AN ELEMENTARY METHOD FOR COMPUTING THE KOSTKA COEFFICIENTS

M. SHAHRYARI

Communicated by Freydoon Shahidi

Abstract

We present a simple and elementary method for computing the Kostka numbers. We use this method to give compact formulas for $K_{\pi, \mu}$ in some special cases.

1. Introduction

Kostka coefficients appear in combinatorics and representation theory and they are very important from a physical point of view. The Kostka number $K_{\pi, \mu}$ is the number of semi-standard Young tableaux of shape π and content μ (see Section 2 below). It is also the multiplicity with which the weight μ appears in the irreducible representation of $\mathfrak{s l}_{n}(\mathbb{C})$ with highest weight π. Similarly, in the representation theory of symmetric groups we encounter the Kostka numbers as the multiplicity of irreducible character χ_{μ} in the induction of the principal character of the Young subgroup S_{π} to S_{m}. The Kostka coefficients are also important in the study of Schur functions. This work is devoted to computing these numbers in some special cases using an elementary method.

[^0]
2. Generalities

Let m be a positive integer. By a partition of m, we mean an s-tuple $\pi=\left[a_{1}, a_{2}, \ldots, a_{s}\right]$ of positive integers with

$$
a_{1} \geq a_{2} \geq \cdots \geq a_{s}
$$

and

$$
a_{1}+a_{2}+\cdots+a_{s}=m .
$$

We say that s is the height of π and we denote it by $h(\pi)$. To any partition π of m we associate a Ferrer's diagram consisting of m boxes arranged in s rows in such a way that the i th row contains a_{i} boxes. For example, the following is the Ferrer's diagram associated with the partition $\pi=[7,5,3,3]$:

Now, let $\mu=\left[b_{1}, b_{2}, \ldots, b_{r}\right]$ be another partition of m. We say that π majorizes μ, if for any i we have

$$
b_{1}+b_{2}+\cdots+b_{i} \leq a_{1}+a_{2}+\cdots+a_{i} .
$$

In this case, we write $\mu \unlhd \pi$. This is a partial ordering on the set of all partitions of m. The partition $[m]$ is the maximum element and the partition $\left[1^{m}\right]=[1,1, \ldots, 1]$ is the minimum element with respect to this ordering. If $\pi=\left[a_{1}, a_{2}, \ldots, a_{s}\right]$ and $\mu=\left[b_{1}, b_{2}, \ldots, b_{r}\right]$ are two arbitrary partitions of m, then by a semi-standard Young tableau of shape π and content μ, we mean any distribution of the numbers $1,2, \ldots, m$ in the boxes of the associated Ferrer's diagram of π in such a way that

1. every row is non-decreasing;
2. every column is (strictly) increasing; and
3. for any $1 \leq i \leq m$, the multiplicity of i in the distribution is b_{i}.

Example 2.1. Let $m=5, \pi=[3,2]$ and $\mu=[2,2,1]$. Then the only semi-standard Young tableaux of shape π and content μ are the following two diagrams:

$$
\begin{array}{|l|l|l|}
\hline 1 & 1 & 2 \\
\hline 2 & 3 & \\
\hline
\end{array} \quad \begin{array}{|l|l|l|}
\hline 1 & 1 & 3 \\
\hline 2 & 2 & \\
\hline
\end{array}
$$

The number of all semi-standard Young tableaux of shape π and content μ is denoted by $K_{\pi, \mu}$ and it is called the Kostka coefficient or the Kostka number. This combinatorial notion has a wide range of interpretations in the representation theory of Lie groups and Lie algebras as well as the representation theory of the symmetric group (see [1] or [2]). The Kostka numbers are also very important in the study of symmetric functions, especially Schur functions. It is well-known that $K_{\pi, \mu} \neq 0$ if and only if $\mu \unlhd \pi$; see [2] for details.

