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JORDAN DERIVATIONS ON TRIVIAL EXTENSIONS

HOGER GHAHRAMANI

Communicated by Bernhard Keller

Abstract. Let A be a unital R-algebra and M be a unital A-
bimodule. It is shown that every Jordan derivation of the trivial
extension of A by M, under some conditions, is the sum of a deriva-
tion and an antiderivation.

1. Introduction

Throughout the paper R will denote a commutative ring with unity.
Let A be an algebra over R. Recall that an R-linear map ∆ from A
into an A-bimoduleM is said to be a Jordan derivation if ∆(ab+ ba) =
∆(a)b+ a∆(b) + ∆(b)a+ b∆(a) for all a, b ∈ A. It is called a derivation
if ∆(ab) = ∆(a)b + a∆(b) for all a, b ∈ A. Each map of the form
a→ am−ma, wherem ∈M, is a derivation which will be called an inner
derivation. Also ∆ is called an antiderivation if ∆(ab) = ∆(b)a+ b∆(a)
for all a, b ∈ A. We shall say that an antiderivation ∆ is improper if it
is a derivation; otherwise we shall say that ∆ is proper. Clearly, each
derivation or antiderivation is a Jordan derivation. The converse is, in
general, not true (see [6]).

It is natural and very interesting to find some conditions under which
a Jordan derivation is a derivation. Herstein [14] proved that every Jor-
dan derivation from a 2-torsion free prime ring into itself is a derivation
and that there are no nonzero antiderivations on a prime ring. Brešar
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[8] showed that every additive Jordan derivation from a 2-torsion free
semiprime ring into itself is a derivation. Sinclair [18] proved that every
continuous linear Jordan derivation on semisimple Banach algebras is a
derivation. Zhang in [21] proved that every linear Jordan derivation on
nest algebras is an inner derivation. Lu [17] proved that every additive
Jordan derivation on reflexive algebras is a derivation which generalized
the result in [21]. Benkovič [6] determined Jordan derivations on tri-
angular matrices over commutative rings and proved that every Jordan
derivation from the algebra of all upper triangular matrices into its arbi-
trary bimodule is the sum of a derivation and an antiderivation. Zhang
and Yu [23] showed that every Jordan derivation of triangular algebras
is a derivation, so every Jordan derivation from the algebra of all upper
triangular matrices into itself is a derivation.

In this note we study the Jordan derivations on trivial extensions and
generalize the Zhang and Yu’s result [23].

2. Preliminaries

Recall that a triangular algebra Tri(A,M,B) is an R-algebra of the
form

Tri(A,M,B) =

{(
a m
0 b

) ∣∣ a ∈ A, m ∈M, b ∈ B
}

under the usual matrix operations, where A and B are unital algebras
over R and M is a unital (A,B)-bimodule which is faithful as a left A-
module as well as a right B-module (see [9]). Basic examples of triangular
algebras are upper triangular matrix algebras and nest algebras [11],
[13]. Recently, there has been a growing interest in the study of special
maps on triangular algebras, such as commuting linear maps [9], Lie
derivations [10], commuting traces of bilinear maps and commutativity
preserving linear maps [7], biderivations [5], functional identities [4],
Jordan isomorphisms [19], Jordan derivations [23] and Jordan higher
derivations [20].

Let A be a unital algebra over R and M be a unital A-bimodule.
A×M as an R-module together with the algebra product defined by:

(a,m).(b, n) = (ab, an+mb) (a, b ∈ A, m, n ∈M)

is an R-algebra with unity (1, 0), which is called the trivial extension
of A by M and denoted by T (A,M). Trivial extensions have been
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extensively studied in the algebra and analysis (see, for instance, [1], [2],
[3], [12], [15], [16] and [22] ).

Let Tri(A,M,B) be a triangular algebra overR. Denote by A⊕B the
direct sum of A and B as R-algebra, and viewM as an A⊕B-bimodule
with the module actions given by

(a, b).m = am, m.(a, b) = mb, a ∈ A, b ∈ B, m ∈M.

