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2-QUASIRECOGNIZABILITY OF THE SIMPLE GROUPS

Bn(p) AND Cn(p) BY PRIME GRAPH

M. FOROUDI GHASEMABADI AND A. IRANMANESH∗

Communicated by Jamshid Moori

Abstract. Let G be a finite group and let GK(G) be the prime
graph of G. We assume that n is an odd number. In this paper, we
show that if GK(G) = GK(Bn(p)), where n ≥ 9 and p ∈ {3, 5, 7},
then G has a unique nonabelian composition factor isomorphic to
Bn(p) or Cn(p) . As consequences of our result, Bn(p) is quasirec-
ognizable by its spectrum and also by a new proof, the validity of
a conjecture of W. J. Shi for Bn(p) is obtained.

1. Introduction

If G is a finite group, then we denote by π(G) the set of all prime
divisors of |G| and the spectrum ω(G) of G is the set of elements orders
of G, i.e., a natural number n is in ω(G) if there is an element of order
n in G. The Gruenberg-Kegel graph (or prime graph) GK(G) of G is
the graph with vertex set π(G) where two distinct vertices p and q are
adjacent by an edge (briefly, adjacent) if pq ∈ ω(G), in which case, we
write (p, q) ∈ GK(G).
A finite group G is called recognizable by its spectrum (briefly, recogniz-
able) if every finite group H with ω(G) = ω(H) is isomorphic to G. A
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finite simple nonabelian group P is called quasirecognizable by its spec-
trum, if each finite group G with ω(G) = ω(P ) has a unique nonabelian
composition factor isomorphic to P [2].
A finite group G is called recognizable by its prime graph, if every finite
group H with GK(G) = GK(H) is isomorphic to G. A finite simple
nonabelian group P is called quasirecognizable by its prime graph, if each
finite group G with GK(G) = GK(P ) has a unique nonabelian compo-
sition factor isomorphic to P [7]. We say that a finite simple nonabelian
group P is 2-quasirecognizable by its prime graph, if each finite group
G with GK(G) = GK(P ) has a unique nonabelian composition factor
isomorphic to P or another simple group Q with GK(Q) = GK(P ).
Finite groups G satisfying GK(G) = GK(H) have been determined,
where H is one of the following groups: a sporadic simple group [6], a
CIT simple group [14], PSL(2, q) where q = pα < 100 [16], PSL(2, p)
where p > 3 is a prime [15], G2(7) [26], 2G2(q) where q = 32m+1 > 3
[7, 26], PSL(2, q) [8, 10], L16(2) [13, 27]. Also, the quasirecognizability
of the following simple nonabelian groups by their prime graphs have
been obtained: Alternating group Ap where p and p− 2 are primes [12],
L10(2) [9], 2F4(q) where q = 22m+1 for some m ≥ 1 [1], 2Dp(3) where
p = 2n + 1 ≥ 5 is a prime [11], Cn(2) where n ̸= 3 is odd [4].
Prime graphs of the stated groups have more than two connected compo-
nents, except the groups G2(7), Cn(2) where n is an odd prime number
and some sporadic simple groups which have two connected components,
and the groups L10(2), L16(2) and Cn(2) where n is an odd non-prime
number which have connected prime graphs. In this paper, we show
that the simple groups Bn(3), Bn(5) and Bn(7) are 2-quasirecognizable
by their prime graphs. In fact, we have the following Main Theorem:

Main Theorem. Let n be an odd number. The simple groups Bn(p),
where n ≥ 9 and p ∈ {3, 5, 7}, are 2-quasirecognizable by their prime
graphs.

SinceGK(Bn(p)) andGK(Cn(p)) are coincide ( see [24, Proposition 7.5]),
the conclusion of the Main Theorem is obtained for the group Cn(p) as
well. Moreover, it is worthy to mention that GK(Bn(5)) and GK(Bn(7))
are always connected and if n is an odd non-prime, then GK(Bn(3)) is
connected as well and if n is an odd prime, then GK(Bn(3)) has two
connected components.
It is obvious that ω(G) determines GK(G) and hence, as the first result
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of the Main Theorem, we have the following corollary:

Corollary. Let n be an odd positive integer. The simple groups Bn(3),
Bn(5) and Bn(7), where n ≥ 9, are quasirecognizable by their spectra.

Of course, for the spacial case, i.e., when n is a prime number, the
quasirecognizability of the group Bn(3) by its spectrum is obtained
([17]).
W. J. Shi in [18], put forward the following conjecture:

Conjecture. Let G be a finite group and let M be a finite simple group.
Then G ∼= M if and only if
(i) |G| = |M |, and
(ii) ω(G) = ω(M).

A series of papers proved that this conjecture is valid for most of finite
simple groups (see a survey in [19]) and the last step of the proof of this
conjecture is to prove that the conjecture holds for the simple groups
Bn(q) and Cn(q). Also, Mazurov and his students just proved that this
conjecture is valid for these groups as well and hence, Shi’s conjecture
is now proved positively [22, 23]. As another corollary of the Main The-
orem, by a new proof the validity of this conjecture is obtained for the
groups under study.

2. Preliminaries

Throughout this paper, we use the following notations: By [x] we
denote the integer part of x and by gcd(a1, a2, · · · , an) we denote the
greatest common divisor of numbers a1, a2, · · · , an. A set of vertices of
a graph is called a coclique (or independent), if its elements are pairwise
nonadjacent. We denote by ρ(G) and ρ(r,G) a coclique of maximal
size in GK(G) and a coclique of maximal size, containing r, in GK(G),
respectively. Also, we put t(G) = |ρ(G)| and t(r,G) = |ρ(r,G)|.

Lemma 2.1. [20, Proposition 1] Let G be a finite group, t(G) ≥ 3, and
let K be the maximal normal soluble subgroup of G. Then for every
subset ρ of primes in π(G) such that |ρ| ≥ 3 and all primes in ρ are
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pairwise nonadjacent in GK(G), the intersection π(K) ∩ ρ contains at
most one number. In particular, G is insoluble.

Lemma 2.2. [21, Theorem 1] Let G be a finite group with t(G) ≥ 3
and t(2, G) ≥ 2. Then the followings hold:

(1) There exists a finite nonabelian simple group S such that S ≤
Ḡ = G/K ≤ Aut(S) for the maximal normal soluble subgroup K
of G.

(2) For every independent subset ρ of π(G) with |ρ| ≥ 3 at most
one prime in ρ divides the product |K|.|Ḡ/S|. In particular,
t(S) ≥ t(G)− 1.

(3) One of the following holds:
(a) every prime r ∈ π(G) nonadjacent to 2 in GK(G) does

not divide the product |K|.|Ḡ/S|; in particular, t(2, S) ≥
t(2, G);

(b) there exists a prime r ∈ π(K) nonadjacent to 2 in GK(G);
in which case t(G) = 3, t(2, G) = 2, and S ∼= A7 or A1(q)
for some odd q.

Lemma 2.3. [24, Proposition 1.1] Let G = An be an alternating group
of degree n.

(1) Let r, s ∈ π(G) be odd primes. Then r and s are nonadjacent iff
r + s > n.

(2) Let r ∈ π(G) be an odd prime. Then 2 and r are nonadjacent iff
r + 4 > n.

Lemma 2.4. Let G be a finite group. If H is a subgroup of G and N
is a normal subgroup of G, then:

(1) If (p, q) ∈ GK(H), then (p, q) ∈ GK(G);
(2) If (p, q) ∈ GK(GN ), then (p, q) ∈ GK(G);

(3) If (p, q) ∈ GK(G) and {p, q} ∩ π(N) = ∅, then (p, q) ∈ GK(GN ).

