Bulletin of the Iranian Mathematical Society Vol. 39 No. 4 (2013), pp 619-625.

COMPLEMENT OF SPECIAL CHORDAL GRAPHS AND VERTEX DECOMPOSABILITY

M. ALIZADEH* AND A. GOODARZI

Communicated by Ebadollah S. Mahmoodian

ABSTRACT. In this paper, we introduce a subclass of chordal graphs which contains *d*-trees and show that their complement are vertex decomposable and so is shellable and sequentially Cohen-Macaulay. This result improves the main result of Ferrarello who used a theorem due to Fröberg and extended a recent result of Dochtermann and Engström.

1. Introduction

Let k be a field. To any finite simple graph G with vertex set $V = [n] := \{1, \dots, n\}$ and edge set E(G) one associates an ideal $I(G) \subset k[x_1, \dots, x_n]$ generated by all monomials $x_i x_j$ such that $\{i, j\} \in E(G)$. The ideal I(G) and the quotient ring $k[x_1, \dots, x_n]/I(G)$ are called the edge ideal of G and the edge ring of G, respectively. The independence complex of G is defined by

Ind $(G) = \{A \subseteq V | A \text{ is an independent set in } G\},\$

A is said to be an independent set in G if none of its elements are adjacent. Note that Ind (G) is precisely the simplicial complex with the Stanley-Reisner ideal I(G). We denoted by Δ_G the clique complex of G, which is the simplicial complex with vertex set V and with faces

MSC(2010): Primary: 13H10; Secondary: 05E25.

Keywords: sequentially Cohen-Macaulay, vertex decomposable, chordal graphs.

Received: 8 March 2011, Accepted: 25 May 2011.

^{*}Corresponding author

 $[\]odot$ 2013 Iranian Mathematical Society.

⁶¹⁹

the cliques of G. It is easy to see that $\Delta_G = \text{Ind}(\overline{G})$, where \overline{G} is the complement of G.

A simplicial complex Δ is recursively defined to be vertex decomposable if it is either a simplex, or has some vertex v so that:

- both $\Delta \setminus v$ and $link_{\Delta}v$ are vertex decomposable, and
- no face of $link_{\Delta}v$ is a facet of $\Delta \setminus v$.

A vertex v which satisfies the second condition is called a shedding vertex.

A simplicial complex Δ is called shellable if the facets (maximal faces) of Δ can be ordered a F_1, \ldots, F_s such that for all $1 \leq i < j \leq s$, there exists some $v \in F_j \setminus F_i$ and some $l \in \{1, \ldots, j-1\}$ with $F_j \setminus F_l = \{v\}$, cf [1]. The notion of shellability was discovered in the context of convex polytopes, cf. [8].

The dimension of a face F is |F| - 1. Let $d = max\{|F| : F \in \Delta\}$ and define the dimension of Δ to be $dim\Delta = d - 1$. A simplicial complex is pure if all of its facets are of the same dimension. The k-skeleton of Δ is the complex generated by all the k-dimensional faces of Δ . A complex is sequentially Cohen-Macaulay if its k-skeleton is Cohen-Macaulay for each k, k< dimension of the complex. Any shellable complex is sequentially Cohen-Macaulay.

We have the following chains of strict implications:

• vertex decomposable $\stackrel{(i)}{\Longrightarrow}$ shellable $\stackrel{(ii)}{\Longrightarrow}$ sequentially Cohen-Macaulay

• pure vertex decomposable $\stackrel{(iii)}{\Longrightarrow}$ pure shellable $\stackrel{(iv)}{\Longrightarrow}$ Cohen-Macaulay

Where (i) comes from [12, Lemma 6], (ii) from [10, p. 87], (iii) from [9, Theorem 2.8] and (iv) from [7].

In recent years there have been a flurry of work investigating how the combinatorial properties of G appear within the algebraic properties of R/I(G), and vice versa. (Sequentially) Cohen-Macaulay rings are of great interest. As a consequence, one particular stream of research has focused on the question of what graph G has the property that R/I(G) is (Sequentially) Cohen-Macaulay.

We can recursively define a generalized *d*-tree in the following way:

- (1) A complete graph with d+1 vertices is a generalized d-tree;
- (2) Let G be a graph on the vertex set V(G). Suppose that there is some vertex $v \in V(G)$ such that the followings hold:
 - (i) the restriction G_1 of G to $V_1 = V \setminus \{v\}$ is a generalized d-tree;

620

Complement of special chordal graphs

- (ii) there is a subset V_2 of V_1 , where the restriction of G to V_2 is a clique of size j with $0 \le j \le d$;
- (iii) G is the graph generated by G_1 and the complete graph on $V_2 \cup \{v\}$.

