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BOUNDS FOR THE REGULARITY OF EDGE IDEAL
OF VERTEX DECOMPOSABLE AND SHELLABLE

GRAPHS

S. MORADI∗ AND D. KIANI

Communicated by Siamak Yassemi

Abstract. We give upper bounds for the regularity of edge ideal
of some classes of graphs in terms of invariants of graph. We in-
troduce two numbers a′(G) and n(G) depending on graph G and
show that for a vertex decomposable graph G, reg(R/I(G)) ≤
min{a′(G), n(G)} and for a shellable graph G, reg(R/I(G)) ≤ n(G).
Moreover, it is shown that for a graph G, where Gc is a d-tree, we
have pd(R/I(G)) = maxv∈V (G){degG(v)}.

1. Introduction

Let G be a simple graph with vertex set V (G) = {x1, . . . , xn} and edge
set E(G). The edge ideal of G in the polynomial ring R = k[x1, . . . , xn]
is defined as I(G) = (xixj : {xi, xj} ∈ E(G)). The edge ideal of a graph
was first considered by Villarreal [14]. Finding connections between
algebraic properties of an edge ideal and invariants of graph is of great
interest. One question in this area is to explain the regularity of an edge
ideal by some information from graph. For some classes of graphs, for
example, chordal graphs and shellable bipartite graphs, this question
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was answered; see [6] and [12]. For these graphs it was shown that the
regularity of R/I(G) was equal to the maximum number of pairwise 3-
disjoint edges in G, denoted by a(G). Also, in [9, Lemma 2.2], it was
shown that for any graph G, reg(R/I(G)) ≥ a(G). Here, we give upper
bounds for reg(R/I(G)) for shellable and vertex decomposable graphs
in terms of invariants of graph. First, we recall some definitions.

Let G be a graph. An independent set of G is a subset F ⊆ V (G)
such that e * F , for any e ∈ E(G). The independence complex of G
is the simplicial complex,

∆G = {F ⊆ V (G) : F is an independent set of G}.

For a simplicial complex ∆ on X, the Alexander dual simplicial
complex ∆∨ to ∆ is defined as follows:

∆∨ = {F ⊆ X;X \ F /∈ ∆}.

Definition 1.1. A simplicial complex ∆ is shellable if the facets (max-
imal faces) of ∆ can be ordered as F1, . . . , Fs such that for all 1 6 i <
j 6 s, there exist some v ∈ Fj \ Fi and some l ∈ {1, . . . , j − 1} with
Fj \ Fl = {v}. We call F1, . . . , Fs a shelling for ∆.

The above definition is referred to as non-pure shellable and is due to
Björner and Wachs [1]. Here, we will drop the adjective “non-pure”. A
graph G is called shellable, if the independence complex ∆G is shellable.

Definition 1.2. A monomial ideal I = (f1, . . . , fm) of the polynomial
ring R = k[x1, . . . , xn] has linear quotients, if there exists an or-
der f1 < · · · < fm on the generators of I such that the colon ideal
(f1, . . . , fi−1) : fi is generated by a subset of variables for, all 2 ≤ i ≤ m.

Also, for any 1 ≤ i ≤ m, setI(fi) is defined as:

setI(fi) = {xk : xk ∈ (f1, . . . , fi−1) : fi}.

The following result relates squarefree monomial ideals with linear quo-
tients and shellable simplicial complexes.

Theorem A. [7, Theorem 1.4] The simplicial complex ∆ is shellable if
and only if I∨∆ has linear quotients.

For a simplicial complex ∆ and F ∈ ∆, link of F in ∆ is defined as
lk∆(F ) = {G ∈ ∆ : G ∩ F = ∅, G ∪ F ∈ ∆} and the deletion of F is the
simplicial complex del∆(F ) = {G ∈ ∆ : G ∩ F = ∅}.
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Definition 1.3. Let ∆ be a simplicial complex on the vertex set V =
{x1, . . . , xn}. Then, ∆ is vertex decomposable if:

1) The only facet of ∆ is {x1, . . . , xn}, or ∆ = ∅.
2) There exists a vertex x ∈ V such that del∆(x) and lk∆(x) are

vertex decomposable, and such that every facet of del∆(x) is a facet of
∆.