3. Computing Kostka coefficients

Let $\pi=\left[a_{1}, a_{2}, \ldots, a_{s}\right]$ and $\mu=\left[b_{1}, b_{2}, \ldots, b_{r}\right]$ be two arbitrary partitions of m with $\mu \unlhd \pi$. In general, every semi-standard Young tableau of shape π and content μ has the following form:

$\left(1^{b_{1}}\right)$	$\left(2^{x_{1}}\right)$	$\left(3^{y_{1}}\right)$	$\left(4^{z_{1}}\right)$	\cdots
$\left(2^{x_{2}}\right)$	$\left(3^{y_{2}}\right)$	$\left(4^{z_{2}}\right)$	\cdots	
$\left(3^{y_{3}}\right)$	$\left(4^{z_{3}}\right)$	\cdots		

where, $\left(t^{k}\right)$ denotes	t	t	\cdots
t			
(k-times), and x_{1}, y_{1}, \ldots are non-negative			integers. Given a semi-standard Young tableau of shape π and content μ as above, we must have the following equalities:

$$
\begin{aligned}
x_{1}+x_{2} & =b_{2} \\
y_{1}+y_{2}+y_{3} & =b_{3} \\
z_{1}+z_{2}+z_{3}+z_{4} & =b_{4} \\
& \vdots \\
x_{1}+y_{1}+z_{1}+\cdots & =a_{1}-b_{1} \\
x_{2}+y_{2}+z_{2}+\cdots & =a_{2} \\
y_{3}+z_{3}+\cdots & =a_{3} \\
& \vdots
\end{aligned}
$$

as well as the inequalities below:

$$
\begin{aligned}
x_{2} & \leq b_{1} \\
x_{2}+y_{2} & \leq b_{1}+x_{1} \\
x_{2}+y_{2}+z_{2} & \leq b_{1}+x_{1}+y_{1} \\
& \vdots \\
y_{3} & \leq x_{2} \\
y_{3}+z_{3} & \leq x_{2}+y_{2} \\
& \vdots
\end{aligned}
$$

Our strategy is to count the number of non-negative integer solutions of this system of equalities and inequalities. The resulting number obviously will be the Kostka number $K_{\pi, \mu}$. In what follows, we are going to solve the system in some special cases: if we denote by (s, r) the pair consisting of the heights of π and μ in that order, then the rest of this article concerns the following cases:

$$
(s, r)=(2,3),(3,3),(3,4),(4,4)
$$

3.1. The case $(s, r)=(2,3)$. Let $\pi=\left[a_{1}, a_{2}\right]$ and $\mu=\left[b_{1}, b_{2}, b_{3}\right]$. The general form of any semi-standard Young tableau of shape π and content μ is as follows:

$$
\begin{array}{lll}
\left(1^{b_{1}}\right) & \left(2^{x_{1}}\right) & \left(3^{y_{1}}\right) \\
\left(2^{x_{2}}\right) & \left(3^{y_{2}}\right) &
\end{array}
$$

Here, $x_{1}, x_{2}, y_{1}, y_{2}$ are non-negative integers and we have the following equalities:

$$
\begin{aligned}
x_{1}+x_{2} & =b_{2} \\
y_{1}+y_{2} & =b_{3} \\
x_{1}+y_{1} & =a_{1}-b_{1} \\
x_{2}+y_{2} & =a_{2}
\end{aligned}
$$

as well as two inequalities:

$$
\begin{aligned}
& x_{2} \leq b_{1} \\
& a_{2} \leq b_{1}+x_{1} .
\end{aligned}
$$

We can write down the system of equations in matrix form:

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
b_{2} \\
b_{3} \\
a_{1}-b_{1} \\
a_{2}
\end{array}\right] .
$$

We name the matrix of coefficients to be H. It has rank 3, and so any solution of the system has the form $X=X_{0}+X_{1}$, where X_{1} is an arbitrary but fixed solution and X_{0} is the one-parametric solution of the homogenous system $H X=0$. We set:

$$
X_{1}=\left[\begin{array}{c}
a_{1}-b_{1} \\
b_{1}+b_{2}-a_{1} \\
0 \\
b_{3}
\end{array}\right]
$$

