ERROR BOUNDS IN APPROXIMATING n-TIME DIFFERENTIABLE FUNCTIONS OF SELF-ADJOINT OPERATORS IN HILBERT SPACES VIA A TAYLOR'S TYPE EXPANSION

S. S. DRAGOMIR

Communicated by Mohammad Sal Moslehian

Abstract

On utilizing the spectral representation of self-adjoint operators in Hilbert spaces, some error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

1. Introduction

Let U be a self-adjoint operator on the complex Hilbert space ($H,\langle.,$.$\rangle)$ with the spectrum $S p(U)$ included in the interval $[m, M]$ for some real numbers $m<M$ and let $\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family. Then for any continuous function $f:[m, M] \rightarrow \mathbb{C}$, it is well known that we have the following spectral representation in terms of the Riemann-Stieltjes integral:

$$
\begin{equation*}
f(U)=\int_{m-0}^{M} f(\lambda) d E_{\lambda}, \tag{1.1}
\end{equation*}
$$

MSC(2010): Primary: 47A63; Secondary: 47A99, 26D15.
Keywords: Self-adjoint operators, functions of self-adjoint operators, spectral representation, inequalities for self-adjoint operators.
Received: 22 November 2010, Accepted: 27 April 2011.
(c) 2012 Iranian Mathematical Society.
which in terms of vectors can be written as

$$
\begin{equation*}
\langle f(U) x, y\rangle=\int_{m-0}^{M} f(\lambda) d\left\langle E_{\lambda} x, y\right\rangle \tag{1.2}
\end{equation*}
$$

for any $x, y \in H$. The function $g_{x, y}(\lambda):=\left\langle E_{\lambda} x, y\right\rangle$ is of bounded variation on the interval $[m, M]$ and $g_{x, y}(m-0)=0$ and $g_{x, y}(M)=\langle x, y\rangle$ for any $x, y \in H$. It is also well known that $g_{x}(\lambda):=\left\langle E_{\lambda} x, x\right\rangle$ is monotonic nondecreasing and right continuous on $[m, M]$.

For a recent monograph devoted to various inequalities for continuous functions of self-adjoint operators, see [10] and the references therein.

For other recent results see $[1,11,12,13],[14]$ and the author's papers in preprint [2] - [9].

Utilising the spectral representation from (1.2) we have established the following Ostrowski type vector inequality [6]:

Theorem 1. Let A be a self-adjoint operator in the Hilbert space H with the spectrum $S p(A) \subseteq[m, M]$ for some real numbers $m<M$ and let $\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family. If $f:[m, M] \rightarrow \mathbb{C}$ is a continuous function of bounded variation on $[m, M]$, then we have the inequality

$$
\begin{align*}
& |f(s)\langle x, y\rangle-\langle f(A) x, y\rangle| \leq\left\langle E_{s} x, x\right\rangle^{1 / 2}\left\langle E_{s} y, y\right\rangle^{1 / 2} \bigvee_{m}^{s}(f) \tag{1.3}\\
& +\left\langle\left(1_{H}-E_{s}\right) x, x\right\rangle^{1 / 2}\left\langle\left(1_{H}-E_{s}\right) y, y\right\rangle^{1 / 2} \bigvee_{s}^{M}(f) \\
& \leq\|x\|\|y\|\left(\frac{1}{2} \bigvee_{m}^{M}(f)+\frac{1}{2}\left|\bigvee_{m}^{s}(f)-\bigvee_{s}^{M}(f)\right|\right) \leq\|x\|\|y\| \bigvee_{m}^{M}(f)
\end{align*}
$$

for any $x, y \in H$ and for any $s \in[m, M]$.
The trapezoid version of the above result has been obtained in [5] and is as follows:

Theorem 2. With the assumptions in Theorem 1 we have the inequalities

$$
\begin{align*}
& \left|\frac{f(M)+f(m)}{2} \cdot\langle x, y\rangle-\langle f(A) x, y\rangle\right| \leq \frac{1}{2} \max _{\lambda \in[m, M]}\left[\left\langle E_{\lambda} x, x\right\rangle^{1 / 2}\left\langle E_{\lambda} y, y\right\rangle^{1 / 2}\right. \tag{1.4}\\
& \left.+\left\langle\left(1_{H}-E_{\lambda}\right) x, x\right\rangle^{1 / 2}\left\langle\left(1_{H}-E_{\lambda}\right) y, y\right\rangle^{1 / 2}\right] \bigvee_{m}^{M}(f) \leq \frac{1}{2}\|x\|\|y\| \bigvee_{m}^{M}(f)
\end{align*}
$$

for any $x, y \in H$.
In this paper, by utilizing the spectral representation of self-adjoint operators in Hilbert spaces, some error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert Spaces via a Taylor's type expansion are given. Applications for some elementary functions of interest including the exponential and logarithmic functions are also provided.

2. Main Results

The following result provides a Taylor's type representation for a function of self-adjoint operators in Hilbert spaces with integral remainder.

Theorem 3. Let A be a self-adjoint operator in the Hilbert space H with the spectrum $S p(A) \subseteq[m, M]$ for some real numbers $m<M,\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family, I be a closed subinterval on \mathbb{R} with $[m, M] \subset I$ (the interior of I) and let n be an integer with $n \geq 1$. If $f: I \rightarrow \mathbb{C}$ is such that the n-th derivative $f^{(n)}$ is of bounded variation on the interval $[m, M]$, then for any $c \in[m, M]$ we have the equalities

$$
\begin{equation*}
f(A)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c)\left(A-c 1_{H}\right)^{k}+R_{n}(f, c, m, M) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}(f, c, m, M)=\frac{1}{n!} \int_{m-0}^{M}\left(\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d E_{\lambda} . \tag{2.2}
\end{equation*}
$$

Proof. We utilize the Taylor formula for a function $f: I \rightarrow \mathbb{C}$ whose n-th derivative $f^{(n)}$ is locally of bounded variation on the interval I to write the equality

$$
\begin{equation*}
f(\lambda)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c)(\lambda-c)^{k}+\frac{1}{n!} \int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right) \tag{2.3}
\end{equation*}
$$

for any $\lambda, c \in[m, M]$, where the integral is taken in the Riemann-Stieltjes sense.

If we integrate the equality on $[m, M]$ in the Riemann-Stieltjes sense with the integrator E_{λ} we get

$$
\begin{aligned}
\int_{m-0}^{M} f(\lambda) d E_{\lambda} & =\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c) \int_{m-0}^{M}(\lambda-c)^{k} d E_{\lambda} \\
& +\frac{1}{n!} \int_{m-0}^{M}\left(\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d E_{\lambda}
\end{aligned}
$$

which, by the spectral representation (1.1), produces the equality (2.1) with the representation of the remainder from (2.2).

The following particular instances are of interest for applications:
Corollary 4. With the assumptions of the above Theorem 3, we have the equalities

$$
\begin{equation*}
f(A)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(m)\left(A-m 1_{H}\right)^{k}+L_{n}(f, c, m, M) \tag{2.4}
\end{equation*}
$$

where

$$
L_{n}(f, c, m, M)=\frac{1}{n!} \int_{m-0}^{M}\left(\int_{m}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d E_{\lambda}
$$

and

$$
\begin{equation*}
f(A)=\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}\left(\frac{m+M}{2}\right)\left(A-\frac{m+M}{2} 1_{H}\right)^{k}+M_{n}(f, c, m, M) \tag{2.5}
\end{equation*}
$$

where

$$
M_{n}(f, c, m, M)=\frac{1}{n!} \int_{m-0}^{M}\left(\int_{\frac{m+M}{2}}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d E_{\lambda}
$$

and

$$
\begin{equation*}
f(A)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} f^{(k)}(M)\left(M 1_{H}-A\right)^{k}+U_{n}(f, c, m, M) \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{n}(f, c, m, M)=\frac{(-1)^{n+1}}{n!} \int_{m-0}^{M}\left(\int_{\lambda}^{M}(t-\lambda)^{n} d\left(f^{(n)}(t)\right)\right) d E_{\lambda}, \tag{2.7}
\end{equation*}
$$

respectively.