Then Tri(A,M,B) is isomorphic to T (A⊕ B,M) as an R-algebra. So
triangular algebras are examples of trivial extensions.

The following notations will be used in our paper.
Let A be an R-algebra and M be an A-bimodule, define the left anni-
hilator of M by l.annAM = {a ∈ A : aM = {0}}. Similarly, we define
the right annihilator of M by r.annAM = {a ∈ A : Ma = {0}}. Also
we denote the unity and zero of T (A,M) by 1 and 0, respectively.

3. Main result

The main result of the paper is the following theorem.

Theorem 3.1. Let A be a unital algebra over the 2-torsion free com-
mutative ring R and M be a unital A-bimodule. Suppose that E is a
non-trivial idempotent element in A and E ′=1-E such that

EAE′AE = {0}, E′AEAE′ = {0},

E(l.annAM)E = {0}, E′(r.annAM)E′ = {0},
and EME′ = M for all M ∈ M. Let U = T (A,M) and ∆ : U → U
be a Jordan derivation and let P = (E, 0) and Q = (E′, 0). Then there
exists a derivation δ : U → U and an antiderivation J : U → U such
that ∆ = δ + J , J(PXP)=0 and J(QXQ)=0 for any X ∈ U . Moreover,
δ and J are uniquely determined.

To prove the theorem we need some lemmas. We consider the condi-
tions of this theorem in the lemmas. Note that, P and Q are idempotents
of U such that P +Q = 1 and PQ = 0.

We will show that the Jordan derivation ∆ is a sum of an antideriva-
tion J (see Lemma 3.3), an inner derivation I (see Lemma 3.5) and a
derivation D (see Lemma 3.8).

Lemma 3.2. For every X,Y ∈ U , we have

PXQY P = 0 and QXPY Q = 0.
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Proof. For all M ∈M, since EME′ = M , we have

EME = 0, E′ME = 0, E′ME′ = 0,

EM = M, ME′ = M, ME = 0, E′M = 0.

LetX = (A,M) and Y = (B,N). So PXQY P = (EAE′BE,EAE′NE+

EME
′
BE) = 0 as ECE = 0 for all C ∈ M and EAE′AE = {0}. Sim-

ilarly, QXPY Q = 0. �

Lemma 3.3. The mapping J : U → U defined by

J(X) = P∆(QXP )Q+Q∆(PXQ)P

is an antiderivation. Also J(PXP)=0 and J(QXQ)=0 for all X ∈ U .

Proof. Clearly, J is an R-linear map. Since ∆ is a Jordan derivation,
for all X,Y ∈ U we have

∆(QXPY P ) = ∆(QXPPY P )

= ∆(QXPPY P + PY PQXP )

= ∆(QXP )PY P +QXP∆(PY P )(3.1)

+PY P∆(QXP ) + ∆(PY P )QXP.

Similarly

∆(QXQY P ) = ∆(QXQ)QY P +QXQ∆(QY P )

+QY P∆(QXQ) + ∆(QY P )QXQ.(3.2)

∆(PXPY Q) = ∆(PXP )PY Q+ PXP∆(PY Q)

+PY Q∆(PXP ) + ∆(PY Q)PXP.(3.3)

∆(PXQY Q) = ∆(PXQ)QY Q+ PXQ∆(QY Q)

+QY Q∆(PXQ) + ∆(QY Q)PXQ.(3.4)

Thus,

P∆(QXPY P )Q = PY P∆(QXP )Q;

P∆(QXQY P )Q = P∆(QY P )QXQ;

Q∆(PXPY Q)P = Q∆(PY Q)PXP ;

Q∆(PXQY Q)P = QY Q∆(PXQ)P.
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From these relations and Lemma 3.2 we arrive at

J(XY ) = P∆(QXY P )Q+Q∆(PXY Q)P

= P∆(QXPY P )Q+ P∆(QXQY P )Q

+Q∆(PXPY Q)P +Q∆(PXQY Q)P

= PY P∆(QXP )Q+ P∆(QY P )QXQ

+Q∆(PY Q)PXP +QY Q∆(PXQ)P

= Y P∆(QXP )Q+ P∆(QY P )QX

+Q∆(PY Q)PX + Y Q∆(PXQ)P

= Y J(X) + J(Y )X.