On the other hand, the solution for $H X=0$ is:

$$
X_{0}=\left[\begin{array}{c}
T \\
-T \\
-T \\
T
\end{array}\right]
$$

where, $T \in \mathbb{Z}$. Hence, we have

$$
\begin{aligned}
& x_{1}=T+a_{1}-b_{1} \\
& x_{2}=-T+b_{1}+b_{2}-a_{1} \\
& y_{1}=-T \\
& y_{2}=T+b_{3} .
\end{aligned}
$$

Applying the inequalities we obtain five restrictions on T :

$$
\begin{aligned}
& b_{1}-a_{1} \leq T \\
& \leq \\
& \leq \\
& b_{2}-a_{1} \leq T \\
& a_{2}-a_{1}+b_{2}-a_{1} \\
&-b_{3} \leq T .
\end{aligned}
$$

Now, define

$$
\begin{aligned}
\mathcal{L}_{\pi, \mu} & =\max \left(b_{1}-a_{1}, a_{2}-a_{1},-b_{3}\right), \\
\mathcal{U}_{\pi, \mu} & =\min \left(0, b_{1}+b_{2}-a_{1}\right)
\end{aligned}
$$

So, we have proved the following result.

Theorem 3.1. Let $\pi=\left[a_{1}, a_{2}\right]$ and $\mu=\left[b_{1}, b_{2}, b_{3}\right]$. Then, we have

$$
K_{\pi, \mu}=\mathcal{U}_{\pi, \mu}-\mathcal{L}_{\pi, \mu}+1 .
$$

Remark 3.2. It is important to note that since we assumed $\mu \unlhd \pi$, every number in the list $b_{1}-a_{1}, a_{2}-a_{1},-b_{3}$ is less than or equal to the numbers in the list $0, b_{1}+b_{2}-a_{1}$ (for example, $a_{2}-a_{1} \leq b_{1}+b_{2}-a_{1}$, because $a_{2} \leq \frac{m}{2}$, while $b_{1}+b_{2} \geq \frac{2 m}{3}$). So, we never have the case $\mathcal{U}_{\pi, \mu}<\mathcal{L}_{\pi, \mu}$. The same is true for other cases in the next subsections.
3.2. The case $(s, r)=(3,3)$. Now, suppose $\pi=\left[a_{1}, a_{2}, a_{3}\right]$ and $\mu=$ $\left[b_{1}, b_{2}, b_{3}\right]$. Any semi-standard Young tableau of shape π and content μ has the form

$$
\begin{array}{lll}
\left(1^{b_{1}}\right) & \left(2^{x_{1}}\right) & \left(3^{y_{1}}\right) \\
\left(2^{x_{2}}\right) & \left(3^{y_{2}}\right) & \\
\left(3^{y_{3}}\right) &
\end{array}
$$

with equalities

$$
\begin{aligned}
x_{1}+x_{2} & =b_{2} \\
y_{1}+y_{2}+y_{3} & =b_{3} \\
x_{1}+y_{1} & =a_{1}-b_{1} \\
x_{2}+y_{2} & =a_{2} \\
y_{3} & =a_{3},
\end{aligned}
$$

and inequalities

$$
\begin{aligned}
0<x_{2} & \leq b_{1} \\
x_{2}+y_{2} & \leq b_{1}+x_{1} \\
a_{3} & \leq x_{2} .
\end{aligned}
$$

The solution for this system is:

$$
\begin{aligned}
x_{1} & =T+a_{1}-b_{1} \\
x_{2} & =-T+b_{1}+b_{2}-a_{1} \\
y_{1} & =-T \\
y_{2} & =T+b_{3}-a_{3} .
\end{aligned}
$$

Applying the inequalities, we obtain the restrictions

$$
\begin{array}{cccc}
b_{1}-a_{1} & \leq T & \leq & 0 \\
a_{2}-a_{1} & \leq T & \leq & b_{1}+b_{2}-a_{1} \\
a_{3}-b_{3} \leq T & \leq & a_{2}-b_{3}
\end{array}
$$