We start with the following result that provides an approximation for an n-time differentiable function of self-adjoint operators in Hilbert spaces:

Theorem 5. Let A be a self-adjoint operator in the Hilbert space H with the spectrum $S p(A) \subseteq[m, M]$ for some real numbers $m<M,\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family, I be a closed subinterval on \mathbb{R} with $[m, M] \subset I$ (the interior of I) and let n be an integer with $n \geq 1$. If $f: I \rightarrow \mathbb{C}$ is such that the n-th derivative $f^{(n)}$ is of bounded variation on the interval [$m, M]$, then for any $c \in[m, M]$ we have the inequality

$$
\begin{align*}
& \left|\left\langle R_{n}(f, c, m, M) x, y\right\rangle\right| \tag{2.8}\\
& =\left|\langle f(A) x, y\rangle-\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(c)\left\langle\left(A-c 1_{H}\right)^{k} x, y\right\rangle\right| \\
& \leq \frac{1}{n!}\left[(c-m)^{n} \bigvee_{m}^{c}\left(f^{(n)}\right) \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right. \\
& \left.+(M-c)^{n} \bigvee_{c}^{M}\left(f^{(n)}\right) \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{n!} \max \left\{(M-c)^{n} \bigvee_{c}^{M}\left(f^{(n)}\right),(c-m)^{n} \bigvee_{c}^{M}\left(f^{(n)}\right)\right\} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{n!}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n} \bigvee_{m}^{M}\left(f^{(n)}\right) \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right),
\end{align*}
$$

for any $x, y \in H$.
Proof. From the identities (2.1) and (2.2) we have

$$
\begin{align*}
& \left\langle R_{n}(f, c, m, M) x, y\right\rangle \tag{2.9}\\
& =\frac{1}{n!} \int_{m-0}^{M}\left(\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d\left\langle E_{\lambda} x, y\right\rangle \\
& =\frac{1}{n!} \int_{m-0}^{c}\left(\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d\left\langle E_{\lambda} x, y\right\rangle \\
& +\frac{1}{n!} \int_{c}^{M}\left(\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d\left\langle E_{\lambda} x, y\right\rangle
\end{align*}
$$

for any $x, y \in H$.
It is well known that if $p:[a, b] \rightarrow \mathbb{C}$ is a continuous function, v : $[a, b] \rightarrow \mathbb{C}$ is of bounded variation then the Riemann-Stieltjes integral $\int_{a}^{b} p(t) d v(t)$ exists and the following inequality holds $\left|\int_{a}^{b} p(t) d v(t)\right| \leq$ $\max _{t \in[a, b]}|p(t)| \bigvee_{a}^{b}(v)$, where $\bigvee_{a}^{b}(v)$ denotes the total variation of v on $[a, b]$.

Taking the modulus in (2.9) and utilizing the above property, we have

$$
\begin{align*}
& \left|\left\langle R_{n}(f, c, m, M) x, y\right\rangle\right| \tag{2.10}\\
& \leq \frac{1}{n!}\left|\int_{m-0}^{c}\left(\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d\left\langle E_{\lambda} x, y\right\rangle\right| \\
& +\frac{1}{n!}\left|\int_{c}^{M}\left(\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right) d\left\langle E_{\lambda} x, y\right\rangle\right| \\
& \leq \frac{1}{n!} \max _{\lambda \in[m, c]}\left|\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right| \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& +\frac{1}{n!} \max _{\lambda \in[c, M]}\left|\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right| \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)
\end{align*}
$$

for any $x, y \in H$.
By the same property for the Riemann-Stieltjes integral we have

$$
\begin{equation*}
\max _{\lambda \in[m, c]}\left|\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right| \leq(c-m)^{n} \bigvee_{m}^{c}\left(f^{(n)}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{\lambda \in[c, M]}\left|\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right| \leq(M-c)^{n} \bigvee_{c}^{M}\left(f^{(n)}\right) \tag{2.12}
\end{equation*}
$$

