Bulletin of the Iranian Mathematical Society Vol. 38 No. 3 (2012), pp 647-668.

2-QUASIRECOGNIZABILITY OF THE SIMPLE GROUPS $B_n(p)$ AND $C_n(p)$ BY PRIME GRAPH

M. FOROUDI GHASEMABADI AND A. IRANMANESH*

Communicated by Jamshid Moori

ABSTRACT. Let G be a finite group and let GK(G) be the prime graph of G. We assume that n is an odd number. In this paper, we show that if $GK(G) = GK(B_n(p))$, where $n \ge 9$ and $p \in \{3, 5, 7\}$, then G has a unique nonabelian composition factor isomorphic to $B_n(p)$ or $C_n(p)$. As consequences of our result, $B_n(p)$ is quasirecognizable by its spectrum and also by a new proof, the validity of a conjecture of W. J. Shi for $B_n(p)$ is obtained.

1. Introduction

If G is a finite group, then we denote by $\pi(G)$ the set of all prime divisors of |G| and the *spectrum* $\omega(G)$ of G is the set of elements orders of G, i.e., a natural number n is in $\omega(G)$ if there is an element of order n in G. The Gruenberg-Kegel graph (or prime graph) GK(G) of G is the graph with vertex set $\pi(G)$ where two distinct vertices p and q are adjacent by an edge (briefly, adjacent) if $pq \in \omega(G)$, in which case, we write $(p,q) \in GK(G)$.

A finite group G is called *recognizable by its spectrum* (briefly, *recogniz-able*) if every finite group H with $\omega(G) = \omega(H)$ is isomorphic to G. A

MSC(2010): Primary: 20D05; Secondary: 20D06, 20D60.

 $Keywords: \ Quasirecognition, \ prime \ graph, \ simple \ group, \ element \ order.$

Received: 7 October 2009, Accepted: 31 October 2010.

^{*}Corresponding author

 $[\]bigodot$ 2012 Iranian Mathematical Society.

⁶⁴⁷

finite simple nonabelian group P is called *quasirecognizable by its spectrum*, if each finite group G with $\omega(G) = \omega(P)$ has a unique nonabelian composition factor isomorphic to P [2].

A finite group G is called recognizable by its prime graph, if every finite group H with GK(G) = GK(H) is isomorphic to G. A finite simple nonabelian group P is called quasirecognizable by its prime graph, if each finite group G with GK(G) = GK(P) has a unique nonabelian composition factor isomorphic to P [7]. We say that a finite simple nonabelian group P is 2-quasirecognizable by its prime graph, if each finite group G with GK(G) = GK(P) has a unique nonabelian composition factor isomorphic to P or another simple group Q with GK(Q) = GK(P).

Finite groups G satisfying GK(G) = GK(H) have been determined, where H is one of the following groups: a sporadic simple group [6], a CIT simple group [14], PSL(2,q) where $q = p^{\alpha} < 100$ [16], PSL(2,p)where p > 3 is a prime [15], $G_2(7)$ [26], ${}^2G_2(q)$ where $q = 3^{2m+1} > 3$ [7, 26], PSL(2,q) [8, 10], $L_{16}(2)$ [13, 27]. Also, the quasirecognizability of the following simple nonabelian groups by their prime graphs have been obtained: Alternating group A_p where p and p-2 are primes [12], $L_{10}(2)$ [9], ${}^2F_4(q)$ where $q = 2^{2m+1}$ for some $m \ge 1$ [1], ${}^2D_p(3)$ where $p = 2^n + 1 \ge 5$ is a prime [11], $C_n(2)$ where $n \ne 3$ is odd [4].

Prime graphs of the stated groups have more than two connected components, except the groups $G_2(7)$, $C_n(2)$ where n is an odd prime number and some sporadic simple groups which have two connected components, and the groups $L_{10}(2)$, $L_{16}(2)$ and $C_n(2)$ where n is an odd non-prime number which have connected prime graphs. In this paper, we show that the simple groups $B_n(3)$, $B_n(5)$ and $B_n(7)$ are 2-quasirecognizable by their prime graphs. In fact, we have the following Main Theorem:

Main Theorem. Let n be an odd number. The simple groups $B_n(p)$, where $n \ge 9$ and $p \in \{3, 5, 7\}$, are 2-quasirecognizable by their prime graphs.

Since $GK(B_n(p))$ and $GK(C_n(p))$ are coincide (see [24, Proposition 7.5]), the conclusion of the Main Theorem is obtained for the group $C_n(p)$ as well. Moreover, it is worthy to mention that $GK(B_n(5))$ and $GK(B_n(7))$ are always connected and if n is an odd non-prime, then $GK(B_n(3))$ is connected as well and if n is an odd prime, then $GK(B_n(3))$ has two connected components.

It is obvious that $\omega(G)$ determines GK(G) and hence, as the first result

2-quasirecognizability of the simple groups $B_n(p)$ and $C_n(p)$ by prime graph

of the Main Theorem, we have the following corollary:

Corollary. Let n be an odd positive integer. The simple groups $B_n(3)$, $B_n(5)$ and $B_n(7)$, where $n \ge 9$, are quasirecognizable by their spectra.

Of course, for the spacial case, i.e., when n is a prime number, the quasirecognizability of the group $B_n(3)$ by its spectrum is obtained ([17]).

W. J. Shi in [18], put forward the following conjecture:

Conjecture. Let G be a finite group and let M be a finite simple group. Then $G \cong M$ if and only if (i) |G| = |M|, and (ii) $\omega(G) = \omega(M)$.

A series of papers proved that this conjecture is valid for most of finite simple groups (see a survey in [19]) and the last step of the proof of this conjecture is to prove that the conjecture holds for the simple groups $B_n(q)$ and $C_n(q)$. Also, Mazurov and his students just proved that this conjecture is valid for these groups as well and hence, Shi's conjecture is now proved positively [22, 23]. As another corollary of the Main Theorem, by a new proof the validity of this conjecture is obtained for the groups under study.

