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METRIC AND PERIODIC LINES IN THE POINCARÉ

BALL MODEL OF HYPERBOLIC GEOMETRY

O. DEMIREL∗, E. SOYTÜRK SEYRANTEPE
AND N. SÖNMEZ

Communicated by Masoud Khalkhali

Abstract. In this paper, we prove that every metric line in the
Poincaré ball model of hyperbolic geometry is exactly a classical line
of it. We also prove nonexistence of periodic lines in the Poincaré
ball model of hyperbolic geometry.

1. Introduction

A real distance space ∆ = (S, d) is a non-empty set S together with
a mapping d : S× S→ R. The subset k of S is called a metric line of ∆
if, and only if, there exists a bijection f : k → R such that ([2])

d(x, y) = |f(x)− f(y)| for all x, y ∈ k.

The subset k of S is called a ρ-periodic line of ∆ if and only if, there
exists a bijection f : k → [0, ρ[ with

d(x, y) =

{
(|f(x)− f(y)|, if |f(x)− f(y)| ≤ ρ/2
ρ− |f(x)− f(y)|, if |f(x)− f(y)| > ρ/2

for all x, y ∈ k.
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In [1], Benz determined the metric lines of hyperbolic geometry, the
metric and periodic lines of Euclidean geometry, the 2π-periodic lines
of spherical geometry, and the π-periodic lines of elliptic geometry. The
problems to determine all metric lines and periodic lines of ∆ is given
by Benz as follows:

Problem 1.1. Determine all injective functions x : R→ S such that

(1.1) d (x (ξ) , x (η)) = |ξ − η|
holds true for all real ξ, η.

Problem 1.2. Determine all injective functions x : [0, ρ[→ S such that

(1.2) d (x (ξ) , x (η)) =

{
|ξ − η| , if |ξ − η| ≤ ρ/2
ρ− |ξ − η| , if |ξ − η| > ρ/2

holds true for all ξ, η ∈ [0, ρ[.

Moreover, Benz proved in his paper that the distance space (k, d)
is a metric space for every metric and ρ-periodic line k of ∆ = (S, d).
Throughout the paper, we only deal with Poincaré ball model of hyper-
bolic geometry. In the Poincaré ball model, also known as the conformal
ball model, a gyroline (hyperbolic line) is an Euclidean semicircular arc
that intersects the boundary of the ball orthogonally.

2. Möbius Transformations of the disc

In complex analysis Möbius transformations are well known and fun-
damental. The most general Möbius transformation of the complex open
unit disc

D = {z ∈ C : |z| < 1}
in the complex z-plane

z → eiθ
z0 + z

1 + z0z
= eiθ (z0 ⊕ z)

defines the Möbius addition ⊕ in the disc, allowing the Möbius trans-
formation of the disc to be viewed as Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by rotation. Here θ is a real number, z0 ∈ D, and z0 is the
complex conjugate of z0. Möbius substraction ”	” is given by a 	 z =
a ⊕ (−z), clearly z 	 z = 0 and 	z = −z. Möbius addition ⊕ is a
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binary operation in the disc D, but clearly it is neither commutative nor
associative. Möbius addition ⊕ gives rise to the groupoid (D,⊕) studied
by Ungar in several books including [5, 6, 9, 10]. Möbius addition is
similar to the common vector addition + in Euclidean plane geometry.
Since Möbius addition ⊕ is neither commutative nor associative, the
groupoid (D,⊕) is not a group but it has a group-like structure that we
present below.

The breakdown of commutativity in Möbius addition is ”repaired” by
the introduction of gyration,

gyr : D× D→ Aut(D,⊕)

given by the equation

(2.1) gyr [a, b] =
a⊕ b
b⊕ a

=
1 + ab

1 + ab
,

where Aut(D,⊕) is the automorphism group of the groupoid (D,⊕).
Therefore, the gyrocommutative law of Möbius addition ⊕ follows from
the definition of gyration in (2.1),

(2.2) a⊕ b = gyr [a, b] (b⊕ a) .

Coincidentally, the gyration gyr[a, b] that repairs the breakdown of the
commutative law of ⊕ in (2.2), repairs the breakdown of the associative
law of⊕ as well, giving rise to the respective left and right gyroassociative
laws

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr [a, b] c

(a⊕ b)⊕ c =a⊕ (b⊕ gyr [b, a] c)

for all a, b, c ∈ D.