Now, on making use of (2.10)-(2.12) we deduce

$$
\begin{aligned}
& \left|\left\langle R_{n}(f, c, m, M) x, y\right\rangle\right| \\
& \leq \frac{1}{n!}\left[(c-m)^{n} \bigvee_{m}^{c}\left(f^{(n)}\right) \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right. \\
& \left.+(M-c)^{n} \bigvee_{c}^{M}\left(f^{(n)}\right) \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{n!} \max \left\{(c-m)^{n} \bigvee_{m}^{c}\left(f^{(n)}\right),(M-c)^{n} \bigvee_{c}^{M}\left(f^{(n)}\right)\right\} \\
& \times\left[\bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)+\bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{n!} \max \left\{(c-m)^{n},(M-c)^{n}\right\} \bigvee_{m}^{M}\left(f^{(n)}\right) \bigvee_{m}^{M}\left(\left\langleE_{(\cdot)}^{x, y\rangle)}\right.\right. \\
& =\frac{1}{n!}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n} \bigvee_{m}^{M}\left(f^{(n)}\right) \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)
\end{aligned}
$$

for any $x, y \in H$ and the proof is complete.

The following particular cases are of interest for applications
Corollary 6. With the assumption of Theorem 5 we have the inequalities

$$
\begin{align*}
& \left|\langle f(A) x, y\rangle-\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(m)\left\langle\left(A-m 1_{H}\right)^{k} x, y\right\rangle\right| \tag{2.13}\\
& \leq \frac{1}{n!}(M-m)^{n} \bigvee_{m}^{M}\left(f^{(n)}\right) \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{n!}(M-m)^{n} \bigvee_{m}^{M}\left(f^{(n)}\right)\|x\|\|y\|
\end{align*}
$$

$$
\begin{align*}
& \left|\langle f(A) x, y\rangle-\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} f^{(k)}(M)\left\langle\left(M 1_{H}-A\right)^{k} x, y\right\rangle\right| \tag{2.14}\\
& \leq \frac{1}{n!}(M-m)^{n} \bigvee_{m}^{M}\left(f^{(n)}\right) \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{n!}(M-m)^{n} \bigvee_{m}^{M}\left(f^{(n)}\right)\|x\|\|y\|
\end{align*}
$$

and

$$
\begin{align*}
& \left|\langle f(A) x, y\rangle-\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}\left(\frac{m+M}{2}\right)\left\langle\left(A-\frac{m+M}{2} 1_{H}\right)^{k} x, y\right\rangle\right| \tag{2.15}\\
& \leq \frac{1}{2^{n} n!}(M-m)^{n} \max \left\{\bigvee_{\frac{m+M}{2}}^{M}\left(f^{(n)}\right), \bigvee_{m}^{\frac{m+M}{2}}\left(f^{(n)}\right)\right\} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{2^{n} n!}(M-m)^{n} \max \left\{\bigvee_{\frac{m+M}{2}}^{M}\left(f^{(n)}\right), \bigvee_{m}^{\frac{m+M}{2}}\left(f^{(n)}\right)\right\}\|x\|\|y\|
\end{align*}
$$

respectively, for any $x, y \in H$.

Proof. The first part in the inequalities follow from (2.8) by choosing $c=m, c=M$ and $c=\frac{m+M}{2}$ respectively.

If P is a nonnegative operator on H, i.e., $\langle P x, x\rangle \geq 0$ for any $x \in H$, then the following inequality is a generalization of the Schwarz inequality in H

$$
\begin{equation*}
|\langle P x, y\rangle|^{2} \leq\langle P x, x\rangle\langle P y, y\rangle \tag{2.16}
\end{equation*}
$$

for any $x, y \in H$.
Now, if $d: m=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=M$ is an arbitrary partition of the interval $[m, M]$, then we have by Schwarz's inequality
for nonnegative operators (2.16) that

$$
\begin{aligned}
& \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& =\sup _{d}\left\{\sum_{i=0}^{n-1}\left|\left\langle\left(E_{t_{i+1}}-E_{t_{i}}\right) x, y\right\rangle\right|\right\} \\
& \leq \sup _{d}\left\{\sum_{i=0}^{n-1}\left[\left\langle\left(E_{t_{i+1}}-E_{t_{i}}\right) x, x\right\rangle^{1 / 2}\left\langle\left(E_{t_{i+1}}-E_{t_{i}}\right) y, y\right\rangle^{1 / 2}\right]\right\}:=B .
\end{aligned}
$$