A graph G is called vertex decomposable, if the independence complex
∆G is vertex decomposable.

The Castelnuovo-Mumford regularity (or simply regularity) of
an R-module M is defined as:

reg(M) := max{j − i| βi,j(M) 6= 0},
and

pd(M) := max{i| βi,j(M) 6= 0, for some j}.
For a monomial ideal I = (x11 · · ·x1n1 , . . . , xt1 · · ·xtnt) of the polyno-

mial ring R, the Alexande dual ideal of I, which is denoted by I∨, is
defined as:

I∨ = (x11, . . . , x1n1) ∩ · · · ∩ (xt1, . . . , xtnt).

The following theorem was proved in [11].
Theorem B. Let I be an square-free monomial ideal. Then, pd(I∨) =
reg(R/I).

Two edges {x, y} and {w, z} of G are called 3-disjoint, if the in-
duced subgraph of G on {x, y, w, z} consists of exactly two disjoint
edges or equivalently, in the complement graph Gc, the induced graph on
{x, y, w, z} is a four-cycle. A path of length n is the graph with V (G) =
{x1, . . . , xn+1} and E(G) = {{x1, x2}, {x2, x3}, . . . , {xn, xn+1}}.

Here, we find upper bounds for reg(R/I(G)) in the case of shellable
and vertex decomposable graphs. In Theorem 2.5, we show that for a
shellable graph G, reg(R/I(G)) ≤ n(G) and in Corollary 2.9 it is shown
that for a vertex decomposable graph G, reg(R/I(G)) ≤ min{a′(G), n(G)}.
In Theorem 2.10, it is shown that if Gc has no triangle, then reg(R/I(G)) ≤
2, and finally Theorem 2.13 shows that for a graph G, where Gc is a d-
tree, the projective dimention of R/I(G) is equal to maxv∈V (G){degG(v)}.

2. Main results

For a graph G, let a′(G) be the maximum number of vertex disjoint
paths of length at most two in G such that paths of lengths one are



270 Moradi and Kiani

pairwise 3-disjoint in G. Also, by α′(G) we mean the matching number
of G.

Theorem 2.1. Let G be a vertex decomposable graph. Then, reg(R/I(G))
≤ a′(G).

Proof. By Theorem B, we have reg(R/I(G)) = pd(I(G)∨). So, it is
enough to show that pd(I(G)∨) ≤ a′(G). By induction on |V (G)|, we
prove the assertion. For |V (G)| = 2, there is nothing to prove. Let
|V (G)| > 2. From the definition of vertex decomposable, there exists
a vertex x ∈ V (G) such that del∆(x) and lk∆(x) are vertex decom-
posable. Let H1 = G \ {x} and H2 = G \ ({x} ∪ NG(x)). It is easy
to see that del∆(x) = ∆H1 and lk∆(x) = ∆H2 . Thus, H1 and H2 are
vertex decomposable and each facet of ∆H1 is a facet of ∆G. Since a
minimal vertex cover of a graph is the complement of a facet of the
independence complex, for any minimal vertex cover C of H1, C ∪ {x}
is a minimal vertex cover of G. Also, observe that for each minimal
vertex cover C of G containing x, C \ {x} is a minimal vertex cover
of H1. Therefore, all the minimal vertex covers of G containing x are
C1 ∪ {x}, . . . , Cn ∪ {x}, where C1, . . . , Cn are the minimal vertex covers
of H1. Let NG(x) = {y1, . . . , yt} and let C be a minimal vertex cover
of G such that x /∈ C. Then, {y1, . . . , yt} ⊆ C and C \ {y1, . . . , yt} is a
minimal vertex cover of H2. Also, for a minimal vertex cover C of H2,
C ∪ {y1, . . . , yt} is a minimal vertex cover of G. Thus, the minimal ver-
tex covers of G, which do not contain x, are C ′

1 ∪ {y1, . . . , yt}, . . . , C ′
m ∪

{y1, . . . , yt}, where C ′
1, . . . , C

′
m are the minimal vertex covers of H2.

