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COMPACT WEIGHTED FROBENIUS-PERRON

OPERATORS AND THEIR SPECTRA

M. R. JABBARZADEH∗ AND H. EMAMALIPOUR

Communicated by Heydar Radjavi

Abstract. In this paper we characterize the compact weighted
Frobenius - Perron operator Pu

ϕ on L1(Σ) and determine its spectra.
Also, it is shown that every weakly compact weighted Frobenius-
Perron operator on L1(Σ) is compact.

1. Introduction and Preliminaries

Let (X,Σ, µ) be a complete σ-finite measure space and let ϕ : X → X
be a non-singular transformation, i.e. ϕ is Σ-measurable function and
µ(ϕ−1(A)) = 0 for all A ∈ Σ such that µ(A) = 0. This assumption about
ϕ just says that the measure µ◦ϕ−1 is absolutely continuous with respect
to the measure µ (we write µ ◦ϕ−1 � µ, as usual), where µ ◦ϕ−1(A) =
µ(ϕ−1(A)) for A ∈ Σ. We shall assume that the restriction of µ to
σ-subalgebra ϕ−1(Σ) of Σ, is σ-finite, and we denote by (X,ϕ−1(Σ), µ)
the completion of (X,ϕ−1(Σ), µ|ϕ−1(Σ)). We denote by h the Radon-

Nikodym derivative h = dµ ◦ ϕ−1/dµ. We will write L1(ϕ−1(Σ)) for
L1(X,ϕ−1(Σ), µ|ϕ−1(Σ)). L

1(ϕ−1(Σ)) may then be viewed as a subspace

of L1(Σ) and denote its norm by ‖.‖1. Support of a measurable function
f will be denoted by supp(f) = {x ∈ X; f(x) 6= 0}. Relationships
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between functions f and between sets are interpreted in the almost every
where sense. For any non-negative Σ-measurable functions f as well as
for any f ∈ Lp(Σ), by the Radon-Nikodym theorem, there exists a
unique ϕ−1(Σ)-measurable function E(f) such that∫

A
Efdµ =

∫
A
fdµ, for all A ∈ ϕ−1(Σ).

Hence we obtain an operator E from L1(Σ) onto L1(ϕ−1(Σ)) which
is called conditional expectation operator associated with the σ-algebra
ϕ−1(Σ). It is easy to show that for each f ∈ L1(Σ), there exists a
Σ-measurable function g such that E(f) = g ◦ ϕ. To obtain a unique
g with this property we may assume and do that supp(g) ⊆ supp(h).
We therefore write g = E(f) ◦ ϕ−1, though we make no assumptions
regarding the invertibility of ϕ (see [9]). It is easy to check that E(f) ◦
ϕ−1 −E(g) ◦ ϕ−1 = E(f − g) ◦ ϕ−1 and |E(f) ◦ ϕ−1| = |E(f)| ◦ ϕ−1 for
all f, g ∈ L1(Σ). We list here some of its useful properties:

• E(fg) = E(f)g whenever g is ϕ−1(Σ)-measurable and both conditional
expectations are defined.
• |E(f)|p ≤ E(|f |p), for each p ≥ 1.
• If f ≥ 0 then E(f) ≥ 0; if E(|f |) = 0 then f = 0.

Let f be a real-valued measurable function. Consider the set Bf =
{x ∈ X : E(f+)(x) = E(f−)(x) = ∞}. The function f is said to be
conditionable with respect to ϕ−1(Σ), if µ(Bf ) = 0. If f is complex-
valued, then f is conditionable if the real and imaginary parts of f are
conditionable and their respective expectations are not both infinite on
the same set of positive measure. For more details on the properties of
E see [9, 10].

The aim of this paper is to carry some of the results obtained for
the weighted composition operators and (classic) Frobenius-Perron op-
erators in [4, 8, 11] to the weighted Frobenius-Perron operators. In the
paper, first we give a necessary and sufficient condition for compact-
ness of the weighted Frobenius-Perron operator Puϕ on L1(Σ). Then, by
making use of this condition we determine the spectrum of the compact
operator Puϕ. One should note that the illustration of spectrum of the
Frobenius-Perron operators, in general case, is still an open problem
(see [3]). We also show that every weakly compact weighted Frobenius-
Perron operator on L1(Σ) is compact.
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2. Main Results

Suppose ϕ : X → X is a non-singular transformation and let u : X →
C be a conditionable measurable function. If A is any Σ-measurable set
for which

∫
ϕ−1(A) ufdµ exists, the linear operator Puϕ : L1(Σ) → L1(Σ)

defined by
∫
A P

u
ϕfdµ =

∫
ϕ−1(A) ufdµ is called a weighted Frobenius-

Perron operator associated with the pair (u, ϕ). Note that the operator
Puϕ is a bounded operator on L1(Σ) if and only if u ∈ L∞(Σ) and its
norm is given by ‖Puϕ‖ = ‖u‖∞ (see [7]).