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we also have that

$$
\begin{aligned}
B & \leq \sup _{d}\left\{\left[\sum_{i=0}^{n-1}\left\langle\left(E_{t_{i+1}}-E_{t_{i}}\right) x, x\right\rangle\right]^{1 / 2}\left[\sum_{i=0}^{n-1}\left\langle\left(E_{t_{i+1}}-E_{t_{i}}\right) y, y\right\rangle\right]^{1 / 2}\right\} \\
& \leq \sup _{d}\left\{\left[\sum_{i=0}^{n-1}\left\langle\left(E_{t_{i+1}}-E_{t_{i}}\right) x, x\right\rangle\right]^{1 / 2}\left[\sum_{i=0}^{n-1}\left\langle\left(E_{t_{i+1}}-E_{t_{i}}\right) y, y\right\rangle\right]^{1 / 2}\right\} \\
& =\left[\bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, x\right\rangle\right)\right]^{1 / 2}\left[\bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} y, y\right\rangle\right)\right]^{1 / 2}=\|x\|\|y\|
\end{aligned}
$$

for any $x, y \in H$. These prove the last part of the above inequalities (2.13)-(2.15).

The following result also holds:

Theorem 7. Let A be a self-adjoint operator in the Hilbert space H with the spectrum $S p(A) \subseteq[m, M]$ for some real numbers $m<M,\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family, I be a closed subinterval on \mathbb{R} with $[m, M] \subset \dot{I}$ (the interior of I) and let n be an integer with $n \geq 1$. If $f: I \rightarrow \mathbb{C}$ is such that the n-th derivative $f^{(n)}$ is Lipschitzian with the constant $L_{n}>0$ on
the interval $[m, M]$, then for any $c \in[m, M]$ we have the inequality

$$
\begin{align*}
& \left|\left\langle R_{n}(f, c, m, M) x, y\right\rangle\right| \tag{2.17}\\
& \leq \frac{1}{(n+1)!} L_{n}\left[(c-m)^{n+1} \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)+(M-c)^{n+1} \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{(n+1)!} L_{n}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n+1} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{(n+1)!} L_{n}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n+1}\|x\|\|y\|
\end{align*}
$$

for any $x, y \in H$.

Proof. First of all, recall that if $p:[a, b] \rightarrow \mathbb{C}$ is a Riemann integrable function and $v:[a, b] \rightarrow \mathbb{C}$ is Lipschitzian with the constant $L>0$, i.e., $|f(s)-f(t)| \leq L|s-t|$ for any $t, s \in[a, b]$, then the RiemannStieltjes integral $\int_{a}^{b} p(t) d v(t)$ exists and the following inequality holds $\left|\int_{a}^{b} p(t) d v(t)\right| \leq L \int_{a}^{b}|p(t)| d t$.

Now, on applying this property of the Riemann-Stieltjes integral we have

$$
\begin{equation*}
\max _{\lambda \in[m, c]}\left|\int_{\lambda}^{c}(t-\lambda)^{n} d\left(f^{(n)}(t)\right)\right| \leq \frac{L_{n}}{n+1}(c-m)^{n+1} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{\lambda \in[c, M]}\left|\int_{c}^{\lambda}(\lambda-t)^{n} d\left(f^{(n)}(t)\right)\right| \leq \frac{L_{n}}{n+1}(M-c)^{n+1} \tag{2.19}
\end{equation*}
$$

Now, on utilizing the inequality (2.10), then we have from (2.18) and (2.19) that
(2.20)

$$
\begin{aligned}
& \left|\left\langle R_{n}(f, c, m, M) x, y\right\rangle\right| \\
& \leq \frac{1}{(n+1)!} L_{n}(c-m)^{n+1} \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& +\frac{1}{(n+1)!} L_{n}(M-c)^{n+1} \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{(n+1)!} L_{n} \max \left\{(c-m)^{n+1},(M-c)^{n+1}\right\} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& =\frac{1}{(n+1)!} L_{n}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n+1} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right),
\end{aligned}
$$

and the proof is complete.