Proof. The proof is straightforward. □

Let s be a prime and let m be a natural number. The s-part of m is
denoted by ms, i.e., ms = st if st | m and st+1 ∤ m. If q is a natural
number, r is an odd prime and gcd(r, q) = 1, then by e(r, q) we denote
the smallest natural number m such that qm ≡ 1 (mod r). Obviously
by Fermat’s little theorem it follows that e(r, q) | (r−1). Also, if qn ≡ 1
(mod r), then e(r, q) | n. Therefore, we can use the following function
in GAP [5], to compute e(r, q):
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e:=function(r,q)

local i,a;

a:=DivisorsInt(r-1);

for i in a do

if (q^i-1) mod r=0 then

return i;

fi;

od;

end;

If q is odd, we put e(2, q) = 1 if q ≡ 1 (mod 4), and e(2, q) = 2 otherwise.

Lemma 2.5. [25, Corollary to Zsigmondy’s theorem] Let q be a natural
number greater than 1. For every natural number m there exists a prime
r with e(r, q) = m, except for the cases q = 2 and m = 1, q = 3 and
m = 1, and q = 2 and m = 6.

The prime r with e(r, q) = m is called a primitive prime divisor of
qm−1. It is obvious that qm−1 can have more than one primitive prime
divisor. We denote by rm(q) some primitive prime divisor of qm − 1. If
there is no ambiguity, we write rm instead of rm(q).
We write Aε

n(q) and Dε
n(q), where ε ∈ {+,−}, and A+

n (q) = An(q),
A−

n (q) =
2An(q), D

+
n (q) = Dn(q), D

−
n (q) =

2Dn(q). Also, ν(n) and η(n)
for an integer n, are defined in [24] as follow:

ν(n) =

 n if n ≡ 0 (mod 4);
n
2 if n ≡ 2 (mod 4);
2n if n ≡ 1 (mod 2).

, η(n) =

{
n if n is odd;
n
2 otherwise.

Lemma 2.6. Let G be a finite simple group of Lie type over a field of
order q with characteristic p. Let r and s be odd primes and
r, s ∈ π(G) \ {p}. Put k = e(r, q) and l = e(s, q).

(1) If G = An−1(q) and 2 ≤ k ≤ l, then r and s are nonadjacent if
and only if k + l > n and k does not divide l;

(2) If G = 2An−1(q) and 2 ≤ ν(k) ≤ ν(l), then r and s are nonad-
jacent if and only if ν(k) + ν(l) > n and ν(k) does not divide
ν(l);

(3) If G = Bn(q) or Cn(q) and 1 ≤ η(k) ≤ η(l), then r and s are
nonadjacent if and only if η(k) + η(l) > n and l

k is not an odd
natural number.

(4) If G = Dε
n(q) and 1 ≤ η(k) ≤ η(l), then r and s are nonadjacent

if and only if 2η(k)+2η(l) > 2n−(1−ε(−1)k+l) and l
k is not an
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odd natural number and, if ε = +, then the chain of equalities
n = l = 2η(l) = 2η(k) = 2k, is not true.

(5) If G = E7(q) and 1 ≤ k ≤ l, then r and s are nonadjacent if and
only if k ̸= l and either l = 5 and k = 4, or l = 6 and k = 5,
or l ∈ {14, 18} and k ̸= 2, or l ∈ {7, 9} and k ≥ 2, or l = 8
and k ≥ 3, k ̸= 4, or l = 10 and k ≥ 3, k ̸= 6, or l = 12 and
k ≥ 4, k ̸= 6.

Proof. See [24, Propositions 2.1 and 2.2] and [25, Propositions 2.4; 2.5
and 2.7(5)]. □

Lemma 2.7. [24, Proposition 3.1] Let G be a finite simple classical
group of Lie type of characteristic p and let r ∈ π(G) and r ̸= p. Then
r and p are nonadjacent if and only if one of the following holds:

(1) G = An−1(q), r is odd, and e(r, q) > n− 2;
(2) G = 2An−1(q), r is odd, and ν(e(r, q)) > n− 2;
(3) G = Cn(q), η(e(r, q)) > n− 1;
(4) G = Bn(q), η(e(r, q)) > n− 1;
(5) G = Dε

n(q), η(e(r, q)) > n− 2;
(6) G = A1(q), r = 2;
(7) G = Aε

2(q), r = 3 and (q − ε1)3 = 3.

Lemma 2.8. [24, Proposition 4.1] Let G = An−1(q) be a finite simple
group of Lie type, r be a prime divisor of q − 1, and s be an odd prime
number not equal to the characteristic of G. Put k = e(s, q). Then s
and r are nonadjacent if and only if one of the following holds:

(1) k = n, nr ≤ (q − 1)r, and if nr = (q − 1)r, then 2 < (q − 1)r;
(2) k = n− 1 and (q − 1)r ≤ nr.

Lemma 2.9. Let G = 2An−1(q) be a finite simple group of Lie type, r
be a prime divisor of q + 1, and s be an odd prime number not equal to
the characteristic of G. Put k = e(s, q). Then s and r are nonadjacent
if and only if one of the following holds:

(1) ν(k) = n, nr ≤ (q + 1)r, and if nr = (q + 1)r, then 2 < (q + 1)r;
(2) ν(k) = n− 1 and (q + 1)r ≤ nr.

Lemma 2.10. Let G be a finite simple group of Lie type over a field of
order q with odd characteristic p. Let r be an odd prime divisor of |G|,
r ̸= p, and k = e(r, q).

(1) If G = Bn(q) or Cn(q), then r and 2 are nonadjacent if and only
if η(k) = n and one of the following holds:
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(a) n is odd and k = (3− e(2, q))n;
(b) n is even and k = 2n.

(2) If G = Dε
n(q), then r and 2 are nonadjacent if and only if one

of the following holds:
(a) η(k) = n and (4, qn − ε1) = (qn − ε1)2;
(b) η(k) = k = n− 1, n is even, ε = +, and e(2, q) = 2;
(c) η(k) = k

2 = n− 1, ε = +, and e(2, q) = 1;

(d) η(k) = k
2 = n− 1, n is odd, ε = −, and e(2, q) = 2.

(3) If G = E7(q), then r and 2 are nonadjacent if and only if either
k ∈ {7, 9} and e(2,q)=2 or k ∈ {14, 18} and e(2, q) = 1;

(4) If G = E8(q), then r and 2 are nonadjacent if and only if k ∈
{15, 20, 24, 30}.

Proof. See [24, Propositions 4.3; 4.4 and 4.5(5,6)]. □
Remark 2.11. In order to facilitate the reader, we state the orders of
some simple groups and their outer automorphism groups in the follow-
ing table: (We assume that q = pα) [3]

Table 1
G d |G| |Out(G)|
J4 1 221.33.5.7.113.23.29.31.37.43 1

F1 1 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71 1

F2 2 241.313.56.72.11.13.17.19.23.31.47 1

An(q) gcd(n + 1, q − 1) 1
d q

n(n+1)
2

∏n
i=1(q

i+1 − 1) 2dα, if n ⩾ 2
n ⩾ 1 dα, if n = 1

2An(q) gcd(n + 1, q + 1) 1
d q

n(n+1)
2

∏n
i=1(q

i+1 − (−1)i+1) 2dα, if n ⩾ 2
n ⩾ 1 dα, if n = 1

Bn(q) gcd(2, q − 1) 1
d q

n2∏n
i=1(q

2i − 1) dα, if n ⩾ 3
n ⩾ 2 2α, if n = 2

Cn(q) gcd(2, q − 1) 1
d q

n2∏n
i=1(q

2i − 1) dα, if n ⩾ 3
n ⩾ 2 2α, if n = 2

Dn(q) gcd(4, qn − 1) 1
d q

n(n−1)(qn − 1)
∏n−1

i=1 (q2i − 1) 2dα, if n ̸= 4
n ⩾ 4 6dα, if n = 4

2Dn(q) gcd(4, qn + 1) 1
d q

n(n−1)(qn + 1)
∏n−1

i=1 (q2i − 1) 2dα
n ⩾ 4

E7(q) gcd(2, q − 1) 1
d q

63∏
i∈{2,6,8,10,12,14,18}(q

i − 1) dα

E8(q) 1 q120
∏

i∈{2,8,12,14,18,20,24,30}(q
i − 1) α

3. Proof of the main theorem

Assume that p ∈ {3, 5, 7} and n is an odd number, where n ≥ 9.
By Tables 6 and 8 in [24], we have t(Bn(p)) = [3n+5