Note that the inequality $b_{2}-a_{1} \leq T$ is removed rom the above list, because $b_{2} \leq a_{2}$. Note also that, if we put $a_{3}=0$, we get the same inequalities as in the case $(s, r)=(2,3)$. Hence, if we define

$$
\begin{aligned}
\mathcal{L}_{\pi, \mu} & =\max \left(b_{1}-a_{1}, a_{2}-a_{1}, a_{3}-b_{3}\right), \\
\mathcal{U}_{\pi, \mu} & =\min \left(0, a_{2}-b_{3}\right)
\end{aligned}
$$

then we have proved the following result.
Theorem 3.3. For $\pi=\left[a_{1}, a_{2}, a_{3}\right]$ and $\mu=\left[b_{1}, b_{2}, b_{3}\right]$, we have

$$
K_{\pi, \mu}=\mathcal{U}_{\pi, \mu}-\mathcal{L}_{\pi, \mu}+1
$$

3.3. The case $(s, r)=(3,4)$. Now, we assume that $\pi=\left[a_{1}, a_{2}, a_{3}\right]$ and $\mu=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]$. Hence, our semi-standard Young tableau looks like

$$
\begin{array}{llll}
\left(1^{b_{1}}\right) & \left(2^{x_{1}}\right) & \left(3^{y_{1}}\right) & \left(4^{z_{1}}\right) \\
\left(2^{x_{2}}\right) & \left(3^{y_{2}}\right) & \left(4^{z_{2}}\right) & \\
\left(3^{y_{3}}\right) & \left(4^{z_{3}}\right) & &
\end{array}
$$

We have the equations

$$
\begin{aligned}
x_{1}+x_{2} & =b_{2} \\
y_{1}+y_{2}+y_{3} & =b_{3} \\
z_{1}+z_{2}+z_{3} & =b_{4} \\
x_{1}+y_{1}+z_{1} & =a_{1}-b_{1} \\
x_{2}+y_{2}+z_{2} & =a_{2} \\
y_{3}+z_{3} & =a_{3},
\end{aligned}
$$

as well as the following inequalities

$$
\begin{aligned}
x_{2} & \leq b_{1} \\
a_{2}-b_{1} & \leq x_{1}+z_{2} \\
z_{1} & \leq a_{1}-a_{2} \\
z_{2} & \leq a_{2}-a_{3} \\
y_{3} & \leq x_{2} .
\end{aligned}
$$

Let H be the matrix of coefficients in the system of equations. Then, H is row equivalent to the following matrix K :

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & -1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & -1 & 0 & -1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Hence, any solution to the system is in the form $X=X_{0}+X_{1}$, where X_{1} is an arbitrary but fixed solution and X_{0} is the general solution of the homogenous system $K X=0$. For X_{1}, we use

$$
\left[\begin{array}{c}
a_{1}-b_{1} \\
b_{1}+b_{2}-a_{1} \\
0 \\
a_{1}+a_{2}-b_{1}-b_{2} \\
-a_{1}-a_{2}+b_{1}+b_{2}+b_{3} \\
0 \\
0 \\
b_{4}
\end{array}\right] .
$$

On the other hand, X_{0}, the general solution of the system $K X=0$, has the following form:

$$
\left[\begin{array}{c}
T+S \\
-T-S \\
U-T \\
T \\
-U \\
-S-U \\
S \\
U
\end{array}\right],
$$

with $T, S, U \in \mathbb{Z}$. Hence, we have

$$
\begin{aligned}
& x_{1}=T+S+a_{1}-b_{1} \\
& x_{2}=-T-S+b_{1}+b_{2}-a_{1} \\
& y_{1}=U-T \\
& y_{2}=T+a_{1}+a_{2}-b_{1}-b_{2} \\
& y_{3}=-U+a_{3}-b_{4} \\
& z_{1}=-S-U \\
& z_{2}=S \\
& z_{3}=U+b_{4} .
\end{aligned}
$$

