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ERROR BOUNDS IN APPROXIMATING n-TIME
DIFFERENTIABLE FUNCTIONS OF SELF-ADJOINT
OPERATORS IN HILBERT SPACES VIA A TAYLOR’S

TYPE EXPANSION
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Communicated by Mohammad Sal Moslehian

ABSTRACT. On utilizing the spectral representation of self-adjoint
operators in Hilbert spaces, some error bounds in approximating
n-time differentiable functions of self-adjoint operators in Hilbert
Spaces via a Taylor’s type expansion are given.

1. Introduction

Let U be a self-adjoint operator on the complex Hilbert space (H, (., .))
with the spectrum Sp (U) included in the interval [m, M] for some real
numbers m < M and let {E\}, be its spectral family. Then for any
continuous function f : [m,M] — C, it is well known that we have
the following spectral representation in terms of the Riemann-Stieltjes
integral:

M

(1.1) f(U) = / f () dEy,

m—0

MSC(2010): Primary: 47A63; Secondary: 47A99, 26D15.
Keywords: Self-adjoint operators, functions of self-adjoint operators, spectral representation,
inequalities for self-adjoint operators.
Received: 22 November 2010, Accepted: 27 April 2011.
(© 2012 Iranian Mathematical Society.

827



828 Dragomir

which in terms of vectors can be written as
M

(1.2) (fU)z,y) = fA) d(Exz,y),

m—0

for any ,y € H. The function g, , (A) := (Exz, y) is of bounded variation
on the interval [m, M] and g, (m —0) = 0 and g, (M) = (x,y) for
any x,y € H. It is also well known that g, (\) := (E\x, ) is monotonic
nondecreasing and right continuous on [m, M].

For a recent monograph devoted to various inequalities for continuous
functions of self-adjoint operators, see [10] and the references therein.

For other recent results see [1, 11, 12, 13], [14] and the author’s papers
in preprint [2] - [9].

Utilising the spectral representation from (1.2) we have established
the following Ostrowski type vector inequality [6]:

Theorem 1. Let A be a self-adjoint operator in the Hilbert space H with
the spectrum Sp (A) C [m, M| for some real numbers m < M and let
{E\}, be its spectral family. If f : [m, M] — C is a continuous function
of bounded variation on [m, M|, then we have the inequality

(1.3) £ (5) (my) — (f (A)2,9)| < (Bex,2)"* (B, ) *\/ ()

M
+ (g — By)w,2) {1y — By, ) *\/ ()

1 M 1 s M M
< [zl 1y (2\/(f) +5 V=V > <l vl \/ ()

m m
for any x,y € H and for any s € [m, M].

The trapezoid version of the above result has been obtained in [5] and
is as follows:

Theorem 2. With the assumptions in Theorem 1 we have the inequal-
ities

(1.4)

PODZION ) = (1 ()| < 5 o [(Bve)' (B
M 1 M

(L = B 2. 2) " (L = B ) V(D) < 5 Dzl vl V ()
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for any x,y € H.

In this paper, by utilizing the spectral representation of self-adjoint
operators in Hilbert spaces, some error bounds in approximating n-time
differentiable functions of self-adjoint operators in Hilbert Spaces via
a Taylor’s type expansion are given. Applications for some elementary
functions of interest including the exponential and logarithmic functions
are also provided.

2. Main Results

The following result provides a Taylor’s type representation for a func-
tion of self-adjoint operators in Hilbert spaces with integral remainder.

Theorem 3. Let A be a self-adjoint operator in the Hilbert space H with
the spectrum Sp (A) C [m, M] for some real numbers m < M, {Ey},

be its spectral family, I be a closed subinterval on R with [m, M| C I
(the interior of I) and let n be an integer with n > 1. If f : I — C is
such that the n-th derivative ") is of bounded variation on the interval
[m, M|, then for any c € [m, M| we have the equalities

21 FA)=Y W () (A~ eln) + B (frem, M)
k=0 """

where

(22) R (f,e;m, M) = — /MO (/A (a7 (t))> dE).

n! Jo—

Proof. We utilize the Taylor formula for a function f : I — C whose
n-th derivative £ is locally of bounded variation on the interval I to
write the equality

n

(23)  f(N)=

k=0

T R (il

==

for any A, ¢ € [m, M], where the integral is taken in the Riemann-Stieltjes
sense.
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If we integrate the equality on [m, M] in the Riemann-Stieltjes sense
with the integrator E) we get