2. Preliminaries

Throughout this paper, we use the following notations: By [x] we denote the integer part of x and by $gcd(a_1, a_2, \dots, a_n)$ we denote the greatest common divisor of numbers a_1, a_2, \dots, a_n . A set of vertices of a graph is called a coclique (or independent), if its elements are pairwise nonadjacent. We denote by $\rho(G)$ and $\rho(r, G)$ a coclique of maximal size in GK(G) and a coclique of maximal size, containing r, in GK(G), respectively. Also, we put $t(G) = |\rho(G)|$ and $t(r, G) = |\rho(r, G)|$.

Lemma 2.1. [20, Proposition 1] Let G be a finite group, $t(G) \ge 3$, and let K be the maximal normal soluble subgroup of G. Then for every subset ρ of primes in $\pi(G)$ such that $|\rho| \ge 3$ and all primes in ρ are

pairwise nonadjacent in GK(G), the intersection $\pi(K) \cap \rho$ contains at most one number. In particular, G is insoluble.

Lemma 2.2. [21, Theorem 1] Let G be a finite group with $t(G) \ge 3$ and $t(2,G) \ge 2$. Then the followings hold:

- (1) There exists a finite nonabelian simple group S such that $S \leq \overline{G} = G/K \leq Aut(S)$ for the maximal normal soluble subgroup K of G.
- (2) For every independent subset ρ of $\pi(G)$ with $|\rho| \geq 3$ at most one prime in ρ divides the product $|K|.|\bar{G}/S|$. In particular, $t(S) \geq t(G) - 1$.
- (3) One of the following holds:
 - (a) every prime $r \in \pi(G)$ nonadjacent to 2 in GK(G) does not divide the product $|K|.|\bar{G}/S|$; in particular, $t(2,S) \ge t(2,G)$;
 - (b) there exists a prime $r \in \pi(K)$ nonadjacent to 2 in GK(G); in which case t(G) = 3, t(2,G) = 2, and $S \cong A_7$ or $A_1(q)$ for some odd q.

Lemma 2.3. [24, Proposition 1.1] Let $G = A_n$ be an alternating group of degree n.

- (1) Let $r, s \in \pi(G)$ be odd primes. Then r and s are nonadjacent iff r+s > n.
- (2) Let $r \in \pi(G)$ be an odd prime. Then 2 and r are nonadjacent iff r+4 > n.

Lemma 2.4. Let G be a finite group. If H is a subgroup of G and N is a normal subgroup of G, then:

- (1) If $(p,q) \in GK(H)$, then $(p,q) \in GK(G)$;
- (2) If $(p,q) \in GK(\frac{G}{N})$, then $(p,q) \in GK(G)$;
- (3) If $(p,q) \in GK(\overline{G})$ and $\{p,q\} \cap \pi(N) = \emptyset$, then $(p,q) \in GK(\overline{G})$.

Proof. The proof is straightforward.

Let s be a prime and let m be a natural number. The s-part of m is denoted by m_s , i.e., $m_s = s^t$ if $s^t \mid m$ and $s^{t+1} \nmid m$. If q is a natural number, r is an odd prime and gcd(r,q) = 1, then by e(r,q) we denote the smallest natural number m such that $q^m \equiv 1 \pmod{r}$. Obviously by Fermat's little theorem it follows that $e(r,q) \mid (r-1)$. Also, if $q^n \equiv 1 \pmod{r}$, then $e(r,q) \mid n$. Therefore, we can use the following function in GAP [5], to compute e(r,q):

2-quasirecognizability of the simple groups $B_n(p)$ and $C_n(p)$ by prime graph

. .

If q is odd, we put e(2,q) = 1 if $q \equiv 1 \pmod{4}$, and e(2,q) = 2 otherwise.

Lemma 2.5. [25, Corollary to Zsigmondy's theorem] Let q be a natural number greater than 1. For every natural number m there exists a prime r with e(r,q) = m, except for the cases q = 2 and m = 1, q = 3 and m = 1, and q = 2 and m = 6.

The prime r with e(r,q) = m is called a *primitive prime divisor* of $q^m - 1$. It is obvious that $q^m - 1$ can have more than one primitive prime divisor. We denote by $r_m(q)$ some primitive prime divisor of $q^m - 1$. If there is no ambiguity, we write r_m instead of $r_m(q)$. We write $A_n^{\varepsilon}(q)$ and $D_n^{\varepsilon}(q)$, where $\varepsilon \in \{+, -\}$, and $A_n^+(q) = A_n(q)$,

We write $A_n(q)$ and $D_n(q)$, where $\varepsilon \in \{+, -\}$, and $A_n(q) = A_n(q)$, $A_n^-(q) = {}^2A_n(q), D_n^+(q) = D_n(q), D_n^-(q) = {}^2D_n(q)$. Also, $\nu(n)$ and $\eta(n)$ for an integer n, are defined in [24] as follow:

$$\nu(n) = \begin{cases} n \text{ if } n \equiv 0 \pmod{4}; \\ \frac{n}{2} \text{ if } n \equiv 2 \pmod{4}; \\ 2n \text{ if } n \equiv 1 \pmod{2}. \end{cases}, \ \eta(n) = \begin{cases} n \text{ if } n \text{ is odd}; \\ \frac{n}{2} \text{ otherwise.} \end{cases}$$

Lemma 2.6. Let G be a finite simple group of Lie type over a field of order q with characteristic p. Let r and s be odd primes and $r, s \in \pi(G) \setminus \{p\}$. Put k = e(r,q) and l = e(s,q).