4 ], t(2, Bn(p)) = 2
and ρ(2, Bn(5)) = {2, r2n(5)} and if p ∈ {3, 7}, then ρ(2, Bn(p)) =
{2, rn(p)}. Hence, if G is a finite group with GK(G) = GK(Bn(p))
and the maximal normal soluble subgroup K, then Lemma 2.2 implies
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that G has a unique nonabelian composition factor S, in which case
S ≤ Ḡ = G/K ≤ Aut(S), t(S) ≥ t(Bn(p)) − 1 and t(2, S) ≥ 2. Also, if
p ∈ {3, 7}, then rn(p) ∈ π(S) and if p = 5, then r2n(p) ∈ π(S). Since S
is a finite nonabelian simple group, it follows by classification theorem
of finite simple groups that S is a sporadic simple group, an alternating
group or a simple group of Lie type. We prove that S ∼= Bn(p) or
S ∼= Cn(p), by a sequence of lemmas.

Lemma 3.1. S can not be isomorphic to a sporadic simple group.

Proof. If n ≥ 17, then by Lemma 2.2(2), t(S) ≥ t(B17(p))− 1 ≥ 13 and
hence, the conclusion immediately holds by Table 2 in [24]. Otherwise,
we have n ∈ {9, 11, 13, 15} and since t(S) ≥ t(B9(p))−1 ≥ 7, it follows by
Table 2 in [24] that S can be isomorphic to one of the groups F1, F2 or J4.
Since rn(p) ∈ π(S), if p ∈ {3, 7}, and r2n(p) ∈ π(S), if p = 5, by comput-
ing the numbers r9(3) = 757, r11(3) = 3851, r13(3) = 797161, r15(3) =
4561, r9(7) = 37, 1063, r11(7) = 1123, 293459, r13(7) = 16148168401,
r15(7) = 31, 159871, r18(5) = 5167, r22(5) = 5281, r26(5) = 5227,
r30(5) = 7621 by GAP [5] and also by considering π(F1), π(F2) and
π(J4) in Table 1, we can easily get a contradiction and the proof is
complete. □
Lemma 3.2. S can not be isomorphic to an alternating group.

Proof. If S ∼= Am, where m ≥ 5, then by considering the cases n ≥ 17
and 9 ≤ n ≤ 15 separately, we get a contradiction.
Case 1. If n ≥ 17, then t(S) ≥ 13 hence |π(Am)| ≥ 13. Thus ac-
cording to the set π(Am), we can assume that m ≥ 41 and it implies
that {17, 19} ⊆ π(S). First, we find an upper bound for t(17, Am) and
t(19, Am). If x ∈ ρ(17, Am) \ {17}, then by Lemma 2.3, x ̸= 2 and
x + 17 > m. Also, since x ∈ π(Am), we conclude that x ∈ {s| s is a
prime, m − 16 ≤ s ≤ m}. Hence, since m ≥ 41, there exist at most
six choices for x. Thus t(17, Am) ≤ 7. Also, by the same procedure, we
can see that t(19, Am) ≤ 8. Since S ≤ G/K and π(G) = π(Bn(p)), we
have π(S) ⊆ π(Bn(p)) hence {17, 19} ⊆ π(Bn(p)). Now we find a lower
bound for t(17, Bn(5)), t(17, Bn(7)) and t(19, Bn(3)). Since e(17, 5) =
e(17, 7) = 16, n is an odd number and n ≥ 17, it follows by Lemma 2.6(3)
that the set τ = {17, rn, r2n, rn−2, r2(n−2), rn−4, r2(n−4), rn−6, r2(n−6)} is
a coclique of GK(Bn(5)) and GK(Bn(7)) and also, since 8 divides ex-
actly one of the numbers n − 1, n − 3, n − 5, n − 7, we can add three
elements of the set {r2(n−1), r2(n−3), r2(n−5), r2(n−7)} to the set τ . There-
fore, t(17, Bn(5)) ≥ 12 and t(17, Bn(7)) ≥ 12. By the same argument,
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since e(19, 3) = 18, we can use the coclique

τ ′ = {19, rn, r2(n−1), rn−2, r2(n−3), rn−4, r2(n−5), rn−6, r2(n−7), rn−8}
of GK(Bn(3)) and conclude that t(19, Bn(3)) ≥ 10. By using Lemma
2.2(2) for the sets ρ(17, Bn(5)), ρ(17, Bn(7)) and ρ(19, Bn(3)), we have

|ρ(17, Bn(5))
∩

π(Am)| ≥ t(17, Bn(5))− 1 ≥ 11,

|ρ(17, Bn(7))
∩

π(Am)| ≥ t(17, Bn(7))− 1 ≥ 11,

|ρ(19, Bn(3))
∩

π(Am)| ≥ t(19, Bn(3))− 1 ≥ 9.

On the other hand, since S ≤ G/K, it follows by Lemma 2.4(1,2) that

|ρ(17, Bn(5))
∩

π(Am)| ≤ t(17, Am),

|ρ(17, Bn(7))
∩

π(Am)| ≤ t(17, Am),

|ρ(19, Bn(3))
∩

π(Am)| ≤ t(19, Am)

hence 11 ≤ t(17, Am) ≤ 7 and 9 ≤ t(19, Am) ≤ 8, which is impossible.
Case 2. 9 ≤ n ≤ 15. We know that rn(p) ∈ π(Am), if p ∈ {3, 7},
and r2n(p) ∈ π(Am), if p = 5. Thus according to the numbers rn(3),
r2n(5) and rn(7) which are obtained in Lemma 3.1 we conclude that
79 ∈ π(Am) and hence, since π(Am) ⊆ π(Bn(p)), we have 79 ∈ π(Bn(p)).
But, e(79, 3) = e(79, 7) = 78 and e(79, 5) = 39. This is a contradiction
considering |Bn(q)|, where n ≤ 15 (see Table 1). The proof is now
complete. □
Lemma 3.3. S can not be isomorphic to a finite simple group of Lie
type of characteristic different from p.

