ = [b1, b2, . . . , br] be another partition of m. We say that π
majorizes µ, if for any i we have

b1 + b2 + · · ·+ bi ≤ a1 + a2 + · · ·+ ai.

In this case, we write µ E π. This is a partial ordering on the set of
all partitions of m. The partition [m] is the maximum element and the
partition [1m] = [1, 1, . . . , 1] is the minimum element with respect to this
ordering. If π = [a1, a2, . . . , as] and µ = [b1, b2, . . . , br] are two arbitrary
partitions of m, then by a semi-standard Young tableau of shape π and
content µ, we mean any distribution of the numbers 1, 2, . . . ,m in the
boxes of the associated Ferrer’s diagram of π in such a way that

1. every row is non-decreasing;
2. every column is (strictly) increasing; and
3. for any 1 ≤ i ≤ m, the multiplicity of i in the distribution is bi.

Example 2.1. Let m = 5, π = [3, 2] and µ = [2, 2, 1]. Then the only
semi-standard Young tableaux of shape π and content µ are the following
two diagrams:

2 3

1 1 2

2 2

1 1 3
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The number of all semi-standard Young tableaux of shape π and con-
tent µ is denoted by Kπ,µ and it is called the Kostka coefficient or the
Kostka number. This combinatorial notion has a wide range of interpre-
tations in the representation theory of Lie groups and Lie algebras as
well as the representation theory of the symmetric group (see [1] or [2]).
The Kostka numbers are also very important in the study of symmetric
functions, especially Schur functions. It is well-known that Kπ,µ 6= 0 if
and only if µ E π; see [2] for details.

3. Computing Kostka coefficients

Let π = [a1, a2, . . . , as] and µ = [b1, b2, . . . , br] be two arbitrary parti-
tions of m with µ E π. In general, every semi-standard Young tableau
of shape π and content µ has the following form:

(1b1) (2x1) (3y1) (4z1) · · ·
(2x2) (3y2) (4z2) · · ·
(3y3) (4z3) · · ·

...
...

where, (tk) denotes t t ... t (k-times), and x1, y1, . . . are non-negative
integers. Given a semi-standard Young tableau of shape π and content
µ as above, we must have the following equalities:

x1 + x2 = b2

y1 + y2 + y3 = b3

z1 + z2 + z3 + z4 = b4

...
x1 + y1 + z1 + · · · = a1 − b1

x2 + y2 + z2 + · · · = a2

y3 + z3 + · · · = a3

...



256 Shahryari

as well as the inequalities below:

x2 ≤ b1

x2 + y2 ≤ b1 + x1

x2 + y2 + z2 ≤ b1 + x1 + y1

...
y3 ≤ x2

y3 + z3 ≤ x2 + y2

...

Our strategy is to count the number of non-negative integer solutions
of this system of equalities and inequalities. The resulting number ob-
viously will be the Kostka number Kπ,µ. In what follows, we are going
to solve the system in some special cases: if we denote by (s, r) the pair
consisting of the heights of π and µ in that order, then the rest of this
article concerns the following cases:

(s, r) = (2, 3), (3, 3), (3, 4), (4, 4).

3.1. The case (s, r) = (2, 3). Let π = [a1, a2] and µ = [b1, b2, b3]. The
general form of any semi-standard Young tableau of shape π and content
µ is as follows:

(1b1) (2x1) (3y1)
(2x2) (3y2)

Here, x1, x2, y1, y2 are non-negative integers and we have the following
equalities:

x1 + x2 = b2

y1 + y2 = b3

x1 + y1 = a1 − b1

x2 + y2 = a2

as well as two inequalities:

x2 ≤ b1

a2 ≤ b1 + x1.
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We can write down the system of equations in matrix form:
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1




x1

x2

y1

y2

 =


b2

b3

a1 − b1

a2

 .

We name the matrix of coefficients to be H. It has rank 3, and so any
solution of the system has the form X = X0 + X1, where X1 is an
arbitrary but fixed solution and X0 is the one-parametric solution of the
homogenous system HX = 0. We set:

X1 =


a1 − b1

b1 + b2 − a1

0
b3

 .