- (1) If $G = A_{n-1}(q)$ and $2 \le k \le l$, then r and s are nonadjacent if and only if k + l > n and k does not divide l;
- (2) If $G = {}^{2}A_{n-1}(q)$ and $2 \leq \nu(k) \leq \nu(l)$, then r and s are nonadjacent if and only if $\nu(k) + \nu(l) > n$ and $\nu(k)$ does not divide $\nu(l)$;
- (3) If $G = B_n(q)$ or $C_n(q)$ and $1 \le \eta(k) \le \eta(l)$, then r and s are nonadjacent if and only if $\eta(k) + \eta(l) > n$ and $\frac{l}{k}$ is not an odd natural number.
- (4) If $G = D_n^{\varepsilon}(q)$ and $1 \le \eta(k) \le \eta(l)$, then r and s are nonadjacent if and only if $2\eta(k) + 2\eta(l) > 2n (1 \varepsilon(-1)^{k+l})$ and $\frac{l}{k}$ is not an

odd natural number and, if $\varepsilon = +$, then the chain of equalities $n = l = 2\eta(l) = 2\eta(k) = 2k$, is not true.

(5) If $G = E_7(q)$ and $1 \le k \le l$, then r and s are nonadjacent if and only if $k \ne l$ and either l = 5 and k = 4, or l = 6 and k = 5, or $l \in \{14, 18\}$ and $k \ne 2$, or $l \in \{7, 9\}$ and $k \ge 2$, or l = 8and $k \ge 3$, $k \ne 4$, or l = 10 and $k \ge 3$, $k \ne 6$, or l = 12 and $k \ge 4, k \ne 6$.

Proof. See [24, Propositions 2.1 and 2.2] and [25, Propositions 2.4; 2.5 and 2.7(5)].

Lemma 2.7. [24, Proposition 3.1] Let G be a finite simple classical group of Lie type of characteristic p and let $r \in \pi(G)$ and $r \neq p$. Then r and p are nonadjacent if and only if one of the following holds:

(1) $G = A_{n-1}(q), r$ is odd, and e(r,q) > n-2;(2) $G = {}^{2}A_{n-1}(q), r$ is odd, and $\nu(e(r,q)) > n-2;$ (3) $G = C_{n}(q), \eta(e(r,q)) > n-1;$ (4) $G = B_{n}(q), \eta(e(r,q)) > n-1;$ (5) $G = D_{n}^{\varepsilon}(q), \eta(e(r,q)) > n-2;$ (6) $G = A_{1}(q), r = 2;$ (7) $G = A_{2}^{\varepsilon}(q), r = 3$ and $(q - \varepsilon 1)_{3} = 3.$

Lemma 2.8. [24, Proposition 4.1] Let $G = A_{n-1}(q)$ be a finite simple group of Lie type, r be a prime divisor of q-1, and s be an odd prime number not equal to the characteristic of G. Put k = e(s,q). Then s and r are nonadjacent if and only if one of the following holds:

- (1) $k = n, n_r \leq (q-1)_r$, and if $n_r = (q-1)_r$, then $2 < (q-1)_r$;
- (2) k = n 1 and $(q 1)_r \le n_r$.

Lemma 2.9. Let $G = {}^{2}A_{n-1}(q)$ be a finite simple group of Lie type, r be a prime divisor of q + 1, and s be an odd prime number not equal to the characteristic of G. Put k = e(s, q). Then s and r are nonadjacent if and only if one of the following holds:

(1) $\nu(k) = n, n_r \le (q+1)_r$, and if $n_r = (q+1)_r$, then $2 < (q+1)_r$; (2) $\nu(k) = n-1$ and $(q+1)_r \le n_r$.

Lemma 2.10. Let G be a finite simple group of Lie type over a field of order q with odd characteristic p. Let r be an odd prime divisor of |G|, $r \neq p$, and k = e(r, q).

(1) If $G = B_n(q)$ or $C_n(q)$, then r and 2 are nonadjacent if and only if $\eta(k) = n$ and one of the following holds:

2-quasirecognizability of the simple groups $B_n(p)$ and $C_n(p)$ by prime graph

- (a) *n* is odd and k = (3 e(2, q))n;
- (b) n is even and k = 2n.
- (2) If $G = D_n^{\varepsilon}(q)$, then r and 2 are nonadjacent if and only if one of the following holds:
 - (a) $\eta(k) = n$ and $(4, q^n \varepsilon 1) = (q^n \varepsilon 1)_2$;
 - (b) $\eta(k) = k = n 1$, *n* is even, $\varepsilon = +$, and e(2, q) = 2;
 - (c) $\eta(k) = \frac{k}{2} = n 1$, $\varepsilon = +$, and e(2, q) = 1;
- (d) $\eta(k) = \frac{\overline{k}}{2} = n 1$, *n* is odd, $\varepsilon = -$, and e(2,q) = 2. (3) If $G = E_7(q)$, then *r* and 2 are nonadjacent if and only if either $k \in \{7, 9\}$ and e(2,q)=2 or $k \in \{14, 18\}$ and e(2,q)=1;
- (4) If $G = E_8(q)$, then r and 2 are nonadjacent if and only if $k \in$ $\{15, 20, 24, 30\}.$

Proof. See [24, Propositions 4.3; 4.4 and <math>4.5(5,6)].