Proof. Assume that S is isomorphic to a finite simple group of Lie type
of characteristic s, where s ̸= p. We get a contradiction by considering
two parts A and B, as follows.
Part A. n ≥ 17. In this part, since t(S) ≥ 13, by Table 4 in [25], we
conclude that S can not be an exceptional group of Lie type . Thus S
is one of the classical groups Aε

m−1(q), D
ε
m(q), Cm(q) or Bm(q), where

q = sα. We get a contradiction case by case:
Case 1. If S ∼= Am−1(q), then since gcd(s, p) = 1, we can assume that
t = e(s, p). If t is an odd number not equal to 1, 3, let

ρ = {s, r2n, r2(n−1), r2(n−2), r2(n−3)}.
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Since GK(G) = GK(Bn(p)), by Lemma 2.6(3), we can see that ρ is a co-
clique ofGK(G), containing s and hence, by Lemmas 2.2(2) and 2.4(1,2),
we conclude that t(s, S) ≥ |ρ|−1. On the other hand, since t(S) ≥ 13, by
Table 8 in [24], we can assume thatm ≥ 25 and hence, Table 4 in [24] im-
plies that t(s, S) = 3. Thus 3 ≥ |ρ|−1 = 4, which is impossible. Also, if t
is an even number except 2,6, where t

2 is odd, then it is enough to replace
ρ with the coclique {s, rn, r2(n−1), rn−2, r2(n−3)} of GK(Bn(p)) and get a

contradiction. If t and t
2 are even numbers and t ̸= 4, then by replacing

ρ with the coclique {s, rn, r2n, rn−2, r2(n−2)} of GK(Bn(p)) in the pre-
vious argument, we can get a contradiction. Therefore, we should only
consider different cases for t, where t ∈ {1, 2, 3, 4, 6}. Since t = e(s, p)
and p ∈ {3, 5, 7}, by Lemma 2.5, we can see that s ∈ {2, 5, 7, 13}, if
p = 3, and s ∈ {2, 3, 7, 13, 31}, if p = 5, and s ∈ {2, 3, 5, 19, 43}, if p = 7.
Since m ≥ 25, according to |Am−1(q)| (see Table 1), we have r7 ∈ π(S)
and if q ̸= 2, 3, then r1 ∈ π(S). For considering the remaining cases,
first we find an upper bound for t(r1, S) and t(r7, S). If r1 ∈ π(S), then
Lemma 2.8 implies that t(r1, S) ≤ 3. We claim that t(r7, S) = 7:
By Lemmas 2.8 and 2.7(1), we can see that (2, r7), (r1, r7), (s, r7) ∈
GK(S). Thus if x ∈ ρ(r7, S)\{r7}, then x ̸∈ {2, s, r1} and if e(x, sα) = l,
then by Lemma 2.6(1) we conclude that l + 7 > m and 7 ∤ l. Also, ac-
cording to |S|, we have l ≤ m and hence, l ∈ {m − 6,m − 5, · · · ,m}
and 7 ∤ l. Since m − 6,m − 5, · · · ,m are seven consecutive numbers,
so 7 divides exactly one of them and we have exactly six choices for l
and hence, t(r7, S) = 7. For getting a contradiction, we consider the
cases p = 3, s ∈ {2, 5, 7, 13} and p = 5, s ∈ {2, 3, 7, 13, 31} and p = 7,
s ∈ {2, 3, 5, 19, 43} separately:
Subcase a. p = 3. If s = 2, then since r7(2) = 127, we have
127 ∈ {r1(2α), r7(2α)} ⊆ π(S) and by the above statements we con-
clude that t(127, S) ≤ 7. On the other hand, since π(S) ⊆ π(Bn(3)), we
have 127 ∈ π(Bn(3)). Also, we know that e(127, 3) = 126 and hence,
according to |Bn(3)|, we conclude that n ≥ 63. Moreover, since n is
an odd number, it follows by Lemma 2.6(3) that the set τ

∪
{127} is a

coclique of GK(Bn(3)), where

τ = {ri| n− 14 ≤ i ≤ n, i ≡ 1(mod2)}
∪

{r2i| n− 15 ≤ i ≤ n− 1, i ≡ 0(mod2)}

and hence, t(127, Bn(3)) ≥ 17. Also, since S ≤ G/K, it follows by
Lemma 2.4(1,2) that |ρ(127, Bn(3))

∩
π(S)| ≤ t(127, S).By using Lemma

2.2(2) for ρ(127, Bn(3)), we have 7 ≥ t(127, S) ≥ t(127, Bn(3))− 1 ≥ 16,
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which is impossible. If s = 5 or s = 13, then r7(s) = 19531 and
r7(s) = 5229043, respectively. Also, since e(19531, 3) = 6510 and
e(5229043, 3) = 249002, Lemma 2.6(3) implies that the set τ

∪
{r7(s)} is

a coclique of GK(Bn(3)) and hence, t(r7(s), Bn(3)) ≥ 17 and similar to
the previous argument we can get a contradiction. If s = 7, then r7(7) =
4733 and similar to the case s = 2, we conclude that t(4733, S) ≤ 7 and
4733 ∈ π(Bn(3)). Also, since e(4733, 3) = 676, Lemma 2.6(3) implies
that the set τ ′

∪
{4733}, where τ ′ = {ri, r2i| n− 14 ≤ i ≤ n, i ≡ 1 (mod

2)} is a coclique of GK(Bn(3)) and hence, t(4733, Bn(3)) ≥ 17. Now
similar to the previous arguments, we can get a contradiction.
Subcase b. p = 5. If s = 13, then r7(s) = 5229043. Also, we can see
that e(5229043, 5) = 1743014 and hence, similar to the previous sub-
case by using the coclique τ

∪
{r7(s)}, we can get a contradiction. If

s ∈ {3, 7}, then r7(s) ∈ {1093, 4733}. Also, we have e(1093, 5) = 1092
and e(4733, 5) = 4732 and hence, similar to the previous subcase by
using the coclique τ ′

∪
{r7(s)}, we can get a contradiction. If s = 2,

then r7(s) = 127 and since e(127, 5) = 42, according to |Bn(5)|, we
conclude that n ≥ 21 and hence, Lemma 2.6(3) implies that the set
τ ′′

∪
{127} is a coclique of GK(Bn(5)), where τ ′′ = {ri| n − 10 ≤

i ≤ n, i ≡ 1 (mod 2)}
∪
{r2i| n − 9 ≤ i ≤ n − 1, i ≡ 0 (mod 2)}.

Moreover, since 21 divides at most one of the numbers n − 10, n −
9, · · · , n, by Lemma 2.6(3), we can add at least five elements of the set
{r2(n−10), r2(n−8), r2(n−6), r2(n−4), r2(n−2), r2n} to τ ′′

∪
{127}. Therefore,

t(127, Bn(5)) ≥ 16 and we can get a contradiction by similar argument
in the previous subcase. If s = 31, then r7(s) = 917087137 and since
e(917087137, 5) = 917087136, by using the coclique τ ′

∪
{917087137}

and similar argument in the previous subcase, we can get a contradic-
tion.
Subcase c. p = 7. If s ∈ {2, 5, 43}, then r7(s) ∈ {127, 19531, 5839}.
Also, we know that e(127, 7) = 126, e(19531, 7) = 3906 and e(5839, 7) =
1946 and hence, similar to the subcase a, case 1, part A, we can use
the coclique τ

∪
{r7(s)} and get a contradiction. If s ∈ {3, 19}, then

r7(s) ∈ {1093, 701}. Also, we have e(1093, 7) = 273 and e(701, 7) = 175.
Thus Lemma 2.6(3) implies that the set {r2i| n− 15 ≤ i ≤ n}