So J is an antiderivation . By the definition of J it is clear that
J(PXP ) = 0 and J(QXQ) = 0 for all X ∈ U . The proof is now
complete. �

Lemma 3.4. If J : U → U is an improper antiderivation, J(PXP ) = 0
and J(QXQ) = 0 for all X ∈ U , then J = 0.

Proof. First, observe that J(P ) = J(PPP ) = 0. Similarly, we have
J(Q) = 0. Then, since J is a derivation and an antiderivation, we have

J(PXQ) = PJ(XQ) + J(P )XQ = PJ(XQ)

= P (QJ(X) + J(Q)X) = 0.

Similarly, J(QXP ) = 0. So

J(X) = J(PXP ) + J(PXQ) + J(QXP ) + J(QXQ) = 0

for all X ∈ U . �

Lemma 3.5. Let T = P∆(P )Q−Q∆(P )P and the mapping I : U → U
be defined by

I(X) = P∆(PXP +QXQ)Q+Q∆(PXP +QXQ)P.

Then for every X ∈ U we have

I(X) = XT − TX.

Proof. All Y ∈ U satisfy

0 = ∆((PY P )(QY Q) + (QY Q)(PY P ))

= PY P∆(QY Q) + ∆(PY P )QY Q(3.5)

+QY Q∆(PY P ) + ∆(QY Q)PY P.
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From this, for every Y ∈ U , we obtain

PY P∆(QY Q)Q+ P∆(PY P )QY Q = 0(3.6)

and

QY Q∆(PY P )P +Q∆(QY Q)PY P = 0.(3.7)

For any X ∈ U replace Y by X + P in (3.6). This gives

PXP∆(QXQ)Q+P∆(QXQ)Q+P∆(PXP )QXQ+P∆(P )QXQ = 0.

Hence, replacing X by QXQ in the previous equation, we get that
P∆(QXQ)Q + P∆(P )QXQ = 0 for any X ∈ U . If X = Q in this
relation, then P∆(Q)Q+ P∆(P )Q = 0.

Now, for any X ∈ U replace Y by PXP +Q in (3.6) we obtain

PXP∆(Q)Q+ P∆(PXP )Q = 0.

According to these relations we have −PXP∆(P )Q+P∆(PXP )Q = 0.
Similarly, we can obtain from relation (3.7) that

Q∆(QXQ)P+QXQ∆(P )P = 0 and −Q∆(P )PXP+Q∆(PXP )P = 0

for all X ∈ U . These relations and Lemma 3.2 imply

I(X) = P∆(PXP )Q+ P∆(QXQ)Q+Q∆(PXP )P +Q∆(QXQ)P

= PXP∆(P )Q− P∆(P )QXQ+Q∆(P )PXP −QXQ∆(P )P

= XP∆(P )Q− P∆(P )QX +Q∆(P )PX −XQ∆(P )P

= XT − TX.
�

Lemma 3.6. Let X ∈ U . Then

(a) If PXPZQ=0 for all Z ∈ U , then PXP=0;
(b) If PZQXQ=0 for all Z ∈ U , then QXQ=0.

Proof. (a) Write X = (A,N). Let M ∈ M, and set Z = (0,M). We

have EME
′

= M by assumption and EN = N for all N ∈M from the
proof of Lemma 3.2. Hence,

ENE = 0 and 0 = PXPZQ = (0, EAEME
′
) = (0, AM),

so A ∈ l.annAM. Hence, by assumptions we obtain EAE = 0, therefore

PXP = (EAE,ENE) = 0.

Similarly, we can show that (b) holds. �
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Lemma 3.7. For every X ∈ U we have

P∆(QXQ)P = 0, Q∆(PXP )Q = 0, P∆(PXQ)P = 0,

Q∆(PXQ)Q = 0, P∆(QXP )P = 0, Q∆(QXP )Q = 0.

Proof. Using (3.5) we see that for all Y ∈ U , we have

PY P∆(QY Q)P + P∆(QY Q)PY P = 0.