Applying and simplifying inequalities, we obtain the following restrictions on T, S, U :

$b_{1}+b_{2}-a_{1}-a_{2}$	\leq	T		
0	\leq	S	\leq	$a_{2}-a_{3}$
$-b_{4}$	\leq	U	\leq	$a_{3}-b_{4}$
$b_{1}-a_{1}$	\leq	$T+S$	\leq	$b_{1}+b_{2}-a_{1}$
$a_{2}-a_{1}$	\leq	$S+U$	\leq	0
0	\leq	$U-T$		
		$T+S-U$	\leq	$a_{2}-b_{3}$
$a_{2}-a_{1}$	\leq	$T+2 S$.		

The appendix contains a compact formula for the number of triples of integers (T, S, U) satisfying the above conditions.
3.4. The case $(s, r)=(4,4)$. Suppose we have $\pi=\left[a_{1}, a_{2}, a_{3}, b_{4}\right]$ and $\mu=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]$. In this case, we have the following pattern:

$\left(1^{b_{1}}\right)$	$\left(2^{x_{1}}\right)$	$\left(3^{y_{1}}\right)$	$\left(4^{z_{1}}\right)$
$\left(2^{x_{2}}\right)$	$\left(3^{y_{2}}\right)$	$\left(4^{z_{2}}\right)$	
$\left(3^{y_{3}}\right)$	$\left(4^{z_{3}}\right)$		
$\left(4^{z_{4}}\right)$			

Hence, obviously $z_{4}=a_{4}$. For other indeterminates, we have the following system of equations:

$$
\begin{aligned}
x_{1}+x_{2} & =b_{2} \\
y_{1}+y_{2}+y_{3} & =b_{3} \\
z_{1}+z_{2}+z_{3} & =b_{4}-a_{4} \\
x_{1}+y_{1}+z_{1} & =a_{1}-b_{1} \\
x_{2}+y_{2}+z_{2} & =a_{2} \\
y_{3}+z_{3} & =a_{3}
\end{aligned}
$$

Also, the following inequalities hold:

$$
\begin{aligned}
x_{2} & \leq b_{1} \\
a_{2}-b_{1} & \leq x_{1}+z_{2} \\
z_{1} & \leq a_{1}-a_{2} \\
z_{2} & \leq a_{2}-a_{3} \\
a_{4} \leq y_{3} & \leq x_{2} .
\end{aligned}
$$

As in the case $(3,4)$, we obtain:

$$
\begin{aligned}
& x_{1}=T+S+a_{1}-b_{1} \\
& x_{2}=-T-S+b_{1}+b_{2}-a_{1} \\
& y_{1}=U-T \\
& y_{2}=T+a_{1}+a_{2}-b_{1}-b_{2} \\
& y_{3}=-U-a_{1}-a_{2}+b_{1}+b_{2}+b_{3} \\
& z_{1}=-S-U \\
& z_{2}=S \\
& z_{3}=U+b_{4}-a_{4},
\end{aligned}
$$

where, $T, S, U \in \mathbb{Z}$ and these numbers clearly must satisfy the following conditions:

$$
\begin{array}{ccccc}
b_{1}+b_{2}-a_{1}-a_{2} & \leq & T & & \\
0 & \leq & S & \leq & a_{2}-a_{3} \\
a_{4}-b_{4} & \leq & U & \leq & a_{3}-b_{4} \\
b_{1}-a_{1} & \leq & T+S & \leq & b_{1}+b_{2}-a_{1} \\
a_{2}-a_{1} & \leq & S+U & \leq & 0 \\
0 & \leq & U-T & & \\
& & T+S-U & \leq & a_{2}-b_{3} \\
a_{2}-a_{1} & \leq & T+2 S . & &
\end{array}
$$

The number of all triples of integers satisfying the above conditions is computed in the appendix, and thus again we obtain a compact formula for the Kostka number.