∪
{r7(s)}

is a coclique of GK(Bn(7)) and hence, t(r7(s), Bn(7)) ≥ 17. Now similar
to the previous arguments, we can get a contradiction.
Case 2. S ∼= 2Am−1(q). Since t(S) ≥ 13, by Table 8 in [24] we can
see that m ≥ 25 and hence, t(s, S) = 3, by Table 4 in [24]. Thus sim-
ilar to the case 1, it is enough to consider s ∈ {2, 5, 7, 13}, if p = 3,
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and s ∈ {2, 3, 7, 13, 31}, if p = 5, and s ∈ {2, 3, 5, 19, 43}, if p = 7. Since
m ≥ 25, according to |2Am−1(q)|, we have r7 ∈ π(S) and if q ̸= 2, 3, then
r1 ∈ π(S). We want to find an upper bound for t(r7, S). Since m ≥ 25,
by Lammas 2.9 and 2.7(2), we have (2, r7), (r2, r7), (s, r7) ∈ GK(S).
Thus if x ∈ ρ(r7, S) \ {r7}, then x ̸∈ {2, s, r2} and if e(x, sα) = l, then
by Lemma 2.6(2), we have ν(l) + 14 > m and 14 ∤ ν(l). Furthermore,
by |2Am−1(q)|, we can see that ν(l) ≤ m. Thus ν(l) ∈ {m − 13,m −
12, · · · ,m} and 14 ∤ ν(l). Moreover, sincem−13,m−12, · · · ,m are four-
teen consecutive numbers, so 14 divides exactly one of them and hence,
we have thirteen choices for l. Therefore, t(r7, S) = 14. If r1 ∈ π(S),
by the same procedure, we can show that t(r1, S) = 2. Hence, since
r7(s) ∈ {r1(sα), r7(sα)}, we have t(r7(s), S) ≤ 14. Now we can use all
the statements in the subcases a, b and c, case 1, part A to get a con-
tradiction.
Case 3. S is isomorphic to one of the groups Bm(q), Cm(q) or Dm(q).
Since t(S) ≥ 13, by Table 8 in [24] and Appendix in [25], we can see
that m ≥ 16 and hence, t(s, S) ≤ 3, by Table 4 in [24]. Thus simi-
lar to the case 1, it is enough to consider s ∈ {2, 5, 7, 13}, if p = 3,
and s ∈ {2, 3, 7, 13, 31}, if p = 5, and s ∈ {2, 3, 5, 19, 43}, if p = 7. If
S ∼= Bn(q) or Cn(q), then since m ≥ 16, according to |S|, we can see
that r7 ∈ π(S) and if q ̸= 2, 3, then r1 ∈ π(S). By Lemmas 2.7(3,4)
and 2.10, we have (2, r7), (s, r7) ∈ GK(S). Thus if x ∈ ρ(r7, S) \ {r7},
then x ̸∈ {2, s} and if e(x, sα) = l, then by Lemma 2.6(3), we have
η(l)+7 > m. Furthermore, according to the order of Bm(q) and Cm(q),
we can see that η(l) ≤ m. Thus η(l) ∈ {m − 6,m − 5, · · · ,m} and by
the definition of η(l), there are at most eleven choices for l. Therefore,
t(r7, S) ≤ 12. Also, if r1 ∈ π(S), then by the same argument, we can
show that t(r1, S) ≤ 3. If S ∼= Dm(q), then by Lemmas 2.6(4), 2.7(5),
2.10(2) and the previous argument, we conclude that t(r7, S) ≤ 13 and
if r1 ∈ π(S), then t(r1, S) ≤ 4. Now we can use all the statements in
the subcases a, b and c, case 1, part A to get a contradiction.
Case 4. S ∼= 2Dm(q). Since t(S) ≥ 13, by Table 8 in [24] we can see
that m ≥ 16 and hence, t(s, S) ≤ 4, by Table 4 in [24]. By using similar
argument in the case 1, if t = e(s, p) and t is an odd number except 1,3,
it is enough to replace ρ with the coclique ρ

∪
{r2(n−4)} of GK(Bn(p)),

and if t is an even number except 2,6, where t
2 is odd, we replace ρ

with the coclique {s, rn, r2(n−1), rn−2, r2(n−3), rn−4} of GK(Bn(p)) and

if t ̸∈ {4, 8} and t and t
2 are even numbers, we replace ρ with the co-

clique {s, rn, r2n, rn−2, r2(n−2), rn−4} of GK(Bn(p)). Thus in this case,
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if p = 3, p = 5 and p = 7, then we should consider s ∈ {2, 5, 7, 13, 41},
s ∈ {2, 3, 7, 13, 31, 313} and s ∈ {2, 3, 5, 19, 43, 1201}, respectively. By
the same procedure in the case 3 for S ∼= Dm(q), we can prove that
t(r7, S) ≤ 12 and if r1 ∈ π(S), then t(r1, S) ≤ 3. If p = 3, s ∈ {2, 3, 7, 13}
or p = 5, s ∈ {2, 3, 7, 13, 31}, or p = 7, s ∈ {2, 3, 5, 19, 43}, then by using
all the statements in the subcases a, b and c, case 1, part A, we can get
a contradiction. If p = 3, s = 41 or p = 5, s = 313 or p = 7, s = 1201,
then since

r7(41) = 113229229, e(113229229, 3) = 56614614,

r7(313) = 29, 32528030679467, e(32528030679467, 5) = 32528030679466,

r7(1201) = 29429, e(29429, 7) = 1051,

we use the cocliques τ
∪
{113229229} and τ

∪
{32528030679467} and

{r2i| n − 15 ≤ i ≤ n}
∪
{29429}, of GK(Bn(3)) and GK(Bn(5)) and

GK(Bn(7)), respectively. Hence, by the same argument in the subcases
a, case 1, part A, we can get a contradiction.
Part B. 9 ≤ n ≤ 15. In this part, by Table 8 in [24], we have:
1. ρ(B9(p)) = {r5, r7, r9, r10, r12, r14, r16, r18};
2. ρ(B11(p)) = {r7, r9, r11, r12, r14, r16, r18, r20, r22};
3. ρ(B13(p)) = {r7, r9, r11, r13, r14, r16, r18, r20, r22, r24, r26};
4. ρ(B15(p)) = {r9, r11, r13, r15, r16, r18, r20, r22, r24, r26, r28, r30}.
Also, since t(S) ≥ t(B9(p)) − 1 = 7, Tables 8 in [24] and 4 in [25]
imply that in addition to classical groups of Lie type , S can be iso-
morphic to exceptional groups of Lie type E7(q) and E8(q). Moreover,
by Tables 4 and 5 in [24] we conclude that t(s, S) ≤ 5. If t = e(s, p),
then since π(S) ⊆ π(Bn(p)) and according to |Bn(p)|, we conclude that
t ≤ 30. Thus by considering the cases ”t is odd” and ”t is even” sep-
arately and according to the coclique ρ(Bn(p)), it is easy to check that
if t ̸∈ {1, 2, 3, 4, 6, 8}, then we can find some seven-element coclique,
containing s, in GK(Bn(p)) and conclude that t(s,Bn(p)) ≥ 7. To
be short, we omit the details. Hence, similar to the case 1, part A,
by using Lemmas 2.2(2) and 2.4(1,2), we can get a contradiction. If
t ∈ {1, 2, 3, 4, 6, 8}, then since t = e(s, p) and p ∈ {3, 5, 7}, by Lemma 2.5,
we can see that s ∈ {2, 5, 7, 13, 41}, if p = 3, and s ∈ {2, 3, 7, 13, 31, 313},
if p = 5, and s ∈ {2, 3, 5, 19, 43, 1201}, if p = 7. we consider these three
cases separately.
Case 1. p = 3. If s ∈ {5, 7, 13, 41}, then by checking |S| in differ-
ent cases, we conclude that {r1(sα), r5(sα)} ⊆ π(S) and hence, r5(s) ∈
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π(S) ⊆ π(Bn(3)). Also, it is easy to check that e(r5(s), 3) > 30. On the
other hand, according to |Bn(3)|, if x ∈ π(Bn(3))\{3}, then e(x, 3) ≤ 2n.
Thus we get a contradiction, because n ≤ 15. If s = 2, then by check-
ing |S| in different cases, we can see that if S ̸∼= 2Am−1(2

α), then
r7(2

α) ∈ π(S), and if α ̸= 1, then r1(2
α) ∈ π(S). Since r7(2) = 127, thus

127 ∈ {r1(2α), r7(2α)} ⊆ π(S) ⊆ π(Bn(3)), but e(127, 3) = 126 > 30
and similar to the previous argument, we can get a contradiction. If
S ∼= 2Am−1(2