Take a set A ∈ Σ with µ(A) > 0. We say that A is an atom if, for
any C ∈ Σ with C ⊆ A, we have either µ(C) = 0 or µ(A\C) = 0. Let
A be an atom. Since µ is σ-finite, it follows that µ(A) < ∞. Also,
every Σ-measurable function f on X is constant almost everywhere on
A. As is well known that, a σ-finite measure space (X,Σ, µ) is uniquely
decomposed as

X = B ∪ {Ai : i ∈ N},(2.1)

where B is a non-atomic set and {Ai}i∈N is a countable collection of
disjoint atoms (see [12]).

Lemma 2.1. Let B0 be a non-atomic set in Σ with 0 < µ(B0) < ∞
and let ϕ : X → X be a non-singular measurable transformation. Then
ϕ−1(Σ ∩B0) has no atoms.

Proof. See ([6], Lemma 1). �

Theorem 2.2. Let Puϕ be a bounded Frobenius-Perron operator on L1(Σ)
and suppose (X,Σ, µ) can be partitioned as (2.1). Then Puϕ is a com-

pact operator on L1(Σ) if and only if u(ϕ−1(B)) = 0 (u(x) = 0 for
µ-almost all x ∈ ϕ−1(B)), and for any ε > 0, the set {n ∈ N :
µ(ϕ−1(An)∩Dε(u)) > 0} is finite, where Dε(u) = {x ∈ X : |u(x)| ≥ ε}.

Proof. Suppose that Puϕ is a compact operator. First we show that

u(ϕ−1(B)) = 0. Suppose the contrary. Since Dε(u) ⊆ Dε(E(|u|)) :=
{x ∈ X : E(|u|)(x) ≥ ε}, then there exists δ > 0 such that µ(ϕ−1(B) ∩
Dδ(E(|u|))) ≥ µ(ϕ−1(B)∩Dδ(u)) > 0. Since ϕ−1(Σ) is a σ-finite, there
is a B0 ∈ Σ ∩ B with 0 < µ(ϕ−1(B0) ∩Dδ(E(|u|))) < ∞. Hence J0 :=
ϕ−1(B0)∩Dδ(E(|u|)) ∈ ϕ−1(Σ∩B)∩Σ = ϕ−1(Σ∩B). By Lemma 2.1, J0

has no atoms. Choose a sequence {Bn}∞n=1 ⊆ Σ ∩B0, such that Jn+1 ⊆
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Jn ⊆ J0, 0 < µ(Jn+1) = µ(Jn)/2, where Jn := ϕ−1(Bn) ∩Dδ(E(|u|)) ∈
ϕ−1(Σ). For all n ∈ N, define fn = ūχJn

/(‖u‖∞µ(Jn)). Then ‖fn‖1 ≤ 1.

Now by using the change of variable formula (
∫
X hfdµ =

∫
X f ◦ϕdµ, for

any non-negative measurable function f), for any m,n ∈ N with m > n
we get that

‖Puϕfn − Puϕfm‖1 =

∫
X
h|E(u(fn − fm))| ◦ ϕ−1dµ

=

∫
X
|E(u(fn − fm))|dµ =

∫
X

E(|u|2)

‖u‖∞

∣∣∣∣ χJn

µ(Jn)
−

χJm

µ(Jm)

∣∣∣∣ dµ
≥
∫
Jn\Jm

(E(|u|))2dµ

‖u‖∞µ(Jn)
≥ δ2

‖u‖∞

∫
Jn\Jm

dµ

µ(Jn)

=
δ2

‖u‖∞
µ(Jn\Jm)

µ(Jn)
=

δ2

‖u‖∞

(
1− µ(Jm

µ(Jn)

)
>

δ2

2‖u‖∞
,

which shows that the sequence {Puϕfn}n∈N dose not contain a convergent
subsequence. But this is a contradiction. �

Now, we show that for any ε > 0, the set {n ∈ N : µ(ϕ−1(An) ∩
Dε(u)) > 0} is finite. Suppose the contrary again. Then, for some
ε > 0, there is a subsequence {Ak}k∈N of disjoint atoms in Σ such
that µ(ϕ−1(Ak) ∩Dε(E(|u|))) > 0, for all k ∈ N. Put Gk = ϕ−1(Ak) ∩
Dε(E(|u|)). Hence we obtain a sequence of pairwise disjoint sets {Gk}k∈N
such that for every k ∈ N, Gk ∈ ϕ−1(Σ) and µ(Gk) > 0. Moreover, since
ϕ−1(Σ) is σ-finite, then h is finite valued and for each k ∈ N, µ(Ak) <∞.
Hence µ(Gk) ≤ µ(ϕ−1(Ak)) =

∫
Ak
hdµ = h(Ak)µ(Ak) < ∞. For any

k ∈ N, take fk = ūχGk
/(‖u‖∞µ(Gk)). Then ‖fk‖1 ≤ 1. Since for each

i 6= j, Gi ∩Gj = ∅, it follows that

‖Puϕfi − Puϕfj‖1 =

∫
X

E(|u|2)

‖u‖∞

∣∣∣∣ χGi

µ(Gi)
−

χGj

µ(Gj)

∣∣∣∣ dµ
=

∫
X

(
E(|u|2)χGi

‖u‖∞µ(Gi)

)
dµ+

∫
X

(
(E(|u|2)χGj

‖u‖∞µ(Gj)

)
dµ

≥
∫
X

(
(E(|u|))2χGi

‖u‖∞µ(Gi)

)
dµ+

∫
X

(
(E(|u|))2χGj

‖u‖∞µ(Gj)

)
dµ ≥ 2ε2

‖u‖∞
.

This contradicts the compactness of Puϕ.

The proof of the sufficient part is the same as for Theorem 2.9 in [7].
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Corollary 2.3. Suppose that µ is nonatomic, i.e. X = B. Then a
weighted Frobenius-Perron operator on L1(Σ) is compact if and only if
it is a zero operator. In particular, no classic Frobenius-Perron operator
on L1(Σ) is compact.

Our next task is about the spectra. For the classic Frobenius-Perron
operator Pϕ on L1(Σ), some basic properties of its spectra were described
by Jiu Ding [2, 3, 4, 5] and some other mathematicians. In this sequel,
we determine the spectrum, σ(Puϕ), of a compact weighted Frobenius-

Perron operator Puϕ on L1(Σ).

The kth iterate ϕk of the non-singular measurable transformation
ϕ : X → X is defined by ϕ0(x) = x and ϕk(x) = ϕ(ϕk−1(x)) for
all x ∈ X and k ∈ N. From now on, we assume that the sequence

hn := dµ◦ϕ−n

dµ is uniformly bounded.

Definition 2.4. An atom A is called an invariant atom with respect to
ϕ, if for all n ∈ Z, ϕn(A) is an atom. An invariant atom A with respect
to ϕ is called a fixed atom of ϕ of order one, if u(A) 6= 0 and ϕ(A) =

A = ϕ−1(A). Also, it is called of order 2 ≤ k ∈ N, if
∏k−1
i=0 u(ϕi(A)) 6= 0,

ϕ−k(A) = A = ϕk(A) and ϕi(A) 6= A for i = ±1, . . . ,±(k − 1).

Theorem 2.5. Let Puϕ be a compact weighted Frobenius-Perron operator

Puϕ on L1(Σ). If we set

Λ = {λ ∈ C : λk =
k−1∏
i=0

u(ϕi(A)), for some fixed atom A of ϕ of order k},

then we have σ(Puϕ) ∪ {0} = Λ ∪ {0}.

Proof. To prove the theorem, we adopt the method used by Kamowitz
[8] and Takagi [11]. Let A be an invariant atom and u(ϕm(A)) = 0 for
some m ∈ N. We claim that Puϕ is not onto. If is not, then there exists

f ∈ L1(Σ) such that Puϕf = χϕm+1(A). This implies that

0 =

∫
ϕm(A)

ufdµ =

∫
ϕm+1(A)

Puϕfdµ = µ(ϕm+1(A)) > 0,

which is a contradiction. Thus in this case 0 ∈ σ(Puϕ). Now, let A be
a fixed atom of ϕ of order one and suppose λ = u(A). We claim that
the equation λf − Puϕf = χA is not solvable for a non-zero f ∈ L1(Σ).
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Indeed, since ϕ−1(A) = A, we have

(Puϕf)(A) =
1

µ(A)

∫
A
Puϕfdµ =

1

µ(A)

∫
ϕ−1(A)

ufdµ

=
1

µ(A)

∫
A
ufdµ = u(A)f(A) = (λf)(A).