The following particular cases are of interest for applications:
Corollary 8. With the assumption of Theorem 7 we have the inequalities

$$
\begin{align*}
& \left|\langle f(A) x, y\rangle-\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(m)\left\langle\left(A-m 1_{H}\right)^{k} x, y\right\rangle\right| \tag{2.21}\\
& \leq \frac{1}{(n+1)!}(M-m)^{n+1} L_{n} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)
\end{align*}
$$

and

$$
\begin{align*}
& \left|\langle f(A) x, y\rangle-\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} f^{(k)}(M)\left\langle\left(M 1_{H}-A\right)^{k} x, y\right\rangle\right| \tag{2.22}\\
& \leq \frac{1}{(n+1)!}(M-m)^{n+1} L_{n} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)
\end{align*}
$$

and

$$
\begin{align*}
& \left|\langle f(A) x, y\rangle-\sum_{k=0}^{n} \frac{1}{k!} f^{(k)}\left(\frac{m+M}{2}\right)\left\langle\left(A-\frac{m+M}{2} 1_{H}\right)^{k} x, y\right\rangle\right| \tag{2.23}\\
& \leq \frac{1}{2^{n+1}(n+1)!}(M-m)^{n+1} L_{n} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)
\end{align*}
$$

respectively, for any $x, y \in H$.

Let $u:[a, b] \rightarrow \mathbb{R}$ and $\varphi, \Phi \in \mathbb{R}$ be such that $\Phi>\varphi$. The following statements are equivalent:
(i) The function $u-\frac{\varphi+\Phi}{2} \cdot e$, where $e(t)=t, t \in[a, b]$, is $\frac{1}{2}(\Phi-\varphi)-$ Lipschitzian;
(ii) We have the inequality: $\varphi \leq \frac{u(t)-u(s)}{t-s} \leq \Phi$ for each $t, s \in$ [a,b] with $t \neq s$;
(iii) We have the inequality: $\varphi(t-s) \leq u(t)-u(s) \leq \Phi(t-s)$ for each $t, s \in[a, b] \quad$ with $t>s$.

Following [15], we can say that the function $u:[a, b] \rightarrow \mathbb{R}$ which satisfies one of the equivalent conditions (i) - (iii) is said to be $(\varphi, \Phi)-$ Lipschitzian on $[a, b]$.

Notice that in [15], the definition was introduced on utilizing the statement (iii) and only the equivalence (i) \Leftrightarrow (iii) was considered.

The following corollary that provides a perturbed version of Taylor's expansion holds:

Corollary 9. Let A be a self-adjoint operator in the Hilbert space H with the spectrum $S p(A) \subseteq[m, M]$ for some real numbers $m<M,\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family, I be a closed subinterval on \mathbb{R} with $[m, M] \subset I$ (the interior of I) and let n be an integer with $n \geq 1$. If $g: I \rightarrow \mathbb{R}$ is such that the n-th derivative $g^{(n)}$ is $\left(l_{n}, L_{n}\right)$-Lipschitzian with the constants $L_{n}>l_{n}>0$ on the interval $[m, M]$, then for any $c \in[m, M]$ we have
the inequality

$$
\begin{align*}
& \left\lvert\,\langle g(A) x, y\rangle-g(c)\langle x, y\rangle-\sum_{k=1}^{n} \frac{1}{k!} g^{(k)}(c)\left\langle\left(A-c 1_{H}\right)^{k} x, y\right\rangle-\frac{l_{n}+L_{n}}{2}\right. \tag{2.24}\\
& \times\left[\frac{1}{(n+1)!}\left\langle A^{n+1} x, y\right\rangle-\frac{c^{n+1}}{(n+1)!}\langle x, y\rangle\right. \\
& \left.-\sum_{k=1}^{n} \frac{c^{n-k+1}}{k!(n-k+1)!}\left\langle\left(A-c 1_{H}\right)^{k} x, y\right\rangle\right] \mid \\
& \leq \frac{1}{2(n+1)!}\left(L_{n}-l_{n}\right) \\
& \times\left[(c-m)^{n+1} \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)+(M-c)^{n+1} \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{2(n+1)!}\left(L_{n}-l_{n}\right)\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n+1} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)
\end{align*}
$$