4. Appendix

Here, we give a formula for the number of triples of integers satisfying the following seven conditions:

$$
\begin{array}{ccccc}
a & \leq & T & \leq & b \\
a^{\prime} & \leq & S & \leq & b^{\prime} \\
a^{\prime \prime} & \leq & U & \leq & b^{\prime \prime} \\
A & \leq & T+S & \leq & B \\
A^{\prime} & \leq & S+U & \leq & B^{\prime} \\
A^{\prime \prime} & \leq & T+S-U & \leq & B^{\prime \prime} \\
C & \leq & T+2 S & & \\
0 & \leq & U-T . & &
\end{array}
$$

Note that all constants in this system are integers or $\pm \infty$. In what follows, we will use the notation $\langle x\rangle$ for $\max (0, x)$. We proceed step by step, first solving some simpler cases.

1. First, we obtain N, the number of solutions of the following system,

$$
\begin{array}{clcc}
a & \leq T & \leq b \\
a^{\prime} & \leq S & \leq b^{\prime} \\
A & \leq T+S & \leq B .
\end{array}
$$

Let $A \leq i \leq B$. Define

$$
X=\left\{(T, S): a \leq T \leq b, a^{\prime} \leq S \leq b^{\prime}\right\}
$$

and

$$
X_{i}=\{(T, S) \in X: T+S=i\} .
$$

It is clear that $(T, S) \in X_{i}$ if and only if $S=i-T$ and

$$
\begin{array}{cl}
a & \leq T \leq c \\
-b^{\prime}+i & \leq T \leq-a^{\prime}+i .
\end{array}
$$

Hence, we have

$$
N=\sum_{i=A}^{B}<\min \left(b,-a^{\prime}+i\right)-\max \left(a,-b^{\prime}+i\right)+1>.
$$

2. Now, we consider the following situation:

$$
\begin{array}{clccc}
a & \leq & T & \leq & b \\
a^{\prime} & \leq & S & \leq & b^{\prime} \\
a^{\prime \prime} & \leq & U & \leq & b^{\prime \prime} \\
A & \leq T+S & \leq & B \\
A^{\prime} & \leq S+U & \leq B^{\prime} .
\end{array}
$$

Let $A \leq i \leq B$ and $A^{\prime} \leq j \leq B^{\prime}$. Define

$$
X=\left\{(T, S, U): a \leq T \leq b, a^{\prime} \leq S \leq b^{\prime}, a^{\prime \prime} \leq U \leq b^{\prime \prime}\right\}
$$

and

$$
X_{i j}=\{(T, S, U) \in X: T+S=i, S+U=j\}
$$

We have $(T, S, U) \in X_{i j}$ if and only if $T=i-S$ and $U=j-S$, and also

$$
\begin{aligned}
-b+i & \leq S \leq-a+i \\
a^{\prime} & \leq S \leq b^{\prime} \\
-b^{\prime \prime}+j & \leq S \leq-a^{\prime \prime}+j
\end{aligned}
$$

So, we obtain:
$N=\sum_{i=A}^{B} \sum_{j=A^{\prime}}^{B^{\prime}}<\min \left(b^{\prime},-a+i,-a^{\prime \prime}+j\right)-\max \left(a^{\prime},-b+i,-b^{\prime \prime}+j\right)+1>$.
3. Now, consider the system,

$$
\begin{array}{ccccc}
a & \leq & T & \leq & b \\
a^{\prime} & \leq & S & \leq & b^{\prime} \\
a^{\prime \prime} & \leq & U & \leq & b^{\prime \prime} \\
A & \leq & T+S & \leq & B \\
A^{\prime} & \leq & S+U & \leq & B^{\prime} \\
A^{\prime \prime} & \leq & T+S-U & \leq & B^{\prime \prime} .
\end{array}
$$

To handle this case, let

$$
f_{i j}=\max \left(a^{\prime},-b+i,-b^{\prime \prime}+j\right), g_{i j}=\min \left(b^{\prime},-a+i,-a^{\prime \prime}+j\right) .
$$