α), then since t(S) ≥ 7, by Table 8 in [24], we can see
that m ≥ 13 and {r2(2α), r14(2α)} ⊆ π(S). If α is an odd num-
ber, then 43 = r14(2) ∈ {r2(2α), r14(2α)} ⊆ π(S) ⊆ π(Bn(3)), but
e(43, 3) = 42 > 30, which is impossible. Otherwise, there exists a nat-
ural number β such that q = 4β and since r8(4) = 257 and accord-
ing to |2Am−1(4

β)|, we have 257 ∈ {r1(q), r2(q), r4(q), r8(q)} ⊆ π(S) ⊆
π(Bn(3)), but e(257, 3) = 256 > 30, which is impossible.
Case 2. p = 5. If s ∈ {7, 13, 31, 313}, then it is easy to check
that e(r5(s), 5) > 30 and similar to the previous case we can get a
contradiction. Also, if s = 2, then since e(43, 5) = 42 > 30 and
e(257, 5) = 256 > 30, similar to the previous argument we get a contra-
diction. If s = 3, then by checking |S| in different cases, we conclude
that {r1(sα), r2(sα), r3(sα), r4(sα), r6(sα), r12(sα)} ⊆ π(S) and hence,
r12(s) ∈ π(S) ⊆ π(Bn(5)). Also, we can see that r12(3) = 73 and
e(73, 5) = 72 > 30, which is impossible.
Case 3. p = 7. By checking |S| in different cases, we can see that
{r1(sα), r2(sα), r5(sα), r10(sα)} ⊆ π(S). If s ∈ {5, 19, 43, 1201}, then we
can check that e(r5(s), 7) > 30 and hence, similar to the case 1, part
B, we get a contradiction. Also, if s = 3, then we replace r5(s) with
r10(3) = 61 and since e(61, 7) = 60 > 30, we get a contradiction. If s = 2
and S ̸∼= 2Am−1(2

α), where α is an odd number, then all the statements
in the case 1, part B is true. Otherwise, i.e., S ∼= 2Am−1(2

α), where
α is an odd number, since m ≥ 13, by checking |2Am−1(2

α)|, we have
{r2(2α), r26(2α)} ⊆ π(S) and hence, 2731 = r26(2) ∈ {r2(2α), r26(2α)} ⊆
π(S) ⊆ π(Bn(7)). But e(2731, 7) = 2730 > 30, which is impossible. The
proof is now complete. □

Lemma 3.4. If S is isomorphic to a finite simple group of Lie type of
characteristic p, then S ∼= Bn(p) or S ∼= Cn(p).

Proof. Assume that S is isomorphic to a finite simple group of Lie type
over a field of order pα and p ∈ {3, 7}. By Lemma 2.2(3-a), rn(p) ∈ π(S).
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Put en = e(rn(p), p
α). Since rn(p) divides pαen − 1, we get that n di-

vides αen. Suppose that αen > n. Then a prime r with e(r, p) = αen
divides the order of S and hence, r divides the order of Bn(p) and by
|Bn(p)|, we conclude that αen ≤ 2n. Consequently, αen ∈ {n, 2n}. Now
to prove the lemma, we consider classical and exceptional groups of Lie
type separately:
Part A. If S is a classical group of Lie type of characteristic p, then S is
isomorphic to one of the groups Aε

m−1(p
α), Dε

m(pα), Cm(pα) or Bm(pα).
Now with a case by case analysis, we prove that S ∼= Bn(p) or S ∼= Cn(p):
Case 1. S ∼= Am−1(p

α). Since (rn(p), 2) ̸∈ GK(S) and en = e(rn(p), p
α),

it follows by Lemma 2.8 that en ∈ {m,m− 1}. Moreover, since
αen ∈ {n, 2n}, we have the following four subcases:
Subcase a. α(m−1) = 2n. In this case, since αm > α(m−1) = 2n and
we know that pαm−1 divides the order of S, we conclude that rαm(p) ∈
π(S). Also, since π(S) ⊆ π(Bn(p)), we have rαm(p) ∈ π(Bn(p)). But,
αm > 2n and we can get a contradiction by |Bn(p)|.
Subcase b. αm = 2n. First, we claim that {r2(n−1)(p), r2(n−2)(p)}∩

π(S) = ∅:
If r2(n−1)(p) ∈ π(S), then according to |S| there exists an integer k

such that 0 ≤ k ≤ m − 2 and r2(n−1)(p) | (pα(m−k) − 1) and hence,
2(n−1) | α(m−k) = αm−αk = 2n−αk. Thus αk = 2 and this implies
that α ∈ {1, 2}. If α = 1, then m = 2n and according to |S|, we can see
that rα(m−1)(p) ∈ π(S) and hence, r2n−1(p) ∈ π(S) ⊆ π(Bn(p)), which
is impossible according to |Bn(p)|. If α = 2, then m = n and according
to |S|, we have r2n(p) ∈ π(S). Since n is odd, it is easy to check that
e(r2n(p), p

2) = e(rn(p), p
2) = n and hence, by using Lemmas 2.6(1,3),

we have (r2n(p), rn(p)) ∈ GK(S) and (r2n(p), rn(p)) ̸∈ GK(Bn(p)). But
by Lemma 2.4(1,2), it is impossible. Thus r2(n−1)(p) ̸∈ π(S). Also,
by the same procedure, since n is an odd number, we can show that
r2(n−2)(p) ̸∈ π(S). Now by using the coclique ρ = {r2n, r2(n−1), r2(n−2)}
of GK(Bn(p)) and Lemma 2.2(2), we can get a contradiction.
Subcase c. αm = n. In this case, we claim that ρ

∩
π(S) = ∅, where

ρ is the coclique which is stated above and hence, similar to the pre-
vious case, we can get a contradiction. If r2n(p) ∈ π(S), according to
the order of S, there is a natural number k such that 2 ≤ k ≤ m and
r2n(p) | (pαk − 1) and hence, 2n | αk. Also, since (pαk − 1) | |S| and
|S| | |Bn(p)|, according to |Bn(p)|, we conclude that αk ≤ 2n. Thus
αk = 2n. But, k ≤ m and hence, 2n = αk ≤ αm = n, which is
impossible. By the same procedure, since n ≥ 9, we can prove that
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{r2(n−1), r2(n−2)}
∩

π(S) = ∅.
Subcase d. α(m − 1) = n. Similar to the previous case, we use the
set ρ and prove that |ρ

∩
π(S)| ≤ 1 and then we get a contradiction.

If r2n(p) ∈ π(S), then similar to the subcase b, r2n(p) | (pα(m−k) − 1),
where 0 ≤ k ≤ m − 2 and hence, 2n | α(m − k). If k ≥ 1, then
m − k ≤ m − 1. Thus 2n ≤ α(m − k) ≤ α(m − 1) = n, which is im-
possible. Therefore, k = 0 and r2n(p) | (pαm − 1). On the other hand,
since (pαm − 1) | |S| and |S| | |Bn(p)|, we conclude that αm = 2n and
hence, e(r2n(p), p

α) = m. Similarly, since n ≥ 9 we can prove that if
r2(n−1)(p) ∈ π(S) or r2(n−2)(p) ∈ π(S), then e(r2(n−1)(p), p

α) = m or
e(r2(n−2)(p), p

α) = m, respectively. Now if |ρ
∩

π(S)| ≥ 2, then similar
to the subcase b, by Lemmas 2.6(1,3) and 2.4(1,2), we can get a con-
tradiction. Therefore, |ρ

∩
π(S)| ≤ 1 and we can get a contradiction by

Lemma 2.2(2). Thus S ̸∼= Am−1(p
α).