Remark 2.11. In order to facilitate the reader, we state the orders of some simple groups and their outer automorphism groups in the following table: (We assume that $q = p^{\alpha}$) [3]

G	d	G	Out(G)
J_4	1	$2^{21}.3^3.5.7.11^3.23.29.31.37.43$	1
F_1	1	$2^{46}.3^{20}.5^{9}.7^{6}.11^{2}.13^{3}.17.19.23.29.31.41.47.59.71$	1
F_2	2	$2^{41}.3^{13}.5^{6}.7^{2}.11.13.17.19.23.31.47$	1
$\begin{array}{ c c }\hline A_n(q)\\ n \geqslant 1 \end{array}$	gcd(n+1,q-1)	$\frac{1}{d}q^{\frac{n(n+1)}{2}}\prod_{i=1}^{n}(q^{i+1}-1)$	$\begin{array}{c} 2d\alpha, \ if \ n \geqslant 2\\ d\alpha, \ if \ n = 1 \end{array}$
$ \begin{array}{c} ^{2}A_{n}(q)\\ n \geqslant 1 \end{array} $	gcd(n+1,q+1)	$\frac{1}{d}q^{\frac{n(n+1)}{2}}\prod_{i=1}^{n}(q^{i+1}-(-1)^{i+1})$	$\begin{array}{c} 2d\alpha, \ \text{if} \ n \geqslant 2\\ d\alpha, \ \text{if} \ n = 1 \end{array}$
$\begin{bmatrix} B_n(q) \\ n \geqslant 2 \end{bmatrix}$	gcd(2, q-1)	$\frac{1}{d}q^{n^2}\prod_{i=1}^{n}(q^{2i}-1)$	$d\alpha, if n \ge 3$ $2\alpha, if n = 2$
$\begin{array}{c} C_n(q) \\ n \geqslant 2 \end{array}$	gcd(2, q-1)	$\frac{1}{d}q^{n^2}\prod_{i=1}^n(q^{2i}-1)$	$d\alpha, if n \ge 3 2\alpha, if n = 2$
$ \begin{array}{c} D_n(q) \\ n \geqslant 4 \end{array} $	$gcd(4, q^n - 1)$	$\frac{1}{d}q^{n(n-1)}(q^n-1)\prod_{i=1}^{n-1}(q^{2i}-1)$	$\begin{array}{c} 2d\alpha, \ if \ n \neq 4\\ 6d\alpha, \ if \ n = 4 \end{array}$
$ \begin{bmatrix} ^{2}D_{n}(q) \\ n \geqslant 4 \end{bmatrix} $	$gcd(4, q^n + 1)$	$\frac{1}{d}q^{n(n-1)}(q^n+1)\prod_{i=1}^{n-1}(q^{2i}-1)$	2dlpha
$E_7(q)$	gcd(2, q-1)	$\frac{1}{d}q^{63}\prod_{i\in\{2,6,8,10,12,14,18\}}(q^i-1)$	$d\alpha$
$E_8(q)$	1	$q^{120}\prod_{i\in\{2,8,12,14,18,20,24,30\}}(q^{i}-1)$	α

Table 1

3. Proof of the main theorem

Assume that $p \in \{3, 5, 7\}$ and n is an odd number, where $n \ge 9$. By Tables 6 and 8 in [24], we have $t(B_n(p)) = [\frac{3n+5}{4}], t(2, B_n(p)) = 2$ and $\rho(2, B_n(5)) = \{2, r_{2n}(5)\}$ and if $p \in \{3, 7\}$, then $\rho(2, B_n(p)) =$ $\{2, r_n(p)\}$. Hence, if G is a finite group with $GK(G) = GK(B_n(p))$ and the maximal normal soluble subgroup K, then Lemma 2.2 implies

653

that G has a unique nonabelian composition factor S, in which case $S \leq \overline{G} = G/K \leq Aut(S), t(S) \geq t(B_n(p)) - 1$ and $t(2, S) \geq 2$. Also, if $p \in \{3, 7\}$, then $r_n(p) \in \pi(S)$ and if p = 5, then $r_{2n}(p) \in \pi(S)$. Since S is a finite nonabelian simple group, it follows by classification theorem of finite simple groups that S is a sporadic simple group, an alternating group or a simple group of Lie type. We prove that $S \cong B_n(p)$ or $S \cong C_n(p)$, by a sequence of lemmas.

Lemma 3.1. S can not be isomorphic to a sporadic simple group.

Proof. If $n \ge 17$, then by Lemma 2.2(2), $t(S) \ge t(B_{17}(p)) - 1 \ge 13$ and hence, the conclusion immediately holds by Table 2 in [24]. Otherwise, we have $n \in \{9, 11, 13, 15\}$ and since $t(S) \ge t(B_9(p)) - 1 \ge 7$, it follows by Table 2 in [24] that S can be isomorphic to one of the groups F_1 , F_2 or J_4 . Since $r_n(p) \in \pi(S)$, if $p \in \{3, 7\}$, and $r_{2n}(p) \in \pi(S)$, if p = 5, by computing the numbers $r_9(3) = 757$, $r_{11}(3) = 3851$, $r_{13}(3) = 797161$, $r_{15}(3) =$ 4561, $r_9(7) = 37, 1063$, $r_{11}(7) = 1123, 293459$, $r_{13}(7) = 16148168401$, $r_{15}(7) = 31, 159871$, $r_{18}(5) = 5167$, $r_{22}(5) = 5281$, $r_{26}(5) = 5227$, $r_{30}(5) = 7621$ by GAP [5] and also by considering $\pi(F_1)$, $\pi(F_2)$ and $\pi(J_4)$ in Table 1, we can easily get a contradiction and the proof is complete. □

Lemma 3.2. S can not be isomorphic to an alternating group.

Proof. If $S \cong A_m$, where $m \ge 5$, then by considering the cases $n \ge 17$ and $9 \le n \le 15$ separately, we get a contradiction.