/M f N dE =i1f<k><c>/M (A=) dE
m—0 g — k! m—0 A
+% mﬂio </:<A—t)”d(f<n> (t)))dE,\

which, by the spectral representation (1.1), produces the equality (2.1)
with the representation of the remainder from (2.2). U

The following particular instances are of interest for applications:

Corollary 4. With the assumptions of the above Theorem 3, we have
the equalities

(2.4) Z k;lf &) (m) (A — m1g)* + L, (f,¢,m, M)
where
Ly (f.c,m, M) = 1'/ (/7: —t)" W(t)))dEA
and
(2.5) i .
f(A) = k:(]kl:!f(k) <m—i2—M) (A— m—;MlH) + M, (f,c,m, M)

where

My (f, ¢m, M) = ;/ﬂfo (/:+ (=0 (£ ))) o
and 2

= (DF
26) () =3 S ) (11— 4 40 (1 b)
k=0
where
(2.7) n+1 M M
Uy (f. com, M) = (_173! /m_o (/A (= (£ (t))) dE),

respectively.
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We start with the following result that provides an approximation
for an n-time differentiable function of self-adjoint operators in Hilbert
spaces:

Theorem 5. Let A be a self-adjoint operator in the Hilbert space H with
the spectrum Sp (A) C [m, M] for some real numbers m < M, {Ex},
be its spectral family, I be a closed subinterval on R with [m, M] C I
(the interior of I) and let n be an integer with n > 1. If f : I — C is
such that the n-th derivative f is of bounded variation on the interval
[m, M], then for any c € [m, M] we have the inequality

(2.8)

|<Rn (f,c,m,M)m,yH

(F(A) ) =0 W () (A el z,)
k=0

[

<[l V()Y (B

m

M

< o {r = (#) e mrV () 7 @)

m

§1<;(M—m)+

n!

for any x,y € H.

Proof. From the identities (2.1) and (2.2) we have
(29> <R7l (fa ¢,m, M) .Z',y)

:;!/m]: (/C/\(A—t)”d(f(”) (t))>d<EAx,y>
- % mc_o (/A A—t)"d (f<"> (t))) d(Exz,y)
o CM (/A (A=) d (0 (t))>d<Exwyy>
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for any z,y € H.

It is well known that if p : [a,b] — C is a continuous function, v :
[a,b] — C is of bounded variation then the Riemann-Stieltjes integral
f;p (t) dv (t) exists and the following inequality holds ’ffp (t) dv (t)‘ <

b b
maxye(q ) [P (t)] \/ (v), where \/ (v) denotes the total variation of v on
a

[a,b] .
Taking the modulus in (2.9) and utilizing the above property, we have

a

Q10 (R (fcom, M),
<[ ([ a-ora( o)) awey)
s ([ s @) ) amen
< ?;é% / A (A=t d (£ ) \Z(<E<.>x,y>)
+ g mae | oo (1) \]cw/(<E<->w7y>)

for any z,y € H.
By the same property for the Riemann-Stieltjes integral we have

2.11
( ) )\Ien[gz},{c]

/c,\ A=t)"d (f(n) (t)> ‘ <(c—m)" \C/ (f(n))
and

(2.12) max
AE[e,M]

A M
[ o-ira(so @) < or-ary (10,
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Now, on making use of (2.10)-(2.12) we deduce

n M M
1 /1 m+ M n
3 (e ()
for any z,y € H and the proof is complete. O

The following particular cases are of interest for applications

Corollary 6. With the assumption of Theorem 5 we have the inequali-
ties

n

(2.13) '<f<A>x,y> W (m) (A= 1))
k=0
< =m\ (S0) V (Bye)
" .
< —m)"\/ (£ Dzl iyl
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(2.14) ‘(f DITESS (_,j!)kf““ (M) (ML — A z.y)
1 v M
< QL =m\/ (F)\ ((Egye.))
1 An; i
< = =m)"\/ (£ Jl2| 1y
and
(2.15)
" m+ M m+ M k
<f<A>x,y>—M,j,f<k>< ! )<(A— ) y>|
1 n /(s Vi ) Ly
= St (M —m)" max \/ (f ), \/ <f ) \/(<E(.)x,y>)
< g (M —m)"max§ \/ (£), N/ () bl

respectively, for any z,y € H.