for any $x, y \in H$.
Proof. Consider the function $f: I \rightarrow \mathbb{R}$ defined by

$$
f(t):=g(t)-\frac{1}{(n+1)!} \frac{L_{n}+l_{n}}{2} \cdot t^{n+1} .
$$

Observe that

$$
f^{(k)}(t):=g^{(k)}(t)-\frac{1}{(n-k+1)!} \frac{L_{n}+l_{n}}{2} \cdot t^{n-k+1}
$$

for any $k=0, \ldots, n$.
Since $g^{(n)}$ is $\left(l_{n}, L_{n}\right)$-Lipschitzian it follows that $f^{(n)}(t):=g^{(n)}(t)-$ $\frac{L_{n}+l_{n}}{2} \cdot t$ is $\frac{1}{2}\left(L_{n}-l_{n}\right)$-Lipschitzian and applying Theorem 7 for the function f, we deduce after required calculations the desired result (2.8).

3. Applications

By utilizing Theorems 5 and 7 for the exponential function, we can state the following result:

Proposition 10. Let A be a self-adjoint operator in the Hilbert space H with the spectrum $S p(A) \subseteq[m, M]$ for some real numbers $m<M$ and $\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family, then for any $c \in[m, M]$ we have the inequality

$$
\begin{align*}
& \left|\left\langle e^{A} x, y\right\rangle-e^{c} \sum_{k=0}^{n} \frac{1}{k!}\left\langle\left(A-c 1_{H}\right)^{k} x, y\right\rangle\right| \tag{3.1}\\
& \leq \frac{1}{n!}\left[(c-m)^{n}\left(e^{c}-e^{m}\right) \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right. \\
& \left.+(M-c)^{n}\left(e^{M}-e^{c}\right) \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{n!} \max \left\{(M-c)^{n}\left(e^{M}-e^{c}\right),(c-m)^{n}\left(e^{c}-e^{m}\right)\right\} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{n!}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n}\left(e^{M}-e^{m}\right) \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{n!}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n}\left(e^{M}-e^{m}\right)\|x\|\|y\|
\end{align*}
$$

and

$$
\begin{align*}
& \left|\left\langle e^{A} x, y\right\rangle-e^{c} \sum_{k=0}^{n} \frac{1}{k!}\left\langle\left(A-c 1_{H}\right)^{k} x, y\right\rangle\right| \tag{3.2}\\
& \leq \frac{1}{(n+1)!} e^{M}\left[(c-m)^{n+1} \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)+(M-c)^{n+1} \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{(n+1)!} e^{M}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n+1} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{(n+1)!} e^{M}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n+1}\|x\|\|y\|
\end{align*}
$$

for any $x, y \in H$.
The same Theorems 5 and 7 applied for the logarithmic function produce:

Proposition 11. Let A be a positive definite operator in the Hilbert space H with the spectrum $S p(A) \subseteq[m, M] \subset(0, \infty)$ and $\left\{E_{\lambda}\right\}_{\lambda}$ be its spectral family, then for any $c \in[m, M]$ we have the inequalities