Case 1. If $n \ge 17$, then $t(S) \ge 13$ hence $|\pi(A_m)| \ge 13$. Thus according to the set $\pi(A_m)$, we can assume that $m \ge 41$ and it implies that $\{17, 19\} \subseteq \pi(S)$. First, we find an upper bound for $t(17, A_m)$ and $t(19, A_m)$. If $x \in \rho(17, A_m) \setminus \{17\}$, then by Lemma 2.3, $x \neq 2$ and x + 17 > m. Also, since $x \in \pi(A_m)$, we conclude that $x \in \{s \mid s \text{ is a }$ prime, $m - 16 \le s \le m$. Hence, since $m \ge 41$, there exist at most six choices for x. Thus $t(17, A_m) \leq 7$. Also, by the same procedure, we can see that $t(19, A_m) \leq 8$. Since $S \leq G/K$ and $\pi(G) = \pi(B_n(p))$, we have $\pi(S) \subseteq \pi(B_n(p))$ hence $\{17, 19\} \subseteq \pi(B_n(p))$. Now we find a lower bound for $t(17, B_n(5)), t(17, B_n(7))$ and $t(19, B_n(3))$. Since e(17, 5) =e(17,7) = 16, n is an odd number and $n \ge 17$, it follows by Lemma 2.6(3) that the set $\tau = \{17, r_n, r_{2n}, r_{n-2}, r_{2(n-2)}, r_{n-4}, r_{2(n-4)}, r_{n-6}, r_{2(n-6)}\}$ is a coclique of $GK(B_n(5))$ and $GK(B_n(7))$ and also, since 8 divides exactly one of the numbers n - 1, n - 3, n - 5, n - 7, we can add three elements of the set $\{r_{2(n-1)}, r_{2(n-3)}, r_{2(n-5)}, r_{2(n-7)}\}$ to the set τ . Therefore, $t(17, B_n(5)) \ge 12$ and $t(17, B_n(7)) \ge 12$. By the same argument, since e(19,3) = 18, we can use the coclique

 $\tau' = \{19, r_n, r_{2(n-1)}, r_{n-2}, r_{2(n-3)}, r_{n-4}, r_{2(n-5)}, r_{n-6}, r_{2(n-7)}, r_{n-8}\}$ of $GK(B_n(3))$ and conclude that $t(19, B_n(3)) \ge 10$. By using Lemma 2.2(2) for the sets $\rho(17, B_n(5)), \rho(17, B_n(7))$ and $\rho(19, B_n(3))$, we have

$$|\rho(17, B_n(5)) \bigcap \pi(A_m)| \ge t(17, B_n(5)) - 1 \ge 11,$$
$$|\rho(17, B_n(7)) \bigcap \pi(A_m)| \ge t(17, B_n(7)) - 1 \ge 11,$$
$$|\rho(19, B_n(3)) \bigcap \pi(A_m)| \ge t(19, B_n(3)) - 1 \ge 9.$$

On the other hand, since $S \leq G/K$, it follows by Lemma 2.4(1,2) that

$$|\rho(17, B_n(5)) \bigcap \pi(A_m)| \le t(17, A_m),$$
$$|\rho(17, B_n(7)) \bigcap \pi(A_m)| \le t(17, A_m),$$
$$|\rho(19, B_n(3)) \bigcap \pi(A_m)| \le t(19, A_m)$$

hence $11 \leq t(17, A_m) \leq 7$ and $9 \leq t(19, A_m) \leq 8$, which is impossible. **Case 2.** $9 \leq n \leq 15$. We know that $r_n(p) \in \pi(A_m)$, if $p \in \{3, 7\}$, and $r_{2n}(p) \in \pi(A_m)$, if p = 5. Thus according to the numbers $r_n(3)$, $r_{2n}(5)$ and $r_n(7)$ which are obtained in Lemma 3.1 we conclude that $79 \in \pi(A_m)$ and hence, since $\pi(A_m) \subseteq \pi(B_n(p))$, we have $79 \in \pi(B_n(p))$. But, e(79,3) = e(79,7) = 78 and e(79,5) = 39. This is a contradiction considering $|B_n(q)|$, where $n \leq 15$ (see Table 1). The proof is now complete. \Box

Lemma 3.3. S can not be isomorphic to a finite simple group of Lie type of characteristic different from p.

Proof. Assume that S is isomorphic to a finite simple group of Lie type of characteristic s, where $s \neq p$. We get a contradiction by considering two parts A and B, as follows.

Part A. $n \ge 17$. In this part, since $t(S) \ge 13$, by Table 4 in [25], we conclude that S can not be an exceptional group of Lie type. Thus S is one of the classical groups $A_{m-1}^{\varepsilon}(q)$, $D_m^{\varepsilon}(q)$, $C_m(q)$ or $B_m(q)$, where $q = s^{\alpha}$. We get a contradiction case by case:

Case 1. If $S \cong A_{m-1}(q)$, then since gcd(s, p) = 1, we can assume that t = e(s, p). If t is an odd number not equal to 1, 3, let

$$\rho = \{s, r_{2n}, r_{2(n-1)}, r_{2(n-2)}, r_{2(n-3)}\}.$$

Since $GK(G) = GK(B_n(p))$, by Lemma 2.6(3), we can see that ρ is a coclique of GK(G), containing s and hence, by Lemmas 2.2(2) and 2.4(1,2), we conclude that $t(s, S) \ge |\rho| - 1$. On the other hand, since $t(S) \ge 13$, by Table 8 in [24], we can assume that $m \ge 25$ and hence, Table 4 in [24] implies that t(s, S) = 3. Thus $3 \ge |\rho| - 1 = 4$, which is impossible. Also, if t is an even number except 2,6, where $\frac{t}{2}$ is odd, then it is enough to replace ρ with the coclique $\{s, r_n, r_{2(n-1)}, r_{n-2}, r_{2(n-3)}\}$ of $GK(B_n(p))$ and get a contradiction. If t and $\frac{t}{2}$ are even numbers and $t \neq 4$, then by replacing ρ with the coclique $\{s,r_n,r_{2n},r_{n-2},r_{2(n-2)}\}$ of $GK(B_n(p))$ in the previous argument, we can get a contradiction. Therefore, we should only consider different cases for t, where $t \in \{1, 2, 3, 4, 6\}$. Since t = e(s, p)and $p \in \{3, 5, 7\}$, by Lemma 2.5, we can see that $s \in \{2, 5, 7, 13\}$, if p = 3, and $s \in \{2, 3, 7, 13, 31\}$, if p = 5, and $s \in \{2, 3, 5, 19, 43\}$, if p = 7. Since $m \ge 25$, according to $|A_{m-1}(q)|$ (see Table 1), we have $r_7 \in \pi(S)$ and if $q \neq 2, 3$, then $r_1 \in \pi(S)$. For considering the remaining cases, first we find an upper bound for $t(r_1, S)$ and $t(r_7, S)$. If $r_1 \in \pi(S)$, then Lemma 2.8 implies that $t(r_1, S) \leq 3$. We claim that $t(r_7, S) = 7$:

By Lemmas 2.8 and 2.7(1), we can see that $(2, r_7), (r_1, r_7), (s, r_7) \in GK(S)$. Thus if $x \in \rho(r_7, S) \setminus \{r_7\}$, then $x \notin \{2, s, r_1\}$ and if $e(x, s^{\alpha}) = l$, then by Lemma 2.6(1) we conclude that l + 7 > m and $7 \nmid l$. Also, according to |S|, we have $l \leq m$ and hence, $l \in \{m - 6, m - 5, \cdots, m\}$ and $7 \nmid l$. Since $m - 6, m - 5, \cdots, m$ are seven consecutive numbers, so 7 divides exactly one of them and we have exactly six choices for l and hence, $t(r_7, S) = 7$. For getting a contradiction, we consider the cases $p = 3, s \in \{2, 5, 7, 13\}$ and $p = 5, s \in \{2, 3, 7, 13, 31\}$ and $p = 7, s \in \{2, 3, 5, 19, 43\}$ separately:

Subcase a. p = 3. If s = 2, then since $r_7(2) = 127$, we have $127 \in \{r_1(2^{\alpha}), r_7(2^{\alpha})\} \subseteq \pi(S)$ and by the above statements we conclude that $t(127, S) \leq 7$. On the other hand, since $\pi(S) \subseteq \pi(B_n(3))$, we have $127 \in \pi(B_n(3))$. Also, we know that e(127, 3) = 126 and hence, according to $|B_n(3)|$, we conclude that $n \geq 63$. Moreover, since n is an odd number, it follows by Lemma 2.6(3) that the set $\tau \bigcup \{127\}$ is a coclique of $GK(B_n(3))$, where

$$\tau = \{ r_i | n - 14 \le i \le n, i \equiv 1 \pmod{2} \} \bigcup$$
$$\{ r_{2i} | n - 15 \le i \le n - 1, i \equiv 0 \pmod{2} \}$$

and hence, $t(127, B_n(3)) \ge 17$. Also, since $S \le G/K$, it follows by Lemma 2.4(1,2) that $|\rho(127, B_n(3)) \cap \pi(S)| \le t(127, S)$. By using Lemma 2.2(2) for $\rho(127, B_n(3))$, we have $7 \ge t(127, S) \ge t(127, B_n(3)) - 1 \ge 16$, which is impossible. If s = 5 or s = 13, then $r_7(s) = 19531$ and $r_7(s) = 5229043$, respectively. Also, since e(19531,3) = 6510 and e(5229043,3) = 249002, Lemma 2.6(3) implies that the set $\tau \bigcup \{r_7(s)\}$ is a coclique of $GK(B_n(3))$ and hence, $t(r_7(s), B_n(3)) \ge 17$ and similar to the previous argument we can get a contradiction. If s = 7, then $r_7(7) = 4733$ and similar to the case s = 2, we conclude that $t(4733, S) \le 7$ and $4733 \in \pi(B_n(3))$. Also, since e(4733,3) = 676, Lemma 2.6(3) implies that the set $\tau' \bigcup \{4733\}$, where $\tau' = \{r_i, r_{2i} \mid n - 14 \le i \le n, i \equiv 1 \pmod{2}\}$ is a coclique of $GK(B_n(3))$ and hence, $t(4733, B_n(3)) \ge 17$. Now similar to the previous arguments, we can get a contradiction.

Subcase b. p = 5. If s = 13, then $r_7(s) = 5229043$. Also, we can see that e(5229043, 5) = 1743014 and hence, similar to the previous subcase by using the coclique $\tau \mid |\{r_7(s)\}\)$, we can get a contradiction. If $s \in \{3,7\}$, then $r_7(s) \in \{1093, 4733\}$. Also, we have e(1093, 5) = 1092and e(4733,5) = 4732 and hence, similar to the previous subcase by using the coclique $\tau' \bigcup \{r_7(s)\}$, we can get a contradiction. If s = 2, then $r_7(s) = 127$ and since e(127, 5) = 42, according to $|B_n(5)|$, we conclude that $n \ge 21$ and hence, Lemma 2.6(3) implies that the set $\tau'' \bigcup \{127\}$ is a coclique of $GK(B_n(5))$, where $\tau'' = \{r_i \mid n-10 \leq 10\}$ $i \leq n, i \equiv 1 \pmod{2} \bigcup \{ r_{2i} \mid n-9 \leq i \leq n-1, i \equiv 0 \pmod{2} \}.$ Moreover, since 21 divides at most one of the numbers n - 10, n - 10 $9, \dots, n$, by Lemma 2.6(3), we can add at least five elements of the set $\{r_{2(n-10)}, r_{2(n-8)}, r_{2(n-6)}, r_{2(n-4)}, r_{2(n-2)}, r_{2n}\}$ to $\tau'' \bigcup \{127\}$. Therefore, $t(127, B_n(5)) \geq 16$ and we can get a contradiction by similar argument in the previous subcase. If s = 31, then $r_7(s) = 917087137$ and since e(917087137,5) = 917087136, by using the coclique $\tau' \{ \} \{ 917087137 \}$ and similar argument in the previous subcase, we can get a contradiction.