On the other hand, the solution for HX = 0 is:

X0 =


T
−T
−T
T

 ,

where, T ∈ Z. Hence, we have

x1 = T + a1 − b1

x2 = −T + b1 + b2 − a1

y1 = −T

y2 = T + b3.

Applying the inequalities we obtain five restrictions on T :

b1 − a1 ≤ T ≤ 0
T ≤ b1 + b2 − a1

b2 − a1 ≤ T
a2 − a1 ≤ T
−b3 ≤ T.

Now, define

Lπ,µ = max(b1 − a1, a2 − a1,−b3),
Uπ,µ = min(0, b1 + b2 − a1).

So, we have proved the following result.
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Theorem 3.1. Let π = [a1, a2] and µ = [b1, b2, b3]. Then, we have

Kπ,µ = Uπ,µ − Lπ,µ + 1.

Remark 3.2. It is important to note that since we assumed µEπ, every
number in the list b1−a1, a2−a1,−b3 is less than or equal to the numbers
in the list 0, b1 + b2 − a1 (for example, a2 − a1 ≤ b1 + b2 − a1, because
a2 ≤ m

2 , while b1 + b2 ≥ 2m
3 ). So, we never have the case Uπ,µ < Lπ,µ.

The same is true for other cases in the next subsections.

3.2. The case (s, r) = (3, 3). Now, suppose π = [a1, a2, a3] and µ =
[b1, b2, b3]. Any semi-standard Young tableau of shape π and content µ
has the form

(1b1) (2x1) (3y1)
(2x2) (3y2)
(3y3)

with equalities

x1 + x2 = b2

y1 + y2 + y3 = b3

x1 + y1 = a1 − b1

x2 + y2 = a2

y3 = a3,

and inequalities

0 < x2 ≤ b1

x2 + y2 ≤ b1 + x1

a3 ≤ x2.

The solution for this system is:

x1 = T + a1 − b1

x2 = −T + b1 + b2 − a1

y1 = −T

y2 = T + b3 − a3.
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Applying the inequalities, we obtain the restrictions

b1 − a1 ≤ T ≤ 0
a2 − a1 ≤ T ≤ b1 + b2 − a1

a3 − b3 ≤ T ≤ a2 − b3.

Note that the inequality b2 − a1 ≤ T is removed rom the above list,
because b2 ≤ a2. Note also that, if we put a3 = 0, we get the same
inequalities as in the case (s, r) = (2, 3). Hence, if we define

Lπ,µ = max(b1 − a1, a2 − a1, a3 − b3),
Uπ,µ = min(0, a2 − b3),

then we have proved the following result.

Theorem 3.3. For π = [a1, a2, a3] and µ = [b1, b2, b3], we have

Kπ,µ = Uπ,µ − Lπ,µ + 1.

3.3. The case (s, r) = (3, 4). Now, we assume that π = [a1, a2, a3] and
µ = [b1, b2, b3, b4]. Hence, our semi-standard Young tableau looks like

(1b1) (2x1) (3y1) (4z1)
(2x2) (3y2) (4z2)
(3y3) (4z3)

We have the equations

x1 + x2 = b2

y1 + y2 + y3 = b3

z1 + z2 + z3 = b4

x1 + y1 + z1 = a1 − b1

x2 + y2 + z2 = a2

y3 + z3 = a3,

as well as the following inequalities

x2 ≤ b1

a2 − b1 ≤ x1 + z2

z1 ≤ a1 − a2

z2 ≤ a2 − a3

y3 ≤ x2.
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Let H be the matrix of coefficients in the system of equations. Then, H
is row equivalent to the following matrix K:


1 0 0 −1 0 1 0 1
0 1 0 1 0 −1 0 −1
0 0 1 1 0 0 0 −1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0

 .