In particular, we say that G is a (d, j)-tree if in the above recursive definition j is fixed. A (d, d)-tree is called a d-tree.

A graph G is called chordal if every cycle of length> 3 has a chord. Recall that a chord of a cycle is an edge which joins two vertices of the cycle but is not itself an edge of the cycle. In [2] Dirac proved that the generalized d-trees are exactly the chordal graphs and so (d, j)-trees are chordal.

Many authors are interested in the case when G or its complement is chordal (in particular *d*-tree) for example see [4], [5], and sections 3 and 4 of [3].

Ferrarello in [4] showed that the complement of a d-tree is Cohen-Macaulay and Dochtermann and Engström in [3] extended this result by showing that the complement of a *d*-tree is pure shellable.

It is not hard to show that the complement of a *d*-tree is pure of dimension d [see Proposition 2.4], but in general the complement of a chordal graph is not pure so it is natural to ask whether the complement of a chordal graph is sequentially Cohen-Macaulay. By giving an example we show that the answer is negative. We show that if G is the complement of a (d, j)-tree, then Ind(G) is vertex decomposable and so shellable and sequentially Cohen-Macaulay. This result is a generalization of [4, Theorem 3.3] and [3, Proposition 3.6].

2. Main Results

The definition of vertex decomposable complexes translates nicely to independence complexes as follows:

Lemma 2.1. [13, Lemma 2.2]. An independence complex Ind(G) is vertex decomposable if G is a totally disconnected graph (with no edges), or if

- (i) $G \setminus v$ and $G \setminus N[v]$ are both vertex decomposable, and
- (ii) An independent set in G \ N[v] is not a maximal independent set in G \ v.

We say that a graph G is vertex decomposable if its independence complex Ind(G) is vertex decomposable. Let N(v) denotes the open neighborhood of v, that is, all vertices adjacent to v. Let N[v] denotes the close neighborhood of v, which is N(v) together with v itself, so that $N[v] = N(v) \cup \{v\}.$

Theorem 2.2. Let G be the complement of a (d, j)-tree, then Ind(G) is vertex decomposable and so it is shellable and sequentially Cohen-Macaulay.

Proof. We use induction on |V(G)|. If |V(G)| = d + 1, then G is totally disconnected and there is nothing to prove.

Let the statement be true for complement of (d, j)-trees of size < nand let G be a (d, j)-tree with |V(G)| = n.

It is easy to see that there is a vertex v in G such that $\overline{G}[N_{\overline{G}}[v]]$ is a clique and $\overline{G}[N_{\overline{G}}(v)]$ is not a maximal clique in $\overline{G} \setminus v$. Now $G \setminus N[v]$ is a totally disconnected graph, so it is a vertex decomposable graph. On the other hand $\overline{G} \setminus v$ is a chordal graph so by the induction hypothesis $G \setminus v$ is vertex decomposable.

Now it suffices to show that no independent set in $G \setminus N[v]$ is a maximal independent set in $G \setminus v$, but it holds obviously, because $\overline{G}[N_{\overline{G}}(v)]$ is not a maximal clique in $\overline{G} \setminus v$.

Note that in general it is not the case that the complement of a chordal graph is vertex decomposable. See the following example:

Example 2.3. Let G be the graph in figure 1:

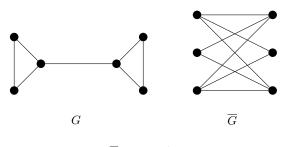


FIGURE 1

Here G is a chordal graph but \overline{G} is bipartite and does not have any end vertex (a vertex of degree 1). Thus by [11, Lemma 3.9] \overline{G} is not sequentially Cohen-Macaulay and so it is not vertex decomposable.

622

Complement of special chordal graphs

By using a result of Fröberg, Ferrarello in [4] showed that the complement of a d-tree is Cohen-Macaulay and Dochtermann and Engström in [3] extended this result by showing that the complement of a d-tree is pure shellable. We state the following result as a generalization:

Corollary 2.4. Let G be the complement of a d-tree, then Ind(G) is pure vertex decomposable (pure shellable and Cohen-Macaulay).