Hence, we get that (λf − Puϕf)(A) = 0 while χA(A) = 1. Therefore
λ ∈ σ(Puϕ). Now, suppose that A is a fixed atom of ϕ of order k ≥ 2

and λk =
∏k−1
i=0 u(ϕi(A)). By induction, we can easily show that

(2.2) λkf(A)− ((Puϕ)k(f))(A) = λk−1 +
k−1∑
i=1

λk−i−1((Puϕ)i(χA))(A).

Put Uk =
∏k−1
i=0 (u ◦ ϕi). Then (Puϕ)k = PϕkMUk

, where MUk
is a mul-

tiplication operator (see [7]). Since ϕ−k(A) = A and ϕ−i(A) 6= A for
i = ±1, . . .± (k − 1), then we have

((Puϕ)k(f))(A) =
1

µ(A)

∫
A

(Puϕ)k(f)dµ =
1

µ(A)

∫
A
Pϕk(Ukf)dµ

=
1

µ(A)

∫
ϕ−k(A)

Ukfdµ =
1

µ(A)

∫
A
Ukfdµ = Uk(A)f(A)

and
((Puϕ)i(χA))(A) = (Pϕi(UiχA))(A)

=
1

µ(A)
Ui(ϕ

−i(A))χA(ϕ−i(A))µ(ϕ−i(A)) = 0.

It follows that, the left hand side of (2.2) equals 0, while the right hand
side of (2.2) equals λk−1. This contradiction shows that λ ∈ σ(Puϕ).
Therefore Λ ∪ {0} ⊆ σ(Puϕ) ∪ {0}.

Now, we show the opposite inclusion. Let λ /∈ Λ ∪ {0}, and suppose
that Puϕf = λf , for some f ∈ L1(Σ). Since every non-zero spectral
value λ of Puϕ is an eigenvalue of Puϕ, we must show that f is zero µ-
almost everywhere on X.We first show that f(A) = 0 for every invariant
atom A. Let A be a fixed atom of ϕ of order k. Since Puϕf = λf , by

induction, we get (PϕkUk)f = λkf , and so Uk(A)f(A) = λkf(A). Since

Uk(A) 6= λk, we have f(A) = 0.

By the first part of the proof, we can assume that for all k ∈ N∪{0},
u(ϕk(A)) 6= 0. Put K(A) = {ϕi(A) : i ∈ N ∪ {0}}. If K(A) is finite,
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then for some m,n ∈ N ∪ {0} with m > n, ϕm(A) = ϕn(A). It fol-
lows that ϕm−n(ϕ−m(A)) = ϕ−n(A) = ϕ−m(A) and ϕn−m(ϕ−m(A)) =
ϕn−m(ϕm−n(ϕ−m(A)) = ϕ−m(A). Thus ϕ−m(A) is a fixed atom of ϕ
of order m − n and hence f(ϕ−m(A)) = 0. On the other hand, since
λmf = (Puϕ)mf and

((Puϕ)m(f))(A) =
1

µ(A)
Um(ϕ−m(A))f(ϕ−m(A))µ(ϕ−m(A)) = 0,

then, f(A) = 0.

Now, suppose that K(A) is infinite. We claim that the set {n ∈
Z : |u(ϕn(A)| > ε} is finite for some ε > 0. Suppose this dose not
hold. Then the set {n ∈ Z : µ({x ∈ ϕ−1(ϕn+1(A)) : |u(x)| ≥ ε}) >
0} is infinite. But this contradicts the compactness of Puϕ. Put N =
max{|m| ∈ N : |u(ϕm(A))| ≥ ε}. Choose ε = |λ|/2. Then, for each
n > N, |u(ϕn(A))| < |λ|/2. It follows that

|λnf(A)| = hn|u(ϕ−n(A)) . . . u(ϕ−N(A)) . . . u(ϕ−1(A))f(ϕ−n(A))|

≤ hn‖u‖N∞ (
|λ|
2

)n−N‖f‖1.

Thus

|f(A)| ≤ hn‖u‖N∞(
|λ|
2

)−N(
1

2
)n‖f‖1 −→ 0, as n→∞.

Therefore we conclude that f is zero on ∪n∈NAn.

It remains to show that f is zero µ-almost everywhere on B. Since
L1(Σ) = L1(∪n∈NAn) ⊕ L1(B), hence it suffices to show that f is zero
as an element of L1(B). Now, it follows from u(ϕ−1(B)) = 0 that

‖Puϕf‖L1(B) =

∫
B
|Puϕf |dµ =

∫
ϕ−1(B)

ufdµ = 0.