Hence, any solution to the system is in the form X = X0 + X1, where
X1 is an arbitrary but fixed solution and X0 is the general solution of
the homogenous system KX = 0. For X1, we use



a1 − b1

b1 + b2 − a1

0
a1 + a2 − b1 − b2

−a1 − a2 + b1 + b2 + b3

0
0
b4


.

On the other hand, X0, the general solution of the system KX = 0, has
the following form:



T + S
−T − S
U − T

T
−U

−S − U
S
U


,
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with T, S, U ∈ Z. Hence, we have

x1 = T + S + a1 − b1

x2 = −T − S + b1 + b2 − a1

y1 = U − T

y2 = T + a1 + a2 − b1 − b2

y3 = −U + a3 − b4

z1 = −S − U

z2 = S

z3 = U + b4.

Applying and simplifying inequalities, we obtain the following restric-
tions on T, S, U :

b1 + b2 − a1 − a2 ≤ T
0 ≤ S ≤ a2 − a3

−b4 ≤ U ≤ a3 − b4

b1 − a1 ≤ T + S ≤ b1 + b2 − a1

a2 − a1 ≤ S + U ≤ 0
0 ≤ U − T

T + S − U ≤ a2 − b3

a2 − a1 ≤ T + 2S.

The appendix contains a compact formula for the number of triples of
integers (T, S, U) satisfying the above conditions.

3.4. The case (s, r) = (4, 4). Suppose we have π = [a1, a2, a3, b4] and
µ = [b1, b2, b3, b4]. In this case, we have the following pattern:

(1b1) (2x1) (3y1) (4z1)
(2x2) (3y2) (4z2)
(3y3) (4z3)
(4z4)
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Hence, obviously z4 = a4. For other indeterminates, we have the follow-
ing system of equations:

x1 + x2 = b2

y1 + y2 + y3 = b3

z1 + z2 + z3 = b4 − a4

x1 + y1 + z1 = a1 − b1

x2 + y2 + z2 = a2

y3 + z3 = a3.

Also, the following inequalities hold:

x2 ≤ b1

a2 − b1 ≤ x1 + z2

z1 ≤ a1 − a2

z2 ≤ a2 − a3

a4 ≤ y3 ≤ x2.

As in the case (3, 4), we obtain:

x1 = T + S + a1 − b1

x2 = −T − S + b1 + b2 − a1

y1 = U − T

y2 = T + a1 + a2 − b1 − b2

y3 = −U − a1 − a2 + b1 + b2 + b3

z1 = −S − U

z2 = S

z3 = U + b4 − a4,

where, T, S, U ∈ Z and these numbers clearly must satisfy the following
conditions:

b1 + b2 − a1 − a2 ≤ T
0 ≤ S ≤ a2 − a3

a4 − b4 ≤ U ≤ a3 − b4

b1 − a1 ≤ T + S ≤ b1 + b2 − a1

a2 − a1 ≤ S + U ≤ 0
0 ≤ U − T

T + S − U ≤ a2 − b3

a2 − a1 ≤ T + 2S.
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The number of all triples of integers satisfying the above conditions is
computed in the appendix, and thus again we obtain a compact formula
for the Kostka number.

4. Appendix

Here, we give a formula for the number of triples of integers satisfying
the following seven conditions:

a ≤ T ≤ b

a
′ ≤ S ≤ b

′

a
′′ ≤ U ≤ b

′′

A ≤ T + S ≤ B

A
′ ≤ S + U ≤ B

′

A
′′ ≤ T + S − U ≤ B

′′

C ≤ T + 2S
0 ≤ U − T.

Note that all constants in this system are integers or ±∞. In what
follows, we will use the notation < x > for max(0, x). We proceed step
by step, first solving some simpler cases.

1. First, we obtain N , the number of solutions of the following system,

a ≤ T ≤ b

a
′ ≤ S ≤ b

′

A ≤ T + S ≤ B.

Let A ≤ i ≤ B. Define

X = {(T, S) : a ≤ T ≤ b, a
′ ≤ S ≤ b

′}

and
Xi = {(T, S) ∈ X : T + S = i}.