$$
\begin{align*}
& \left|\langle\ln A x, y\rangle-\langle x, y\rangle \ln c-\sum_{k=1}^{n} \frac{(-1)^{k-1}\left\langle\left(A-c 1_{H}\right)^{k} x, y\right\rangle}{k c^{k}}\right| \tag{3.3}\\
& \leq \frac{1}{n}\left[\frac{(c-m)^{n}\left(c^{n}-m^{n}\right)}{c^{n} m^{n}} \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right. \\
& \left.+\frac{(M-c)^{n}\left(M^{n}-c^{n}\right)}{M^{m} c^{m}} \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{n} \max \left\{\frac{(c-m)^{n}\left(c^{n}-m^{n}\right)}{c^{n} m^{n}}, \frac{(M-c)^{n}\left(M^{n}-c^{n}\right)}{M^{m} c^{m}}\right\} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{n}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n} \frac{\left(M^{n}-m^{n}\right)}{M^{m} m^{m}} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right) \\
& \leq \frac{1}{n}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n} \frac{\left(M^{n}-m^{n}\right)}{M^{m} m^{m}}\|x\|\|y\|
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle\langle\ln A x, y\rangle-\langle x, y\rangle \ln c-\sum_{k=1}^{n} \frac{(-1)^{k-1}\left\langle\left(A-c 1_{H}\right)^{k} x, y\right\rangle}{k c^{k}}\right| \tag{3.4}\\
& \leq \frac{1}{(n+1) m^{n+1}}\left[(c-m)^{n+1} \bigvee_{m}^{c}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)+(M-c)^{n+1} \bigvee_{c}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)\right] \\
& \leq \frac{1}{(n+1) m^{n+1}}\left(\frac{1}{2}(M-m)+\left|c-\frac{m+M}{2}\right|\right)^{n+1} \bigvee_{m}^{M}\left(\left\langle E_{(\cdot)} x, y\right\rangle\right)
\end{align*}
$$

for any $x, y \in H$.

References

[1] A. Bendikov and P. Maheux, Nash type inequalities for fractional powers of non-negative self-adjoint operators. Trans. Amer. Math. Soc. 359 (2007), no. 7, 3085-3097 (electronic).
[2] S. S. Dragomir, Čebyšev's type inequalities for functions of self-adjoint operators in Hilbert spaces, Linear and Multilinear Algebra 58 (2010), no. 7-8, 805 - 814. Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 9. [ONLINE: http://rgmia.org/v11(E).php].
[3] S. S. Dragomir, Grüss' type inequalities for functions of self-adjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 11. [ONLINE: http://rgmia.org/v11(E).php].
[4] S. S. Dragomir, Inequalities for the Čebyšev functional of two functions of selfadjoint operators in Hilbert spaces, Prerpint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 17 [ONLINE: http://rgmia.org/v11(E).php].
[5] S. S. Dragomir, Some trapezoidal vector inequalities for continuous functions of self-adjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 13 (2010), no. 2, Art. 14. [ONLINE http://rgmia.org/v13n2.php].
[6] S. S. Dragomir, Some Ostrowski's type vector inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 13 (2010), no. 2, Art. 7. [ONLINE http://rgmia.org/v13n2.php].
[7] S. S. Dragomir, Comparison between functions of self-adjoint operators in Hilbert spaces and integral means, Preprint RGMIA Res. Rep. Coll. 13 (2010), no. 2, Art. 10. [ONLINE http://rgmia.org/v13n2.php].
[8] S. S. Dragomir, Some generalized trapezoidal vector inequalities for continuous functions of self-adjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 13 (e) (2010), Art. 14. [ONLINE http://rgmia.org/v13(E).php].
[9] S. S. Dragomir, Some inequalities for power series of self-adjoint operators in Hilbert spaces via reverses of the Schwarz inequality, Integral Transforms Spec. Funct. 20 (2009), no. 9-10, 757-767.
[10] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded self-adjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[11] T. Hayashi, A note on the Jensen inequality for self-adjoint operators, J. Math. Soc. Japan 62 (2010), no. 3, 949-961.
[12] F. Kittaneh, Norm inequalities for commutators of self-adjoint operators, Integral Equations Operator Theory 62 (2008), no. 1, 129-135.
[13] F. Kittaneh, Norm inequalities for commutators of positive operators and applications, Math. Z. 258 (2008), no. 4, 845-849.
[14] F. Kittaneh, Inequalities for commutators of positive operators, J. Funct. Anal. 250 (2007), no. 1, 132-143.
[15] Z. Liu, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral, Soochow J. Math. 30 (2004), no. 4, 483-489.

S. S. Dragomir

Mathematics, School of Engineering \& Science, Victoria University, P.O. Box 14428, Melbourne, Australia
and
School of Computational \& Applied Mathematics, University of the Witwatersrand, Private Bag-3, Wits-2050, Johannesburg, South Africa
Email: sever.dragomir@vu.edu.au; sever.dragomir@wits.ac.za