Proof. The first part in the inequalities follow from (2.8) by choosing
c=m,c=M and c = # respectively.

If P is a nonnegative operator on H, i.e., (Px,z) > 0 for any x € H,
then the following inequality is a generalization of the Schwarz inequality
in H

(2.16) (Pz,y)* < (Pz,x) (Py,y)

for any z,y € H.
Now, if d : m =ty < t1 < ... < th—1 < t, = M is an arbitrary
partition of the interval [m, M], then we have by Schwarz’s inequality
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for nonnegative operators (2.16) that

s<x

< sup
d

(. 9))

= sup {1;1 [{(Bris — Er.) x’y>|}

Z |:<(Eti+1 - Ey,) x,$>1/2 (Bv,, — By y’y>1/2}

=0

};:
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B.

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real
numbers we also have that

IN
9]
Qe
ko]

M

m

V

2 (Bty, — Bi,) 2,2)
Ti (Bt — By;) 7, 2)
L o |
(e |V

1/2

1/2

<(Etz‘+1

Z <(Etz'+1

Li=0

—Ey)y.y)
- Etl) Y, y>

1/2
(<E<->yay>)] = [l [l

1/2

1/2

for any x,y € H. These prove the last part of the above inequalities
(2.13)-(2.15).

The following result also holds:

g

Theorem 7. Let A be a self-adjoint operator in the Hilbert space H with
the spectrum Sp (A) C [m, M| for some real numbers m < M, {E\}, be
its spectral family, I be a closed subinterval on R with [m, M| C I (the
interior of I) and let n be an integer with n > 1. If f : I — C is such
that the n-th derwative f) is Lipschitzian with the constant L, > 0 on
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the interval [m, M], then for any c € [m, M| we have the inequality

(2.17)

(R (f, c;m, M) 2, y)|

c M
= (nil)!Ln [(C — )"V (Boe ) + ="V (Boey)
m - M n+1 M
S (n—ll—l)' n <; (M—m)+ C — ; > \/(<E()l‘,y>)

m

m+M n+1
e~ ") el

for any x,y € H.

Proof. First of all, recall that if p : [a,b] — C is a Riemann integrable
function and v : [a,b] — C is Lipschitzian with the constant L > 0,
ie, |f(s)—f(t) < L|s—t| for any t,s € [a,b], then the Riemann-
Stieltjes integral f;p (t) dv (t) exists and the following inequality holds

Lp@dv (@) < L[ Ip()dt.

Now, on applying this property of the Riemann-Stieltjes integral we
have

2.18
(2.18) e

IR0 \ < Ln ey

and

(2.19) max
AE[e,M]

[ ora(sow

~
IA
b
3
<
&
3
x
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Now, on utilizing the inequality (2.10), then we have from (2.18) and
(2.19) that

(2.20)

(B (f, c;m, M) 2,y)]
1

n+1
= (n + 1) \/ SR y>
+ ; n _ C n+1 \/ ya y>
(n+ 1)
1 M
n+1 n+1

< anmaX{(c—m) , (M —¢) }\n{«E()x’y»

1 1 m+ M\

and the proof is complete. 0

The following particular cases are of interest for applications:

Corollary 8. With the assumption of Theorem 7 we have the inequali-
ties

(2.21) ' Zk,f (m) (A~ m1p)*a,y)

1
(n+1)!

< (M —m)"*" L, \/ Bz, y))

and

n k
(222 |<f Wz~ S )y (11— ),y
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and

(2.23)
s - S0 (252 ((4- 40 o)

1
< -
—2ntl (n+1)!

M
(M —m)" L, \/ ((E(yz,y))

respectively, for any x,y € H.

Let u : [a,b] - R and ¢,® € R be such that & > ¢. The following
statements are equivalent:

(i) The function u — # -e, where e (t) =t, t € [a,b], is 5 (@ — ) —
Lipschitzian;

(i) We have the inequality: ¢ < “(tiiz(s) < & for each t,s €
[a,b] with t # s;

(iii) We have the inequality: ¢ (t —s) < u(t) —u(s) < ®(t—s) for
each t,s € [a,b] witht>s.