It is clear that (T, S) ∈ Xi if and only if S = i− T and

a ≤ T ≤ b

−b
′
+ i ≤ T ≤ −a

′
+ i.

Hence, we have

N =
B∑

i=A

< min(b,−a
′
+ i)−max(a,−b

′
+ i) + 1 > .
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2. Now, we consider the following situation:

a ≤ T ≤ b

a
′ ≤ S ≤ b

′

a
′′ ≤ U ≤ b

′′

A ≤ T + S ≤ B

A
′ ≤ S + U ≤ B

′
.

Let A ≤ i ≤ B and A
′ ≤ j ≤ B

′
. Define

X = {(T, S, U) : a ≤ T ≤ b, a
′ ≤ S ≤ b

′
, a

′′ ≤ U ≤ b
′′}

and
Xij = {(T, S, U) ∈ X : T + S = i, S + U = j}.

We have (T, S, U) ∈ Xij if and only if T = i − S and U = j − S, and
also

−b + i ≤ S ≤ −a + i

a
′ ≤ S ≤ b

′

−b
′′

+ j ≤ S ≤ −a
′′

+ j.

So, we obtain:

N =
B∑

i=A

B′∑
j=A′

< min(b
′
,−a+ i,−a

′′
+j)−max(a

′
,−b+ i,−b

′′
+j)+1 > .

3. Now, consider the system,

a ≤ T ≤ b

a
′ ≤ S ≤ b

′

a
′′ ≤ U ≤ b

′′

A ≤ T + S ≤ B

A
′ ≤ S + U ≤ B

′

A
′′ ≤ T + S − U ≤ B

′′
.

To handle this case, let

fij = max(a
′
,−b + i,−b

′′
+ j), gij = min(b

′
,−a + i,−a

′′
+ j).

We have fij ≤ S ≤ gij and the condition A
′′ ≤ T + S − U ≤ B

′′
implies

A
′′ ≤ i− j + S ≤ B

′′
,

which is equivalent to:

A
′′ − i + j ≤ S ≤ B

′′ − i + j.
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Hence, we have

N =
B∑

i=A

B′∑
j=A′

< min(gij , B
′′ − i + j)−max(fij , A

′′ − i + j) + 1 >,

or in other words,

N =
B∑

i=A

B′∑
j=A′

< min(B
′′ − i + j, b

′
,−a + i,−a

′′
+ j)

−max(A
′′ − i + j, a

′
,−b + i,−b

′′
+ j) + 1 > .

4. We can now discuss the main case. We only need to have the addi-
tional restrictions T ≤ U and C ≤ T +2S. But, T = i−S and U = j−S,
and so we must have i ≤ j and also C − i ≤ S. Hence, our required
number is:

N =
B∑

i=A

B′∑
j=max(A′ ,i)

< min(B
′′ − i + j, b

′
,−a + i,−a

′′
+ j)

−max(A
′′ − i + j, a

′
,−b + i,−b

′′
+ j) + 1 > .

Remark 4.1. Note that in any summation operation
∑y

j=x F (j), the
result is zero if y < x.

Example 4.2. Suppose π = [4, 3, 2, 1] and µ = [3, 3, 2, 2]. Then, the
Kostka number Kπ,µ is equal to the number of integer solutions of the
following system of inequalities:

−1 ≤ T ≤ +∞
0 ≤ S ≤ 1
−1 ≤ U ≤ 0
−1 ≤ T + S ≤ 2
−1 ≤ S + U ≤ 0
−∞ ≤ T + S − U ≤ 1
−1 ≤ T + 2S
0 ≤ U − T.
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A direct check shows that Kπ,µ = 4. Using our formula, we also have

N =
2∑

i=−1

0∑
j=max(−1,i)

< min(1− i + j, 1, 1 + i, 1 + j)

−max(0,−1 + j,−1− i) + 1 >

= < 0− 0 + 1 > + < 0− 0 + 1 > + < 1− 0 + 1 >

= 4.
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