Proof. Using Theorem 2.2, it remains to prove the purity. The facets of Ind(G) are the maximal independent sets of G, which are in fact the maximal cliques of \overline{G} . So it suffices to show that every maximal clique of a d-tree, H, is of size d+1. We use induction on |V(H)|, if |V(H)| = d + 1 then $H = K_{d+1}$, and there is nothing to prove. Let the statement be true for every d-tree of size < n and let |V(H)| = n. It is easy to check that there is a vertex in V(H), say v, such that degv = d and H[N[v]] is a clique. Let C be a maximal clique in H if $v \notin C$ then C is a maximal clique in $H \setminus v$, so by the induction hypothesis, |C| = d+1. And if $v \in C$ the desired statement holds obviously.

In the following we give some examples of (pure and non-pure) vertex decomposable graphs.

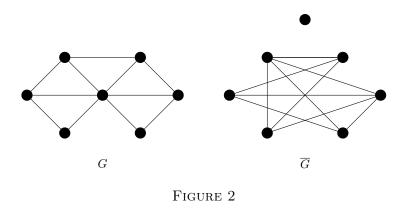
By using the mentioned theorem of Dirac, one can show that chordal graphs are vertex decomposable, see [3] and [13]. The following example shows that the converse is not true in general.

Example 2.5. Our first example is $T = P_n$ (a path with n vertices). When $n \ge 5$, \overline{T} is pure vertex decomposable but not chordal. (Note that the complement of a tree T is chordal if and only if diam $(T) \le 3$, where $diam(G) = max\{d(u, v)|u, v \in V(G)\}$.

The complement of a tree T is chordal if and only if diam $(T) \leq 3$. In the following example we show that this is not true for d-treeS when d > 1.

Example 2.6. The graph G in Figure 2 is a 2-tree with diameter 2. \overline{G} is pure vertex decomposable and has an induced cycle of length 4.

Alizadeh and Goodarzi



Example 2.7. The graph G in Figure 3 is a (3,2)-tree which is not a d-tree. Therefore \overline{G} is vertex decomposable but not pure.

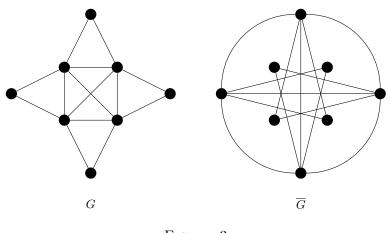


Figure 3

References

- A. Björner and M. L. Wachs, Shellable nonpure complexes and posets I, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299–1327.
- [2] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71–76.
- [3] A. Dochtermann and A. Engström, Algebraic properties of edge ideals via combinatorial topology, *Electron. J. Combin.* 16 (2009), no. 2, 24 pages.

624

Complement of special chordal graphs

- [4] D. Ferrarello, The complement of a d-tree is Cohen-Macaulay, Math. Scand. 99 (2006), no. 2, 161–167.
- [5] R. Fröberg, On Stanley-Reisner Rings, Topics in Algebra, 26, Part 2 (Warsaw, 1988), 57–70, Banach Center Publ., 26, Part 2, PWN, Warsaw, 1990.
- [6] J. Herzog, T. Hibi, S. Murai, N. V. Trung and X. Zheng, Kruskal-Katona type theorems for clique complexes arising from chordal and strongly chordal graphs, *Combinatorica* 28 (2008), no. 3, 315–323.
- [7] B. Kind and P. Kleinschmidt, Schälbare Cohen-Macauley-Komplexe und ihre Parametrisierung, Math. Z. 167 (1979), no. 2, 173–179.
- [8] P. McMullen, The maximum numbers of faces of a convex polytope, *Mathematika* 17 (1970) 179-184.
- [9] J. S. Provan and L. J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra, *Math. Oper. Res.* 5 (1980), no. 4, 576–594.
- [10] R. P. Stanley, Combinatorics and Commutative Algebra, Second edition, Progress in Mathematics, 41, Birkhäuser Boston Inc., Boston, 1996.
- [11] A. Van Tuyl and R. H. Villarreal, Shellable graphs and sequentially Cohen-Macaulay bipartite graphs, J. Combin. Theory Ser. A 115 (2008), no. 5, 799– 814.
- [12] M. L. Wachs, Obstructions to shellability, Discrete Comput. Geom. 22 (1999), no. 1, 95–103.
- [13] R. Woodroofe, Vertex decomposable graphs and obstructions to shellability, Proc. Amer. Math. Soc. 137 (2009), no. 10, 3235–3246.

Majid Alizadeh

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran Email: malizadehkhayam.ut.ac.ir

Afshin Goodarzi

School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran

Email: af.goodarzigmail.com