Definition 2.1. A groupoid (G,⊕) is a gyrogroup if its binary operation
satisfies the following axioms

(G1) 0⊕ a = 0, left identity property
(G2) 	a⊕ a = 0, left inverse property
(G3) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr [a, b] c, left gyroassociative law
(G4) gyr [a, b] ∈ Aut(G,⊕), gyroautomorphism
(G5) gyr [a, b] = gyr [a⊕ b, b] , left loop property

for all a, b, c ∈ G.

Additionally, if the binary operation ”⊕” obeys the gyrocommutative
law

(G6) a⊕ b = gyr [a, b] (b⊕ a) , gyrocommutative law
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for all a, b, c ∈ G, then (G,⊕) called a gyrocommutative gyrogroup. It
is easy to see that −a = 	a, for all elements a of G.

Clearly, with these properties, one can now readily check that the
Möbius complex disc groupoid (D,⊕) is a gyrocommutative gyrogroup.

The axioms in Definition 2.1 imply the right identity property, the
right inverse property, the right gyyroassociative law and the right loop
property. We refer readers to [5] and [6] for more details about gy-
rogroups.

Now define the secondary binary operation � in G by

a� b = a⊕ gyr [a,�b] b.

The primary and secondary operations of G are collectively called the
dual operations of gyrogroups.

Let a, b be two elements of a gyrogroup (G,⊕). Then the unique
solution of the equation

a⊕ x = b

for the unknown x is

x = �a⊕ b,
and the unique solution of the equation

x⊕ a = b

for the unknown x is

x = b� a.

3. Möbius gyrogroups: from the disc to the ball

Let us identify complex numbers of the complex plane C with vectors
of the Euclidean plane R2 in the usual way:

C 3 u = u1 + iu2 = (u1, u2) = u ∈R2.

Then the equations

(3.1)
u · v =Re(uv)

‖u‖ = |u| .

give the inner product and the norm in R2, so that Möbius addition in
the disc D of C becomes Möbius addition in the disc
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R2
1 =

{
v ∈ R2 : ‖v‖ < 1

}
of R2. In fact we get from Eq.(3.1) that

(3.2)

u⊕ v =
u+ v

1 + uv

=
(1 + uv) (u+ v)

(1 + uv) (1 + uv)

=

(
1 + uv+uv + |v|2

)
u+

(
1− |u|2

)
v

1 + uv+uv + |u|2 |v|2

=

(
1 + 2u · v+ ‖v‖2

)
u+

(
1− ‖u‖2

)
v

1 + 2u · v+ ‖u‖2 ‖v‖2

=u⊕ v

for all u, v ∈ D and all u,v ∈ R2
1.

4. Möbius addition in the ball

Let V be any inner-product space and

Vs = {v ∈ V : ‖v‖ < s}

be the open ball of V with radius s > 0. Möbius addition in Vs is
motivated by Eq.(3.2). It is given by the equation
(4.1)

u⊕ v =

(
1 +

(
2/s2

)
u · v +

(
1/s2

)
‖v‖2

)
u +

(
1−

(
1/s2

)
‖u‖2

)
v

1 + (2/s2) u · v + (1/s4) ‖u‖2 ‖v‖2
,

where · and ‖·‖ are the inner product and norm that the ball Vs inherits
from its space V and where, ambiguously, + denotes both addition of
real numbers on the real line and addition of vectors in V. Without loss
of generality, we may assume that s = 1 in (4.1). However we prefer to
keep s as a free positive parameter in order to exhibit the results that
in the limit as s → ∞, the ball Vs expands the whole of its real inner
product space V, and Möbius addition ⊕ reduces to vector addition +
in V, i.e.,

lim
s→∞

u⊕ v = u + v

and

lim
s→∞

Vs = V.
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Möbius scalar multiplication is given by the equation

r ⊗ v =s
(1 + ‖v‖ /s)r − (1− ‖v‖ /s)r

(1 + ‖v‖ /s)r + (1− ‖v‖ /s)r
v

‖v‖

=s tanh
(
r tanh−1 ‖v‖ /s

) v

‖v‖
,

where r ∈ R, u,v ∈Vc, v 6= 0 and r⊗0 = 0. Möbius scalar multiplication
possesses the following properties:

(P1) n⊗ v = v ⊕ v ⊕ · · · ⊕ v, (n-terms)
(P2) (r1 + r2)⊗ v = r1 ⊗ v ⊕ r2 ⊗ v, scalar distribute law
(P3) (r1r2)⊗ v = r1 ⊗ (r2 ⊗ v) , scalar associative law
(P4) r⊗(r1 ⊗ v ⊕ r2 ⊗ v) = r⊗(r1 ⊗ v)⊕r⊗(r2 ⊗ v) , monodistribute

law
(P5) ‖r ⊗ v‖ = |r| ⊗ ‖v‖ , homogeneity property

(P6) |r|⊗v
‖r⊗v‖ = v

‖v‖ , scaling property

(P7) gyr [a,b] (r ⊗ v) = r ⊗ gyr [a,b] v, gyroautomorphism property
(P8) 1⊗ v = v, multiplicative unit property

Definition 4.1 (Möbius Gyrovector Spaces). Let (Vs,⊕) be a Möbius
gyrogroup equipped with scalar multiplication ⊗. The triple (Vs,⊕,⊗) is
called a Möbius gyrovector space.

5. Möbius Geodesics and Angles

As it is well known from Euclidean geometry, the straight line pass-
ing through two given points A and B of a vector space Rn can be
represented by the expression

A+ (−A+B) ξ for ξ ∈ R.

Obviously it passes through A when ξ = 0, and through B when ξ = 1.
In full analogy with Euclidean geometry, the unique Möbius geodesic

passing through two given points A and B of a Möbius gyrovector space
(Vs,⊕,⊗) is represented by the parametric gyrovector equation

LAB = A⊕ (	A⊕B)⊗ ξ

with parameter ξ ∈ R. It passes through A when ξ = 0, and through
B when ξ = 1. The gyroline LAB turns out to be a circular arc that
intersects the boundary of the ball Vs orthogonally. The gyromidpoint
MAB of the points A and B corresponds to the parameter ξ = 1/2 of
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the gyroline LAB, see [6],

MAB = A⊕ (	A⊕B)⊗ 1

2
.

The measure of a Mobius angle between two intersecting geodesic rays
equals the measure of the Euclidean angle between corresponding in-
tersecting tangent lines, as shown in Fig 1 below. The gyrodistance

Figure 1. The unique 2-dimensional geodesics that pass
through two given points and the hyperbolic angle be-
tween two intersecting geodesics rays in a Möbius gy-
rovector plane (R2

s,⊕,⊗). For the non-zero gyrovectors
	A⊕B and 	A⊕C or equivalently 	A⊕E and 	A⊕D
the measure of the gyroangle α given by the equation
cosα = 	A⊕B

‖	A⊕B‖ ·
	A⊕C
‖	A⊕C‖ or equivalently by the equation

cosα = 	A⊕E
‖	A⊕E‖ ·

	A⊕D
‖	A⊕D‖

remains invariant under automorphisms and left gyrotranslations (see
[6]).

Definition 5.1. The hyperbolic distance function in (Vs,⊕,⊗), is given
by the equation

d(A,B) = ‖A�B‖ for A,B ∈ Vs.

In [1], W. Benz stressed that in spherical and elliptic Geometries there
do not exist metric lines, since for those geometrics the left-hand side of
(1.1), is bounded, but not the right-hand side. By the same reason there
do not exist metric lines in Poincaré ball model of hyperbolic geometry
when we let

S := {X ∈ V : ‖X‖ < 1} and d(A,B) = ‖A�B‖ .
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6. Metric and Periodic Lines in Poincaré Ball Model of
Hyperbolic Geometry

Let V be a real inner-product space of arbitrary finite or infinite di-
mension ≥ 2. Define the real distance space ∆ = (S, d) by

S := {X ∈ V : ‖X‖ < 1} and tanh d (X,Y ) = ‖X � Y ‖

for all X,Y ∈ S. The classical lines of ∆ are given by

{P ⊕Q⊗ ξ : ξ ∈ R}

for P,Q ∈ S such that ‖Q‖ = tanh 1.

Theorem 6.1. The metric lines of ∆ are exactly the classical lines of
∆.

Proof. Let P,Q be elements of S satisfying ‖Q‖ = tanh 1. Then the
function

(6.1) x (ξ) = P ⊕Q⊗ ξ

is injective and

d (x (ξ) , x (η)) = |ξ − η|
holds true for all ξ, η ∈ R. Hence (6.1) is a metric line of ∆.

Now, suppose that the function x : R → S solves the functional
equation (1.1) for all ξ, η ∈ R. Put P := x (0) and observe that

x′ (ξ) := 	P ⊕ x (ξ)

is also a solution since

‖(	P ⊕ x (ξ))	 (	P ⊕ x (η))‖ = ‖x (ξ)	 x (η)‖

holds true for all ξ, η ∈ R. Put Q := x′ (1), then x′ (0) = 0 and observe,
by (1.1),

tanh |1− 0| = tanh 1 =
∥∥x′ (1)	 x′ (0)

∥∥ = ‖Q‖ .