We have $f_{i j} \leq S \leq g_{i j}$ and the condition $A^{\prime \prime} \leq T+S-U \leq B^{\prime \prime}$ implies

$$
A^{\prime \prime} \leq i-j+S \leq B^{\prime \prime}
$$

which is equivalent to:

$$
A^{\prime \prime}-i+j \leq S \leq B^{\prime \prime}-i+j .
$$

Hence, we have

$$
N=\sum_{i=A}^{B} \sum_{j=A^{\prime}}^{B^{\prime}}<\min \left(g_{i j}, B^{\prime \prime}-i+j\right)-\max \left(f_{i j}, A^{\prime \prime}-i+j\right)+1>
$$

or in other words,

$$
\begin{aligned}
N & =\sum_{i=A}^{B} \sum_{j=A^{\prime}}^{B^{\prime}}<\min \left(B^{\prime \prime}-i+j, b^{\prime},-a+i,-a^{\prime \prime}+j\right) \\
& -\max \left(A^{\prime \prime}-i+j, a^{\prime},-b+i,-b^{\prime \prime}+j\right)+1>.
\end{aligned}
$$

4. We can now discuss the main case. We only need to have the additional restrictions $T \leq U$ and $C \leq T+2 S$. But, $T=i-S$ and $U=j-S$, and so we must have $i \leq j$ and also $C-i \leq S$. Hence, our required number is:

$$
\begin{aligned}
N= & \sum_{i=A}^{B} \sum_{j=\max \left(A^{\prime}, i\right)}^{B^{\prime}}<\min \left(B^{\prime \prime}-i+j, b^{\prime},-a+i,-a^{\prime \prime}+j\right) \\
& -\max \left(A^{\prime \prime}-i+j, a^{\prime},-b+i,-b^{\prime \prime}+j\right)+1>
\end{aligned}
$$

Remark 4.1. Note that in any summation operation $\sum_{j=x}^{y} F(j)$, the result is zero if $y<x$.

Example 4.2. Suppose $\pi=[4,3,2,1]$ and $\mu=[3,3,2,2]$. Then, the Kostka number $K_{\pi, \mu}$ is equal to the number of integer solutions of the following system of inequalities:

$$
\begin{array}{ccccc}
-1 & \leq & T & \leq & +\infty \\
0 & \leq & S & \leq & 1 \\
-1 & \leq & U & \leq & 0 \\
-1 & \leq & T+S & \leq & 2 \\
-1 & \leq & S+U & \leq & 0 \\
-\infty & \leq & T+S-U & \leq & 1 \\
-1 & \leq & T+2 S & & \\
0 & \leq & U-T . & &
\end{array}
$$

A direct check shows that $K_{\pi, \mu}=4$. Using our formula, we also have

$$
\begin{aligned}
N & =\sum_{i=-1}^{2} \sum_{j=\max (-1, i)}^{0}<\min (1-i+j, 1,1+i, 1+j) \\
& =<0-0+1>+<0-0+1>+<1-0+1> \\
& \quad-\max (0,-1+j,-1-i)+1> \\
= & 4
\end{aligned}
$$

Acknowledgments

The author would like to express his appreciation to the referee for his/her invaluable suggestions.

REFERENCES

[1] W. Fulton and J. Harris, Representation Theory, A First Course, SpringerVerlag, 1991.
[2] B. Sagan, The Symmetric Group: Representation, Combinatorial Algorithms and Symmetric Functions, Wadsworth and Brook/ Cole Math. Series, 1991.

M. Shahryari

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
Email: mshahryaritabrizu.ac.ir

[^0]: MSC(2010): Primary: 20C30; Secondary: 17B10.
 Keywords: Partitions, semi-standard Young tableaux, Kostka coefficients.
 Received: 1 March 2008, Accepted: 1 October 2009.
 (c) 2010 Iranian Mathematical Society.