Therefore, I(G)∨ = xI(H1)∨+y1 · · · ytI(H2)∨. We show that xI(H1)∨∩
y1 · · · ytI(H2)∨ = xy1 · · · ytI(H2)∨. Let xC ∈ I(H2)∨ be a minimal
generator. Then, C ∪ {y1, . . . , yt} is a vertex cover of H1, and hence
xC ∈ I(H1)∨. Thus, xy1 · · · ytI(H2)∨ ⊆ xI(H1)∨∩y1 · · · ytI(H2)∨. Now,
let xC ∈ xI(H1)∨ ∩ y1 · · · ytI(H2)∨. Then, x, y1, . . . , yt ∈ C and C \ {x}
is a vertex cover of H1 and C \ {x, y1, . . . , yt} is a vertex cover of H2.
Thus, xC = xy1 · · · ytx

C\{x,y1,...,yt} ∈ xy1 · · · ytI(H2)∨. Thus, we have
the following short exact sequence:

0 → xy1 · · · ytI(H2)∨ → xI(H1)∨ ⊕ y1 · · · ytI(H2)∨ → I(G)∨ → 0.

Therefore, pd(I(G)∨) ≤ max{pd(I(H2)∨) + 1,pd(I(H1)∨)}. By in-
duction hypothesis, we have pd(I(H1)∨) ≤ a′(H1) and pd(I(H2)∨) ≤
a′(H2). We consider two cases.
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Case 1. Let degG(x) ≥ 2. Then, y1, x, y2 is a path of length two and
y1, x, y2 /∈ V (H2). Thus, a′(H2) + 1 ≤ a′(G). Since a′(H1) ≤ a′(G), we
have pd(I(G)∨) ≤ max{a′(H2) + 1, a′(H1)} ≤ a′(G).

Case 2. Let degG(x) = 1 and NG(x) = {y}, for some y. No minimal
vertex cover of H1 contains y, since if a minimal vertex cover of H1, say
C, contains y, then C ∪ {x} is a non-minimal vertex cover of G, which
is a contradiction, as discussed above. This means that each minimal
vertex cover of H1 contains NH1(y). Thus, PNH1

(y) ⊆ ∩n
i=1PCi = I(H1),

where PCi = (z : z ∈ Ci) and PNH1
(y) = (z : z ∈ NH1(y)). Then,

NH1(y) = ∅, since all the minimal generators of I(H1) are of degree two.
Therefore, x, y is a path which is 3-disjoint from the paths of length one
in H2 and disjoint from all paths in H2. Thus, a′(H2)+1 ≤ a′(G). Since
a′(H1) ≤ a′(G), the assertion follows from the inequality pd(I(G)∨) ≤
max{a′(H2) + 1, a′(H1)}.

Hà and Van Tuyl in [6] proved that for any graph G, reg(R/I(G)) ≤
α′(G), where α′(G) is the matching number, the largest number of pair-
wise disjoint edges in G. It is easy to see that a′(G) ≤ α′(G). The
following example shows that a′(G) is a smaller upper bound for vertex
decomposable graphs. �

Example 2.2. Let G be a graph which is obtained by adding a vertex
x to the cycle C2n+1 and joining it to one vertex of C2n+1. Let y ∈
V (C2n+1) be a vertex that xy ∈ E(G). Observe that H1 = G \ {y}
and H2 = G \ ({y} ∪NG(y)) are path graphs and hence they are vertex
decomposable. Also, any facet of ∆H1 is a facet of ∆G. Therefore, G is
vertex decomposable. One can see that α′(G) = n + 1 and a′(G) = n.

The following theorem, was proved in [8].

Theorem 2.3. [8, Lemma 1.5] Suppose that I = (u1, . . . , um) is a mono-
mial ideal with linear quotients with the ordering u1 < · · · < um such
that deg(u1) ≤ deg(u2) ≤ · · · ≤ deg(um). Then, the iterated mapping
cone F , derived from the sequence u1, . . . , um, is a minimal graded free
resolution of I, and for all i > 0, the symbols

f(σ;u) with u ∈ G(I), σ ⊆ setI(u), |σ| = i

form a homogeneous basis of the R-module Fi. Moreover, deg f(σ;u) =
|σ|+ deg(u).
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In the following theorem, we show that for a shellable graph there ex-
ists a vertex x ∈ V (G) such that reg(R/I(G)) is bounded by reg(R/I(G\
({x} ∪ NG(x))) + 1. For a subset F ⊆ V (G), the monomial

∏
x∈F x is

denoted by xF .