Case 2. S ∼= 2Am−1(p
α). Since (rn(p), 2) ̸∈ GK(S) and en = e(rn(p), p

α),
by Lemma 2.9 and the definition of ν(m), we have en ∈ {m, 2m, 2(m−
1), m2 } and since αen ∈ {n, 2n} and n is odd, we have the following four
subcases:
Subcase a. αm = 4n. According to |S|, we have pαm − (−1)m | |S|
and hence, rαm(p) or r2αm(p) belongs to π(S). But, since αm = 4n and
π(S) ⊆ π(Bn(p)), according to |Bn(p)| we can get a contradiction.
Subcase b. αm = 2n. If m is odd, then according to |S|, we have
pαm + 1 = pαm − (−1)m | |S| and hence, r2αm(p) ∈ π(S) ⊆ π(Bn(p)).
But, 2αm > 2n and this is impossible according to |Bn(p)|. If m is
even, then according to |S|, r2α(m−1)(p) ∈ π(S) ⊆ π(Bn(p)) and hence,
2α(m − 1) ≤ 2n and this implies that 2n − α = α(m − 1) ≤ n. Thus
n ≤ α. Moreover, since n is odd, m is even and αm = 2n, we have
α|n. Therefore, α = n and this implies that m = 2, which is impossible,
according to Table 1.
Subcase c. αm = n. First, we claim that {r2(n−1)(p), r2(n−3)(p)}

∩
π(S)

= ∅. If r2(n−1)(p) ∈ π(S), according to |S|, there exists an integer num-

ber k such that 0 ≤ k ≤ m−2 and r2(n−1)(p) | (pα(m−k)− (−1)m−k) and

hence, r2(n−1)(p) | (p2α(m−k) − 1). Thus (n − 1) | α(m − k) = n − αk
and this implies that αk = 1 and hence, m = n. But, since n is odd, we
have pα(m−k) − (−1)m−k = pn−1 − 1 and hence, r2(n−1)(p) | (pn−1 − 1),
which is impossible. Thus r2(n−1)(p) ̸∈ π(S). Similarly, we can prove
that r2(n−3)(p) ̸∈ π(S). Therefore, {r2(n−1)(p), r2(n−3)(p)}

∩
π(S) = ∅.

Now by using the cocliuqe ρ = {r2n, r2(n−1), r2(n−3)} of GK(Bn(p)) and
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Lemma 2.2(2), we can get a contradiction.
Subcase d. α(m − 1) = n. Similar to the previous subcase, we can
prove that {r2(n−1)(p), r2(n−3)(p)}

∩
π(S) = ∅ and get a contradiction.

Therefore, S ̸∼= 2Am−1(p
α).

Case 3. S ∼= 2Dm(pα). Since (rn(p), 2) ̸∈ GK(S) and en = e(rn(p), p
α),

by Lemma 2.10(2), we have en ∈ {2m, 2(m − 1)}. Moreover, we know
that αen ∈ {n, 2n} and n is odd and hence, there are the following two
subcases:
Subcase a. αm = n. Since t(S) ≥ t(G)− 1 = t(Bn(p))− 1, by Table 8
in [24], we have [3m+4

4 ] ≥ [3n+5
4 ] − 1 = [3n+1

4 ]. Also, since n is odd, we
have α is odd as well. If α ≥ 3, then n = αm ≥ 3m and since n ≥ 9,
we conclude that 3n+ 1 ≥ 3m+ 4. Therefore, [3m+4

4 ] = [3n+1
4 ] and this

implies that 3n + 1 − (3m + 4) < 4 and hence, n − m ≤ 2. On the
other hand, n ≥ 3m and hence, 2m ≤ n − m ≤ 2, which implies that
m = 1 and this is impossible according to Table 1. Thus α = 1 and
S ∼= 2Dn(p). Since n is odd, according to |Bn(p)| and |2Dn(p)|, we can
see that rn ∈ π(Bn(p))\π(2Dn(p)). Also, since S ≤ Ḡ = G/K ≤ Aut(S)
andOut(2Dn(p)) is a 2-group, we conclude that rn ∈ π(K). Hence, using
the cocliques ρ = {rn, r2n, r2(n−2)} and τ = {rn, r2n, r4} of GK(Bn(p))
in Lemma 2.1, implies that {r4, r2(n−2)}

∩
π(K) = ∅. By Lemma 2.6(3),

we can see that (r4, r2(n−2)) ∈ GK(Bn(p)). Therefore, by Lemma 2.4(3),

we conclude that Ḡ has an element g of order r4.r2(n−2). On the other

hand, since Ḡ/S ≤ Out(S) and Out(2Dn(p)) is a 2-group, we can as-
sume that g ∈ S and hence, (r4, r2(n−2)) ∈ GK(S). But by Lemma
2.6(4), it is impossible.
Subcase b. α(m − 1) = n. Similar to the previous argument, we can
show that α = 1 and hence, S ∼= 2Dn+1(p). But, since pn+1 + 1 divides
the order of 2Dn+1(p), we have r2(n+1)(p) ∈ π(S), which is impossi-
ble, because π(S) ⊆ π(Bn(p)) and according to |Bn(p)|, r2(n+1)(p) ̸∈
π(Bn(p)). Therefore, S ̸∼= 2Dm(pα).
Case 4. S ∼= Dm(pα). Similar to the previous case, Lemma 2.10(2)
imposes some restrictions on en and we have en ∈ {2(m− 1),m− 1,m}.
Also, since αen ∈ {n, 2n} and n is odd, there are the following four
subcases:
Subcase a. α(m − 1) = 2n. Since pαm − 1 divides the order of S,
we have rαm(p) ∈ π(S) and hence, rαm(p) ∈ π(Bn(p)). But, since
αm > α(m− 1) = 2n, according to |Bn(p)|, we get a contradiction.
Subcase b. α(m − 1) = n. Since n is odd, we have α is odd as
well. If α = 1, then S ∼= Dn+1(p). Since n is odd, according to
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|Dn+1(p)|, we have {rn−1(p), rn+3(p)} ⊆ π(Dn+1(p)). Also, since n ≥ 9,
Lemma 2.6(3,4) implies that (rn−1(p),rn+3(p)) ∈ GK(Dn+1(p)) and
(rn−1(p), rn+3(p)) ̸∈ GK(Bn(p)). But, S ≤ G/K and we can get
a contradiction by Lemma 2.4(1,2). Thus α ≥ 3. We know that
t(S) ≥ t(Bn(p))−1 and by Appendix in [25], t(Dm(p)) ∈ {3m+3

4 , [3m+1
4 ]}

and by Table 8 in [25], t(Bn(p)) = [3n+5
4 ] and hence, if t(S) = [3m+1

4 ],

then [3m+1
4 ] ≥ [3n+1

4 ]. Moreover, α ≥ 3 implies that n ≥ 3(m − 1) and

since n ≥ 9, we conclude that 3n+1
4 ≥ 3m+1

4 . Therefore, [3m+1
4 ] = [3n+1

4 ],
which implies that 3n + 1 − (3m + 1) < 4 and hence, m ∈ {n, n − 1}.
This is impossible, because α(m − 1) = n ≥ 9. If t(S) = 3m+3