Thus λf = Puϕf = 0 and hence f is zero µ-almost everywhere on B.
This completes the proof of the theorem. �

Finally, we investigate the weakly compact weighted Frobenius-Perron
operators on L1(Σ). Recall that the operator Puϕ : L1(Σ) → L1(Σ) is

said to be weakly compact if it maps bounded subsets of L1(Σ) into
weakly sequentially compact subsets of L1(Σ). A classical theorem of
Dunford (see [1], IV.8.9) isolates the weakly sequentially compact sub-
sets of L1(Σ) as the bounded uniformly integrable subsets. We begin
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with the following lemma, which can be deduced from Theorem IV.8.9,
and its Corollaries 8.10, 8.11 in [1].

Lemma 2.6. Let H be a weakly sequentially compact set in L1(Σ). Then
for each decreasing sequence {En} in Σ such that limn→∞ µ(En) = 0 or
∩∞n=1En = ∅, the sequence of integrals {

∫
En
|h|dµ} converges to zero

uniformly for h in H.

Theorem 2.7. Let Puϕ be a bounded Frobenius-Perron operator on L1(Σ)
and suppose that (X,Σ, µ) can be partitioned as (2.1). Then Puϕ is a

weakly compact operator on L1(Σ) if and only if it is compact.

Proof. It suffices to show the “ only if ” part. The inspiration for the
proof is the method used by Takagi [11]. Let Puϕ be a weakly compact

operator on L1(Σ). We first show that u(ϕ−1(B)) = 0. Suppose the
contrary. By the same argument as in the proof of Theorem 2.2, we
assume that for some δ > 0 and B0 ⊆ B, 0 < µ(ϕ−1(B0)∩Dδ(u)) <∞.
Now, as B0 is non-atomic, we can find a decreasing sequence {Bn} ⊆
B0∩Σ with 0 < µ(Bn) < 1

n and 0 < Jn := µ(ϕ−1(Bn)∩Dδ(u)) <∞. Let

U be the closed unit ball of L1(Σ). Since PuϕU is weakly sequentially
compact, Lemma 2.6 can be applied with H = PuϕU and En = Bn.

Choose ε = δ2/‖u‖∞. Then there exists an no ∈ N such that∫
Bno

|Puϕf |dµ <
δ2

‖u‖∞
, f ∈ U.(2.3)

On the other hand if we take fno = ūχJno
/(‖u‖∞µ(Jno)), we have∫

Bno

|Puϕf |dµ =

∫
Bno

hE

(
uūχJno

‖u‖∞µ(Jno)

)
◦ ϕ−1dµ

=

∫
ϕ−1(Bno )

E

( |u|2χJno

‖u‖∞µ(Jno)

)
dµ =

1

‖u‖∞µ(Jno)

∫
ϕ−1(Bno )

|u|2χJno
dµ

=
1

‖u‖∞µ(Jno)

∫
Jno

|u|2dµ ≥ δ2

‖u‖∞
.

Since fno ∈ U , this contradicts (2.3). According to Theorem 2.2, it
remains to show that for any ε > 0, the set A := {n ∈ N : µ(ϕ−1(An) ∩
Dε(u)) > 0} is finite. To end this, without loss of generality, we can
assume that A = N for some ε > 0. Put Kn = {Ak : k ≥ n} and
Gn = ϕ−1(Kn) ∩Dε(u). Then we have ∩∞n=1Kn = 0 and µ(Gn) > 0 for
each n ∈ N. Also, since h is essentially bounded, there is a constant
M > 0 such that µ(Gn) ≤ µ(ϕ−1(Kn)) ≤ Mµ(Kn) → 0, as n → ∞. So
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we can assume that µ(Gn) < ∞ for each n ∈ N. Applying Lemma 2.6
once more, there exists an N ∈ N such that∫

KN

|Puϕf |dµ <
ε2

‖u‖∞
, f ∈ U.

Now, for any n with n ≥ N, let gn = ūχGn/(‖u‖∞µ(Gn)). Then we have∫
KN

|Puϕgn|dµ =

∫
ϕ−1(KN )

E

(
|u|2χGn

‖u‖∞µ(Gn)

)
dµ

=
1

‖u‖∞µ(Gn)

∫
Gn

|u|2χGndµ ≥
ε2

‖u‖∞
.

Since gn ∈ U , this contradicts (2.3). This completes the proof of the
theorem. �
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