Theorem 2.4. Let G be a shellable graph. There exists a vertex x ∈
V (G) such that if H = G \ ({x} ∪NG(x)), then

reg(R/I(G)) ≤ reg(R/I(H)) + 1.

Proof. By Theorem B, we have reg(R/I(G)) = pd(I(G)∨). Let J =
I(G)∨. From Theorem A, there exists an order of linear quotients u1 <
· · · < ut on the minimal generators of J . From [10, Lemma 2.1], one can
assume that deg(u1) ≤ · · · ≤ deg(ut). Thus, by Theorem 2.3, we have
βi(J) =

∑t
j=1

(| setJ (uj)|
i

)
. Therefore, pd(J) = max{| setJ(ui)| : 1 ≤ i ≤

t}. For any i, 1 ≤ i ≤ t, we have ui = xCi , where Ci ⊆ V (G) is a
minimal vertex cover of G. Let pd(J) = | setJ(xCl)|, for some 1 ≤ l ≤ t,
and setJ(xCl) = (x1, . . . , xr). Set x = xr, H = G \ ({x} ∪ NG(x)) and
K = I(H)∨. The set of minimal vertex covers of H is {Ci \ NG(x) :
NG(x) ⊆ Ci}. Let 1 ≤ i1 < · · · < ik ≤ t be all integers such that
NG(x) ⊆ Cij , for 1 ≤ j ≤ k. Then, K = (xCij

\NG(x) : 1 ≤ j ≤
k). Also, the ordering xCi1

\NG(x) < · · · < xCik
\NG(x) is an order of

linear quotients for K and is degree increasing. Since x ∈ setJ(xCl),
we have x /∈ Cl. Thus, NG(x) ⊆ Cl. Therefore, l = il′ , for some
1 ≤ l′ ≤ k. From the definition of linear quotients we see that for
any 1 ≤ i ≤ r − 1, there exists λi < l such that Cλi

\ Cl = {xi}.
It is easy to see that x /∈ Cλi

(1 ≤ i ≤ r − 1). This means that
NG(x) ⊆ Cλi

, and consequently (xCλi
\NG(x) : xCl\NG(x)) = (xi), for any

i, 1 ≤ i ≤ r − 1. Therefore, setK(xCl\NG(x)) = {x1, . . . , xr−1}. Thus,
reg(R/I(H)) = pd(K) ≥ | setK(xCl\NG(x))| = r − 1 = reg(R/I(G)) −
1. �

Let G be a graph and x ∈ V (G). By a whisker we mean adding a
new vertex y to G and connecting y to x. This new graph is denoted
by G ∪ W (x). We denote by G ∪ W (G) the graph obtained from G by
adding whiskers to all vertices of G. In the following theorem, the set of
all induced subgraphs of G is denoted by S(G).
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Theorem 2.5. Let G be a shellable graph and

n(G) = max{|V (H)| : H ∈ S(G),H ∪W (H) ∈ S(G)}.

Then, reg(R/I(G)) ≤ n(G).

Proof. By Theorem B, it is enough to show that pd(I(G)∨) ≤ n. With
the same notations as in Theorem 2.4, let xC1 < · · · < xCt be an order of
linear quotients for I(G)∨ and pd(I(G)∨) = | setI(G)∨(xCl)| = r, for some
1 ≤ l ≤ t. Let setI(G)∨(xCl) = (x1, . . . , xr) and xCi1 , . . . , xCir < xCl be
the monomials for which (xCij : xCl) = (xj), for any 1 ≤ j ≤ r. For any
1 ≤ j ≤ r, we have xj /∈ Cl and xj ∈ Cij . Therefore, NG(xj) * Cij ,
since Cij is a minimal vertex cover of G. Also, for any 1 ≤ j, k ≤ r,
where k 6= j, we have xk /∈ Cij , since Cij \Cl = {xj}. For any 1 ≤ j ≤ r,
let yj ∈ NG(xj) \ Cij . Thus, for any 1 ≤ j, k ≤ r, where k 6= j, we
have xkyj /∈ E(G). Otherwise, for the minimal vertex cover Cij we have
xk ∈ Cij or yj ∈ Cij , which is a contradiction. Let H be the induced
subgraph of G on the vertex set {y1, . . . , yr}. We have xjyj ∈ E(G)
and xjyk /∈ E(G), for any 1 ≤ j, k ≤ r, where k 6= j. This means that
H ∪W (H) ∈ S(G). Therefore, pd(I(G)∨) = r = |V (H)| ≤ n. �

Example 2.6. Consider the graph G with vertex set {x1, . . . , x4} and
edge set {x1x2, x1x3, x2x3, x1x4}. Then, G is shellable with reg(R/I(G))
= 1. We have α′(G) = 2 and n(G) = 1. This shows that n(G) is a smaller
upper bound for shellable graphs.

Example 2.7. Let G be a graph which is obtained by adding a vertex
x to the cycle C2n+1 and joining it to two adjacent vertices of C2n+1.
Then, by [2, Proposition 4.3], G is vertex decomposable and hence it
is shellable. One can see that α′(G) = n + 1. Obsereve that n(G) ≤
b |V (G)|

2 c = n + 1. We show that n(G) < n + 1. By contradiction,
assume that n(G) = n + 1. Let H be an induced subgraph of G such
that n(G) = |V (H)| = n + 1. Then, |H ∪ W (H)| = 2n + 2. Hence,
H ∪ W (H) = G. Thus, G has n + 1 vertices of degree one, which is a
contradiction. Therefore, n(G) < α′(G).

Remark 2.8. There are graphs for which a′(G) < n(G). The path
graph of length three is such an example for which a′(G) = 1 and n(G) =
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2. Also, there are graphs for which n(G) < a′(G). Consider the complete
graph Kn for n ≥ 6. We have n(G) = 1 and a′(G) ≥ 2.

Corollary 2.9. Let G be a vertex decomposable graph. Then, reg(R/I(G))
≤ min{a′(G), n(G)}.

Proof. This follows from theorems 2.1, 2.5 and the fact that every
vertex decomposable graph is shellable, which was proved in [1, Theorem
11.3]. �

Theorem 2.10. Let G be a graph such that Gc has no triangle. Then,
reg(R/I(G)) ≤ 2. In addition, if Gc is not chordal, then reg(R/I(G)) =
2.

Proof. From Hochster’s formula, we have

βi,j(R/I(G)) =
∑

S⊆V ;|S|=j

dim H̃j−i−1(∆(Gc
S),K),

where, GS denotes the induced subgraph of G on the vertex set S. Since
Gc has no cycle of length 3, any clique in Gc is of cardinality at most
2. Thus, H̃i(∆(Gc

S),K) = 0, for any i > 1 and any S. Therefore,
H̃j−i−1(∆(Gc

S),K) = 0, for any j − i > 2. Thus, for any i and j such
that βi,j(R/I(G)) 6= 0, one has j−i ≤ 2 and the result holds. If Gc is not
chordal, then by [4, Theorem 1], I(G) does not have a linear resolution
and hence reg(R/I(G)) 6= 1. Thus, reg(R/I(G)) = 2. �

Definition 2.11. A d-tree is a chordal graph defined inductively as
follows:

(i) Kd+1 is a d-tree.
(ii) If H is a d-tree, then so is G = H ∪Kd

Kd+1.

Edge ideals with 2-linear resolution were characterized in [4, The-
orem 1] and it was shown that I(G) has linear resolution precisely,
when Gc is a chordal graph. Eliahou and Villarreal in [3] conjectured
that pd(R/I(G)), where I(G) has 2-linear resolution, is equal to the
maximum degree of vertices of G. In the following theorem, we show
that for a graph G such that Gc is a d-tree, we have pd(R/I(G)) =
maxv∈V (G){degG(v)}. This statement is not true for an arbitrary ideal
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with 2-linear resolution. Consider the cycle C4. Clearly Cc
4 is chordal,

and hence I(C4) has 2-linear resolution, but pd(R/I(C4)) = 3, while
maxv∈V (C4){degC4

(v)} = 2.
To prove Theorem 2.13 we need the following lemma.