Since

tanh |ξ − 0| = tanh |ξ| =
∥∥x′ (ξ)	 x′ (0)

∥∥ =
∥∥x′ (ξ)∥∥

for all ξ ∈ R, and by (1.1), we get

tanh |ξ − η| =
∥∥x′ (ξ)	 x′ (η)

∥∥ ,
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i.e.,

tanh2 ξ + tanh2 η − 2 tanh ξ tanh η

1 + tanh2 ξ tanh2 η − 2 tanh ξ tanh η
=

‖x′ (ξ)‖2 + ‖x′ (η)‖2 − 2 〈x′ (ξ) , x′ (η)〉
1 + ‖x′ (ξ)‖2 ‖x′ (η)‖2 − 2 〈x′ (ξ) , x′ (η)〉

,

and this implies tanh ξ tanh η = 〈x′ (ξ) , x′ (η)〉. Hence〈
x′ (ξ) , x′ (η)

〉2
=
〈
x′ (ξ) , x′ (ξ)

〉 〈
x′ (η) , x′ (η)

〉
and by Cauchy-Schwarz we get

x′ (ξ) = ϕ (ξ)⊗Q for all ξ ∈ R,
with

ϕ (ξ) = ξ,

in view of tanh ξ tanh η = 〈x′ (ξ) , x′ (η)〉. Thus x (ξ) = P ⊕Q⊗ ξ must
be a classical line. �

Theorem 6.2. For all ρ > 0, then there do not exist ρ-periodic lines in
∆.

Proof. Assume that x : [0, ρ[→ S is a solution of (1.2), for a certain
ρ > 0. Put A := x (0) and observe x′ (ξ) := 	A⊕x (ξ) is also a solution.
Obviously x′ (0) = 0 and put P := x′ (ρ/2). For all 0 ≤ ξ ≤ ρ/2, by
(1.2),

tanh |ξ − 0| = tanh ξ =
∥∥x′ (ξ)	 x′ (0)

∥∥ =
∥∥x′ (ξ)∥∥ .

It follows that for all 0 ≤ ξ, η ≤ ρ/2,

tanh |ξ − η| =
∥∥x′ (ξ)	 x′ (η)

∥∥
i.e.,

tanh2 ξ + tanh2 η − 2 tanh ξ tanh η

1 + tanh2 ξ tanh2 η − 2 tanh ξ tanh η
=

‖x′ (ξ)‖2 + ‖x′ (η)‖2 − 2 〈x′ (ξ) , x′ (η)〉
1 + ‖x′ (ξ)‖2 ‖x′ (η)‖2 − 2 〈x′ (ξ) , x′ (η)〉

.

and this implies tanh ξ tanh η = 〈x′ (ξ) , x′ (η)〉. Hence〈
x′ (ξ) , x′ (η)

〉2
=
〈
x′ (ξ) , x′ (ξ)

〉 〈
x′ (η) , x′ (η)

〉
and by Cauchy-Schwarz we get

x′ (ξ) = ϕ (ξ)⊗ P for all ξ ∈ [0, ρ/2],
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with

ϕ (ξ) =
2ξ

ρ
,

in view of tanh ξ tanh η = 〈x′ (ξ) , x′ (η)〉. If ρ/2 < ς < ρ, by (1.2),

tanh (ρ− |ς − 0|) =
∥∥x′ (ς)	 x′ (0)

∥∥ .
Moreover, by (1.2),

tanh (ς − ρ/2) =
∥∥x′ (ς)	 x′ (ρ/2)

∥∥ .
This implies 〈x′ (ς) , P 〉2 = 〈x′ (ς) , x′ (ς)〉 〈P, P 〉 and hence, by Cauchy-
Schwarz

x′ (ς) = δ (ς)⊗ P for all ς ∈]ρ/2, ρ[,

with

δ (ς) =
2

ρ
(ρ− ς) ,

in view of tanh ρ
2 tanh (ρ− ς) = 〈x′ (ς) , P 〉. This yields x′ (ρ/4) =

x′ (3ρ/4), which contradicts∣∣∣∣3ρ4 − ρ

4

∣∣∣∣ = d

(
x′
(

3ρ

4

)
, x′
(ρ

4

))
.

�
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