Following [15], we can say that the function w : [a,b] — R which
satisfies one of the equivalent conditions (i) — (iii) is said to be (¢, ®) —
Lipschitzian on [a, b].

Notice that in [15], the definition was introduced on utilizing the
statement (iii) and only the equivalence (i) < (iii) was considered.

The following corollary that provides a perturbed version of Taylor’s
expansion holds:

Corollary 9. Let A be a self-adjoint operator in the Hilbert space H with
the spectrum Sp (A) C [m, M| for some real numbers m < M, {E\}, be
its spectral family, I be a closed subinterval on R with [m, M| C I (the
interior of I) and let n be an integer with n > 1. If g : I — R is such
that the n-th derivative g™ is (L, L) — Lipschitzian with the constants
Ly, > l, > 0 on the interval [m, M|, then for any ¢ € [m, M] we have
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the inequality
(2.24)

n

(g(A)z,y) — g (c)(x,y) — %g(k) (c) <(A _ ClH)kl‘,y> B l,+ L,

2

1 n c
g [(n+ i 4 o) - CESAY

Zm nn—]:-lu <(A_01H)kx’y>”

1
< -
~2(n+1)!

x[c "“\/ 0T Y)) + ”“\/ wy>]

1
~2(n+1)!

(Ln - ln)

m+ M
2

(Lo — 1) <;(M—m)+‘c—

for any x,y € H.

Proof. Consider the function f: I — R defined by

I Lot gl
n+1)! 2 '

ft)=g(t)— (
Observe that

1 Ly +1
®) (1) .= o® (#) — n o yn—k+l
0= 0 -Gy 2

for any k=0, ..., n.

Since g™ is (I,,, L,,) —Lipschitzian it follows that (™ (¢) := ¢(™) () —
L"ig'l" -t s %(Ln — l,)-Lipschitzian and applying Theorem 7 for the
function f, we deduce after required calculations the desired result (2.8).

O
3. Applications

By utilizing Theorems 5 and 7 for the exponential function, we can
state the following result:
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Proposition 10. Let A be a self-adjoint operator in the Hilbert space
H with the spectrum Sp (A) C [m, M] for some real numbers m < M
and {E\}, be its spectral family, then for any ¢ € [m, M] we have the
mequality

(3.1)
<e z,y) —e kzo kl‘ <(A—01H)kx,y>
<T1L'[(c—m e —e™ \/ aty>
u m
—|—(M—C \/ <E():13y ]
1 c v
< amax{(]\/[— o) (eM —e), (c—m)" (e“ —e™)} \/ (Enz,y))
n M
= % G(M_mH °- m;M > (EM—em)\n{KE()%w)
< 2 (Gor-m+fe- "2 @ - e ol
and
(3.2)
<6Ax y) —e° % <(A —cly)x y>
k=0
c M
< (ni e [(0 =m)" N ((EByz,9) + (M ="\ (B, y))
1 1 m+ M\
< meM (2 (M —m) + ’C —; > ¥(<E(,)x,y>)
m + M

1 1
S (2 (M —m) +

for any x,y € H.

n+1
) el Iyl

2

The same Theorems 5 and 7 applied for the logarithmic function pro-
duce:
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Proposition 11. Let A be a positive definite operator in the Hilbert
space H with the spectrum Sp (A) C [m, M] C (0,00) and {Ey}, be its
spectral family, then for any c € [m, M| we have the inequalities

(3.3)
(=1)k? <(A - clH)k:L’,y>

(In Az, y) — (z,y) Inc — Z

kck
< L {e=mRE o\ (B )
n n_ cn M

PO =D ()|

c—m) (" —m") (M — )" (M" — )} M
<~ max {( )Cnfnn )L ]247)(107)1 )} \n{ (Eeyz.y))

M

S;(QM_myqﬁ- - ><%;lmﬁuww
and
(3.4)

v ()M ((A-etn)ay)
kck

(InAz,y) — (z,y)Inc—
k=1

c M
§m+$mwlkm””v“@ﬂwﬁ+wfCW“V«&WWﬁ

1 1 m+ M\
S(HHW(2(M—m)+‘c— ! ) \ (Epyz.v))

for any x,y € H.

m
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