Subcase c. p = 7. If $s \in \{2, 5, 43\}$, then $r_7(s) \in \{127, 19531, 5839\}$. Also, we know that e(127, 7) = 126, e(19531, 7) = 3906 and e(5839, 7) = 1946 and hence, similar to the subcase a, case 1, part A, we can use the coclique $\tau \bigcup \{r_7(s)\}$ and get a contradiction. If $s \in \{3, 19\}$, then $r_7(s) \in \{1093, 701\}$. Also, we have e(1093, 7) = 273 and e(701, 7) = 175. Thus Lemma 2.6(3) implies that the set $\{r_{2i} | n - 15 \le i \le n\} \bigcup \{r_7(s)\}$ is a coclique of $GK(B_n(7))$ and hence, $t(r_7(s), B_n(7)) \ge 17$. Now similar to the previous arguments, we can get a contradiction.

Case 2. $S \cong {}^{2}A_{m-1}(q)$. Since $t(S) \ge 13$, by Table 8 in [24] we can see that $m \ge 25$ and hence, t(s, S) = 3, by Table 4 in [24]. Thus similar to the case 1, it is enough to consider $s \in \{2, 5, 7, 13\}$, if p = 3,

and $s \in \{2, 3, 7, 13, 31\}$, if p = 5, and $s \in \{2, 3, 5, 19, 43\}$, if p = 7. Since $m \geq 25$, according to $|^2A_{m-1}(q)|$, we have $r_7 \in \pi(S)$ and if $q \neq 2, 3$, then $r_1 \in \pi(S)$. We want to find an upper bound for $t(r_7, S)$. Since $m \geq 25$, by Lammas 2.9 and 2.7(2), we have $(2, r_7), (r_2, r_7), (s, r_7) \in GK(S)$. Thus if $x \in \rho(r_7, S) \setminus \{r_7\}$, then $x \notin \{2, s, r_2\}$ and if $e(x, s^{\alpha}) = l$, then by Lemma 2.6(2), we have $\nu(l) + 14 > m$ and $14 \nmid \nu(l)$. Furthermore, by $|^2A_{m-1}(q)|$, we can see that $\nu(l) \leq m$. Thus $\nu(l) \in \{m - 13, m - 12, \cdots, m\}$ and $14 \nmid \nu(l)$. Moreover, since $m - 13, m - 12, \cdots, m$ are fourteen consecutive numbers, so 14 divides exactly one of them and hence, we have thirteen choices for l. Therefore, $t(r_7, S) = 14$. If $r_1 \in \pi(S)$, by the same procedure, we can show that $t(r_1, S) = 2$. Hence, since $r_7(s) \in \{r_1(s^{\alpha}), r_7(s^{\alpha})\}$, we have $t(r_7(s), S) \leq 14$. Now we can use all the statements in the subcases a, b and c, case 1, part A to get a contradiction.

Case 3. S is isomorphic to one of the groups $B_m(q), C_m(q)$ or $D_m(q)$. Since $t(S) \ge 13$, by Table 8 in [24] and Appendix in [25], we can see that $m \ge 16$ and hence, $t(s, S) \le 3$, by Table 4 in [24]. Thus similar to the case 1, it is enough to consider $s \in \{2, 5, 7, 13\}$, if p = 3, and $s \in \{2, 3, 7, 13, 31\}$, if p = 5, and $s \in \{2, 3, 5, 19, 43\}$, if p = 7. If $S \cong B_n(q)$ or $C_n(q)$, then since $m \ge 16$, according to |S|, we can see that $r_7 \in \pi(S)$ and if $q \neq 2, 3$, then $r_1 \in \pi(S)$. By Lemmas 2.7(3,4) and 2.10, we have $(2, r_7), (s, r_7) \in GK(S)$. Thus if $x \in \rho(r_7, S) \setminus \{r_7\}$, then $x \notin \{2, s\}$ and if $e(x, s^{\alpha}) = l$, then by Lemma 2.6(3), we have $\eta(l) + 7 > m$. Furthermore, according to the order of $B_m(q)$ and $C_m(q)$, we can see that $\eta(l) \leq m$. Thus $\eta(l) \in \{m-6, m-5, \cdots, m\}$ and by the definition of $\eta(l)$, there are at most eleven choices for l. Therefore, $t(r_7, S) \leq 12$. Also, if $r_1 \in \pi(S)$, then by the same argument, we can show that $t(r_1, S) \leq 3$. If $S \cong D_m(q)$, then by Lemmas 2.6(4), 2.7(5), 2.10(2) and the previous argument, we conclude that $t(r_7, S) \leq 13$ and if $r_1 \in \pi(S)$, then $t(r_1, S) \leq 4$. Now we can use all the statements in the subcases a, b and c, case 1, part A to get a contradiction.

Case 4. $S \cong {}^{2}D_{m}(q)$. Since $t(S) \ge 13$, by Table 8 in [24] we can see that $m \ge 16$ and hence, $t(s, S) \le 4$, by Table 4 in [24]. By using similar argument in the case 1, if t = e(s, p) and t is an odd number except 1,3, it is enough to replace ρ with the coclique $\rho \bigcup \{r_{2(n-4)}\}$ of $GK(B_{n}(p))$, and if t is an even number except 2,6, where $\frac{t}{2}$ is odd, we replace ρ with the coclique $\{s, r_{n}, r_{2(n-1)}, r_{n-2}, r_{2(n-3)}, r_{n-4}\}$ of $GK(B_{n}(p))$ and if $t \notin \{4, 8\}$ and t and $\frac{t}{2}$ are even numbers, we replace ρ with the coclique $\{s, r_{n}, r_{2n}, r_{n-2}, r_{2(n-2)}, r_{n-4}\}$ of $GK(B_{n}(p))$. Thus in this case,