For any X ∈ U replace Y by QXQ+P , so P∆(QXQ)P = 0. Similarly,
replacing Y by PXP+Q in (3.5), and multiplying the resulting equation
by Q both on the left and on the right, yields Q∆(PXP )Q = 0, for all
X ∈ U .

If we multiply (3.1) by P and replace Y by P , we obtain P∆(QXP )P =
0 for all X ∈ U , since Lemma 3.2 holds. Similarly, multiplying (3.1) by
Q and replacing Y by P , we get Q∆(QXP )Q = 0 for all X ∈ U .

As above, from (3.4) and Lemma 3.2, we have P∆(PXQ)P = 0 and
Q∆(PXQ)Q = 0, for all X ∈ U . �

Lemma 3.8. The mapping D : U → U defined by D(X) = P∆(PXP )P+
P∆(PXQ)Q+Q∆(QXP )P +Q∆(QXQ)Q is a derivation.

Proof. D is an R-linear map. From (3.3) and Lemma 3.7 it follows
immediately that

P∆(PXPY Q)Q = PXP∆(PY Q)Q+ P∆(PXP )PY Q

for all X,Y ∈ U . So for every X,Y, Z ∈ U we have

P∆(PXPY PZQ)Q = PXPY P∆(PZQ)Q+ P∆(PXPY P )PZQ.

On the other hand,

P∆(PXPY PZQ)Q = PXPY P∆(PZQ)Q

+PXP∆(PY P )PZQ+ P∆(PXP )PY PZQ.

By comparing the two expressions for P∆(PXPY PZQ)Q, we arrive at

P (∆(PXPY P )−∆(PXP )PY −XP∆(PY P ))PZQ = 0

for any Z ∈ U . Therefore, by Lemma 3.6, we have

P∆(PXPY P )P = P∆(PXP )PY P + PXP∆(PY P ))P.

Similarly, from (3.4) we get

P∆(PXQY Q)Q = P∆(PXQ)QY Q+ PXQ∆(QY Q)Q



642 Hoger Ghahramani

and

Q∆(QXQY Q)Q = Q∆(QXQ)QY Q+QXQ∆(QY Q)Q

for all X,Y ∈ U .
Similarly, we can obtain from (3.1), (3.2) and Lemma 3.6 that

Q∆(QXPY P )P = Q∆(QXP )PY P +QXP∆(PY P )P

and

Q∆(QXQY P )P = QXQ∆(QY P )P +Q∆(QXQ)QY P

for all X,Y ∈ U .
These relations with Lemma 3.2 gives us that D(XY ) = XD(Y ) +

D(X)Y for allX,Y ∈ U . That is, D is a derivation from U into itself. �

Proof of Theorem 3.1. For any X ∈ U we have

X = PXP + PXQ+QXP +QXQ

so, by Lemmas 3.3, 3.5, 3.7 and 3.8 it follows immediately that ∆(X) =
J(X) + I(X) + D(X) for all X ∈ U where δ = D + I is a derivation
and J is an antiderivation from U into itself such that J(PXP ) = 0 and
J(QXQ) = 0 for any X ∈ U .

Let δ
′

: U → U be a derivation and J
′

: U → U be an antideriva-
tion such that ∆ = δ

′
+ J

′
, J

′
(PXP ) = 0 and J

′
(QXQ) = 0 for any

X ∈ U . So δ + J = δ
′

+ J
′

and hence δ − δ
′

= J − J
′
. Therefore,

J − J ′
is an improper antiderivation such that (J − J ′

)(PXP ) = 0 and

(J−J ′
)(QXQ) = 0. Thus, by Lemma 3.4, we have J = J

′
and hence δ =

δ
′
. So we have that δ and J are uniquely determined. The proof of The-

orem 3.1 is thus complete. �

Note that if J 6= 0, then J is a proper antiderivation (by Lemma 3.4).

Remark 3.9. By the above lemmas and the proof of Theorem 3.1, one
observes that if ∆ : U → U is a Jordan derivation, then the following
are equivalent.