Lemma 2.12. Let G be a d-tree. Then, degG(v) ≥ d, for any v ∈ V (G).

Proof. We proceed inductively in terms of the definition of a d-tree. If
G = Kd+1, then the assertion is clear. Let G = H ∪Kd

Kd+1, where H is
a d-tree. Then, by the induction hypothesis, degH(v) ≥ d, for any v ∈
V (H). Let V (G) = V (H) ∪ {x}, where {x} = V (Kd+1) \ V (H). Then,
degG(x) = d, and for any v ∈ V (H), we have degG(v) ≥ degH(v) ≥
d. �

Theorem 2.13. Let G be a graph such that Gc is a d-tree. Then,
pd(R/I(G)) = maxv∈V (G){degG(v)}.

Proof. We prove by induction on |V (G)| that I(G) has linear quotients
and pd(R/I(G)) = maxv∈V (G){degG(v)}. For |V (G)| = 2 the result is
clear. Let |V (G)| > 2 and G′ = Gc. Here, we have G′ = H ∪Kd

Kd+1,
where H is a d-tree. Let V (G′) \ V (H) = {x}, V (H) ∩ V (Kd+1) =
{x1, . . . , xd} and V (H) \ V (Kd) = {y1, . . . , yk}. Since H is a d-tree, by
the induction hypothesis, I(Hc) has linear quotients and pd(R/I(Hc)) =
maxv∈V (Hc){degHc(v)}. We have I(G) = (xy1, . . . , xyk) + I(Hc). Let
u1 < · · · < ul be an order of linear quotients for the minimal generators
of I(Hc). We claim that the ordering xy1 < · · · < xyk < u1 < · · · < ul

is an order of linear quotients for I(G). Consider two monomials xyi

and uj , for some 1 ≤ i ≤ k and 1 ≤ j ≤ l, and let uj = zw, for
some z, w ∈ V (H). Since {z, w} is not an edge of H, then at least
one of z and w is not in V (Kd). Without loss of generality, assume
that w /∈ V (Kd). Then, w = yj′ , for some 1 ≤ j′ ≤ k. We have
x|(xyi : uj), xyj′ < uj and (xyj′ : uj) = (x). For xyi < xyj , we have
(xyi : xyj) = (yi), and for ui < uj , since u1 < · · · < ul is an order
of linear quotients, the result holds. Now, by Theorem 2.3, we have
pd(I(G)) = max{| setI(G)(zw)| : {z, w} ∈ E(G)} and pd(I(Hc)) =
max{| setI(Hc)(zw)| : {z, w} ∈ E(Hc)}. For any 1 ≤ i ≤ k, we have
setI(G)(xyi) = {y1, . . . , yi−1}. For any 1 ≤ j ≤ l, we know that uj =
yj′zj , for some 1 ≤ j′ ≤ k and some zj ∈ V (H). Thus, setI(G)(uj) =
{x} ∪ setI(Hc)(uj). Therefore, pd(I(G)) = max{pd(I(Hc)) + 1, k − 1},
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and hence pd(R/I(G)) = pd(I(G)) + 1 = max{pd(R/I(Hc)) + 1, k}.
Since pd(R/I(Hc)) = maxv∈V (Hc){degHc(v)}, thus

pd(R/I(G)) = max
v∈V (Hc)

{degHc(v) + 1, k}.

For any i, 1 ≤ i ≤ k, we have degG(yi) = degHc(yi) + 1, because x is
adjacent to yi in G. We claim that for any 1 ≤ i ≤ d, degG(xi) < k.
Let 1 ≤ i ≤ d be an integer. Since H is a d-tree, by Lemma 2.12 we
have degH(xi) ≥ d. So, there exists yj , for some 1 ≤ j ≤ k, such that
xiyj ∈ E(H). Therefore, degHc(xi) < k. Thus, degHc(xi) + 1 ≤ k, for
any i, 1 ≤ i ≤ d. Since degHc(xi) = degG(xi), then degG(xi) < k, for any
i, 1 ≤ i ≤ d . Since degG(x) = k, thus maxv∈V (Hc){degHc(v) + 1, k} =
maxv∈V (G){degG(v)} and the proof is complete. �
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