4 , then
similar to the above argument we can get a contradiction.
Subcase c. αm = 2n. If α ≥ 3, then similar to the subcase b, we
can get a contradiction. Thus we should consider the cases α = 1 and
α = 2. If α = 1, then m = 2n and since r2(m−1) ∈ π(S), we have
r2(m−1) ∈ π(Bn(p)), but 2(m−1) = 2(2n−1) > 2n, which is impossible,

according to |Bn(p)|. If α = 2, then m = n and S ∼= Dn(p
2). Thus

(p2)2(n−1) − 1 divides the order of S and hence, r4(n−1)(p) ∈ π(Bn(p)),
which is impossible, because 4(n− 1) > 2n.
Subcase d. αm = n. Since n is odd, we have α is odd as well. If α ≥ 3,
similar to the subcase b, we can get a contradiction. If α = 1, thenm = n
and S ∼= Dn(p). In this case, since n is odd, we have Out(Dn(p)) is a 2-
group. Also, the order of Dn(p) implies that r2n ∈ π(Bn(p)) \ π(Dn(p))
and since Ḡ/S ≤ Out(S), we can conclude that r2n ∈ π(K). Thus
it is enough to replace the set ρ in the subcase a, case 3, with the set
{rn, r2n, rn−2} and conclude that (r4, rn−2) ∈ GK(Ḡ), then use the same
procedure to get a contradiction. Therefore S ̸∼= Dm(pα).
Case 5. S ∼= Bm(pα) or S ∼= Cm(pα). Since (rn(p), 2) ̸∈ GK(S) and
en = e(rn(p), p

α), by Lemma 2.10(1), we have en ∈ {m, 2m}. Moreover,
we know that αen ∈ {n, 2n} and n is odd and hence, there are the fol-
lowing two subcases:
Subcase a. αm = 2n. In this case, by considering the order of Bm(pα)
which equals the order of Cm(pα) we can see that r2αm(p) ∈ π(S) and
hence, r2αm(p) = r4n(p) ∈ π(Bn(p)), which is impossible by considering
the order of Bn(p).
Subcase b. αm = n. In this case, it is enough to show that α = 1.
If not, then set ρ = {r2(n−1)(p), r2(n−2)(p), r2(n−4)(p)}. We claim that
ρ
∩

π(S) = ∅. If r2(n−1)(p) ∈ π(S), then by considering the order of
S, there exists an integer number k such that 0 ≤ k ≤ m − 1 and
r2(n−1)(p) | (p2α(m−k) − 1). Thus, n − 1 | (αm − αk) = n − αk and
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this implies that αk = 1 and hence, α = 1, which is a contradiction.
Therefore, r2(n−1)(p) ̸∈ π(S). Also, by the same argument, we can see
that r2(n−2)(p), r2(n−4)(p) ̸∈ π(S). Thus ρ

∩
π(S) = ∅. On the other

hand, by Lemma 2.6(3), ρ is a coclique of GK(Bn(p)). Now we can
get a contradiction by Lemma 2.2(2). Thus α = 1 and S ∼= Bn(p) or
S ∼= Cn(p).
Part B. If S is isomorphic to a finite simple exceptional group of Lie type
of characteristic p, then by Table 4 in [25], we can see that t(S) ≤ 12.
Since t(S) ≥ t(Bn(p))− 1 = [3n+5

4 ]− 1 and n ≥ 9 and n is odd, we con-
clude that n ∈ {9, 11, 13, 15} and t(S) ≥ t(B9(p)) − 1 = 7. Therefore,
S ∼= E7(p

α) or S ∼= E8(p
α) (see Table 4 in [25]). We consider these two

cases separately:
Case 1. S ∼= E7(p

α). Since (rn(p), 2) ̸∈ GK(S) and en = e(rn(p), p
α),

by Lemma 2.10(3), we have en ∈ {7, 9} or en ∈ {14, 18}. Also, since
n ∈ {9, 11, 13, 15} and αen ∈ {n, 2n}, by checking all different cases, we
conclude that n = 9 and α ∈ {1, 2}. Thus S ∼= E7(p) or S ∼= E7(p

2),
when GK(G) = GK(B9(p)). If S ∼= E7(p

2), then by checking |E7(p
2)|,

we can see that r18(p
2) = r36(p) ∈ π(S) ⊆ π(Bn(p)), which is impos-

sible. If S ∼= E7(p), then according to |B9(p)| and |E7(p)|, we can see
that r16(p) ∈ π(B9(p)) \ π(E7(p)). Also, since S ≤ Ḡ ≤ Aut(S) and
Out(E7(p)) is a 2-group, we conclude that r16(p) ∈ π(K). Hence, using
the cocliques ρ = {r7, r16, r18} and τ = {r4, r16, r18} of GK(B9(p)) in
Lemma 2.1, implies that {r4, r7}

∩
π(K) = ∅. Also, by Lemma 2.6(3,5),

we can see that (r4, r7) ∈ GK(B9(p)) and (r4, r7) ̸∈ GK(S). Now by
the same argument in the subcase a, case 3, part A, we can get a con-
tradiction.
Case 2. S ∼= E8(p

α). Since (rn(p), 2) ̸∈ GK(S) and en = e(rn(p), p
α),

by Lemma 2.10(4), we have en ∈ {15, 20, 24, 30}, and similar to the
previous case, by checking all different cases, we conclude that n = 15
and α ∈ {1, 2}. Thus S ∼= E8(p) or S ∼= E8(p

2), when GK(G) =
GK(B15(p)). If S ∼= E8(p

2), then by checking the order of E8(p
2), we

can see that p60 − 1 divides the order of E8(p
2), and hence, r60(p) ∈

π(B15(p)), which is impossible. If S ∼= E8(p), then the order of E8(p)
implies that the coclique ρ = {r13, r22, r26} of GK(B15(p)) has an empty
intersection with π(E8(p)) and we can get a contradiction by Lemma
2.2(2). Therefore, S can not be isomorphic to an exceptional groups of
Lie type of characteristic p, where p ∈ {3, 7}. Moreover, if p = 5, then
r2n(p) ∈ π(S) and if we put e2n = e(rn(p), p

α), then we can see that
αe2n = 2n and hence, by omitting the subcases c and d, case 1, part A
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and the subcase d, case 4, part A and using the remaining statements in
part A and part B, we can conclude that S can not be isomorphic to a
finite simple group of Lie type of characteristic p, and the proof is now
complete.
Hence by Lemmas 3.1, 3.2, 3.3 and 3.4 the Main Theorem is proved. □
Corollary 3.5. Let n be an odd number. The simple group Bn(p), where
n ≥ 9 and p ∈ {3, 5, 7} are quairecognizable by its spectrum.

Proof. Let G be a finite group with ω(G) = ω(Bn(p)). Therefore,
GK(G) = GK(Bn(p)) and hence, if S is a unique nonabelian composi-
tion factor of G, then by using the Main Theorem, we conclude that S
is isomorphic to Bn(p) or Cn(p). If S ∼= Cn(p), then ω(Cn(p)) ⊆ ω(G) =
ω(Bn(p)) and this is impossible, because p(pn−1 + 1) ∈ ω(Cn(p)) \
ω(Bn(p)) ( see [19, Proposition]). Therefore, the simple groups Bn(3),
Bn(5) and Bn(7) are quasirecognizable by their spectra.

□
Corollary 3.6. Let n be an odd number and n ≥ 9 and p ∈ {3, 5, 7}.
If G is a finite group with |G| = |Bn(p)| and ω(G) = ω(Bn(p)), then
G ∼= Bn(p).

Proof. Since ω(G) = ω(Bn(p)), so GK(G) = GK(Bn(p)) and hence, by
Lemma 2.2(1), there exists a finite nonabelian simple group S such that
S ≤ Ḡ = G/K ≤ Aut(S) for the maximal normal soluble subgroup K
of G and according to the Corollary 3.5, we have S ∼= Bn(p). Moreover,
since |G| = |Bn(p)|, |S| = |Bn(p)| and S ≤ G/K, we conclude that
S ∼= G and hence, G ∼= Bn(p). Therefore, the Shi conjecture is true for
the simple groups Bn(3), Bn(5) and Bn(7).

□
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