(a) ∆ is a derivation.
(b) P∆(QXP )Q = 0 and Q∆(PXQ)P = 0 for all X ∈ U .
(c) ∆(PUQ) ⊆ PUQ and ∆(QUP ) ⊆ QUP.

We have the following corollary, which was proved by a different
method in [23].
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Corollary 3.10. Let A, B be unital algebras over the 2-torsion free
commutative ring R, M be a unital (A,B)-bimodule that is faithful as a
left A-module and also as a right B-module. Let T = Tri(A,M,B) be
the triangular algebra. Then every Jordan derivation from T into itself
is a derivation.

Proof. Let A ⊕ B be the direct sum of A and B as R-algebras and
E = (1, 0). Consider T (A ⊕ B,M) as defined in introduction. So this
trivial extension satisfies all the requirements in Theorem 3.1 and there-
fore any Jordan derivation on it satisfies condition (b) of Remark 3.9.
Therefore, every Jordan derivation on T (A⊕B,M) is a derivation. By
the isomorphism given in the introduction we have the result. �

Remark 3.11. Let T = Tri(A,M,B) be a triangular algebra satisfying

the conditions of Corollary 3.10, P =

(
1 0
0 0

)
be the standard idempo-

tent of T and Q = 1− P . Suppose that N is a unital T -bimodule such
that QNP = {0} and, let for N ∈ N , the condition PNPT Q = {0}
implies PNP = 0 and the condition PT QNQ = {0} implies QNQ = 0.
Then (P, 0) and (Q, 0) are idempotents of T (T ,N ) such that

(Q, 0)T (T ,N )(P, 0) = {(0, 0)}.
Let (S,N) ∈ T (T ,N ) such that

(P, 0)(S,N)(P, 0)T (T ,N )(Q, 0) = {(0, 0)}.
So for each S

′ ∈ T we have (P, 0)(S,N)(P, 0)(S
′
, 0)(Q, 0) = (0, 0) and

hence (PSPS
′
Q,PNPS

′
Q) = (0, 0). Therefore, PSPT Q = {0} and

PNPT Q = {0}. By assumption, we have PSP = 0 and PNP = 0. So
(P, 0)(S,N)(P, 0) = 0. Similarly, if (P, 0)T (T ,N )(Q, 0)(S,N)(Q, 0) =
{(0, 0)}, then (Q, 0)(S,N)(Q, 0) = 0. Therefore

T (T ,N ) ∼=
(

(P, 0)T (T ,N )(P, 0) (P, 0)T (T ,N )(Q, 0)
0 (Q, 0)T (T ,N )(Q, 0)

)
.

Thus, T (T ,N ) is a triangular algebra. So by Corollary 3.10 every Jordan
derivation from T (T ,N ) into itself is a derivation.

Let A be a unital algebra over R and M be a unital A-bimodule.
An R-linear map δ from A into M is a Jordan derivation (derivation)
if and only if the R-linear map ∆ : T (A,M) → T (A,M), given by
∆(A,M) = (0, δ(A)), is a Jordan derivation (derivation). From this
result and Remark 3.11, we have the next corollary which is a general-
ization of Corollary 3.10.
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Corollary 3.12. Let T = Tri(A,M,B) be a triangular algebra satis-
fying the conditions of Corollary 3.10 and N be a unital T -bimodule as
in the Remark 3.11. Then every Jordan derivation from T into N is a
derivation.

We now provide an example of trivial extension which satisfies condi-
tions of Theorem 3.1, but is not a triangular algebra.

Example 3.13. Let R be a 2-torsion free commutative ring with unity
and A be the R-algebra of 2× 2 lower triangular matrices over R. We
make R into an A-bimodule by defining RA = RA22 and AR = A11R
for all R ∈ R, A ∈ A. Let E = E11. Then the conditions of The-
orem 3.1 hold for T (A,R) but this trivial extension is not a trian-
gular algebra because the map ∆ : T (A,R) → T (A,R) defined by
∆(A,R) = (RE21, A21) is a proper antiderivation, while by the above
corollary, triangular algebras have no nonzero proper antiderivations.
(We denote Eij for the matrix units, for all i, j.)
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