if p = 3, p = 5 and p = 7, then we should consider $s \in \{2, 5, 7, 13, 41\}$, $s \in \{2, 3, 7, 13, 31, 313\}$ and $s \in \{2, 3, 5, 19, 43, 1201\}$, respectively. By the same procedure in the case 3 for $S \cong D_m(q)$, we can prove that $t(r_7, S) \le 12$ and if $r_1 \in \pi(S)$, then $t(r_1, S) \le 3$. If p = 3, $s \in \{2, 3, 7, 13\}$ or p = 5, $s \in \{2, 3, 7, 13, 31\}$, or p = 7, $s \in \{2, 3, 5, 19, 43\}$, then by using all the statements in the subcases a, b and c, case 1, part A, we can get a contradiction. If p = 3, s = 41 or p = 5, s = 313 or p = 7, s = 1201, then since

$$r_7(41) = 113229229, e(113229229, 3) = 56614614,$$

 $r_7(313) = 29,32528030679467, e(32528030679467, 5) = 32528030679466,$

$$r_7(1201) = 29429, e(29429, 7) = 1051,$$

we use the cocliques $\tau \bigcup \{113229229\}$ and $\tau \bigcup \{32528030679467\}$ and $\{r_{2i} | n-15 \leq i \leq n\} \bigcup \{29429\}$, of $GK(B_n(3))$ and $GK(B_n(5))$ and $GK(B_n(7))$, respectively. Hence, by the same argument in the subcases a, case 1, part A, we can get a contradiction. **Part B.** $9 \leq n \leq 15$. In this part, by Table 8 in [24], we have:

1. $\rho(B_9(p)) = \{r_5, r_7, r_9, r_{10}, r_{12}, r_{14}, r_{16}, r_{18}\};$

2. $\rho(B_{11}(p)) = \{r_7, r_9, r_{11}, r_{12}, r_{14}, r_{16}, r_{18}, r_{20}, r_{22}\};$

3. $\rho(B_{13}(p)) = \{r_7, r_9, r_{11}, r_{13}, r_{14}, r_{16}, r_{18}, r_{20}, r_{22}, r_{24}, r_{26}\};$

4. $\rho(B_{15}(p)) = \{r_9, r_{11}, r_{13}, r_{15}, r_{16}, r_{18}, r_{20}, r_{22}, r_{24}, r_{26}, r_{28}, r_{30}\}.$

Also, since $t(S) \ge t(B_9(p)) - 1 = 7$, Tables 8 in [24] and 4 in [25] imply that in addition to classical groups of Lie type , S can be isomorphic to exceptional groups of Lie type $E_7(q)$ and $E_8(q)$. Moreover, by Tables 4 and 5 in [24] we conclude that $t(s, S) \le 5$. If t = e(s, p), then since $\pi(S) \subseteq \pi(B_n(p))$ and according to $|B_n(p)|$, we conclude that $t \le 30$. Thus by considering the cases "t is odd" and "t is even" separately and according to the coclique $\rho(B_n(p))$, it is easy to check that if $t \notin \{1, 2, 3, 4, 6, 8\}$, then we can find some seven-element coclique, containing s, in $GK(B_n(p))$ and conclude that $t(s, B_n(p)) \ge 7$. To be short, we omit the details. Hence, similar to the case 1, part A, by using Lemmas 2.2(2) and 2.4(1,2), we can get a contradiction. If $t \in \{1, 2, 3, 4, 6, 8\}$, then since t = e(s, p) and $p \in \{3, 5, 7\}$, by Lemma 2.5, we can see that $s \in \{2, 5, 7, 13, 41\}$, if p = 3, and $s \in \{2, 3, 7, 13, 31, 313\}$, if p = 5, and $s \in \{2, 3, 5, 19, 43, 1201\}$, if p = 7. we consider these three cases separately.

Case 1. p = 3. If $s \in \{5, 7, 13, 41\}$, then by checking |S| in different cases, we conclude that $\{r_1(s^{\alpha}), r_5(s^{\alpha})\} \subseteq \pi(S)$ and hence, $r_5(s) \in$

 $\pi(S) \subseteq \pi(B_n(3))$. Also, it is easy to check that $e(r_5(s), 3) > 30$. On the other hand, according to $|B_n(3)|$, if $x \in \pi(B_n(3)) \setminus \{3\}$, then $e(x, 3) \leq 2n$. Thus we get a contradiction, because $n \leq 15$. If s = 2, then by checking |S| in different cases, we can see that if $S \not\cong {}^2A_{m-1}(2^{\alpha})$, then $r_7(2^{\alpha}) \in \pi(S)$, and if $\alpha \neq 1$, then $r_1(2^{\alpha}) \in \pi(S)$. Since $r_7(2) = 127$, thus $127 \in \{r_1(2^{\alpha}), r_7(2^{\alpha})\} \subseteq \pi(S) \subseteq \pi(B_n(3))$, but e(127, 3) = 126 > 30 and similar to the previous argument, we can get a contradiction. If $S \cong {}^2A_{m-1}(2^{\alpha})$, then since $t(S) \geq 7$, by Table 8 in [24], we can see that $m \geq 13$ and $\{r_2(2^{\alpha}), r_{14}(2^{\alpha})\} \subseteq \pi(S)$. If α is an odd number, then $43 = r_{14}(2) \in \{r_2(2^{\alpha}), r_{14}(2^{\alpha})\} \subseteq \pi(S) \subseteq \pi(B_n(3))$, but e(43,3) = 42 > 30, which is impossible. Otherwise, there exists a natural number β such that $q = 4^{\beta}$ and since $r_8(4) = 257$ and according to $|{}^2A_{m-1}(4^{\beta})|$, we have $257 \in \{r_1(q), r_2(q), r_4(q), r_8(q)\} \subseteq \pi(S) \subseteq \pi(B_n(3))$, but e(257, 3) = 256 > 30, which is impossible.

Case 2. p = 5. If $s \in \{7, 13, 31, 313\}$, then it is easy to check that $e(r_5(s), 5) > 30$ and similar to the previous case we can get a contradiction. Also, if s = 2, then since e(43, 5) = 42 > 30 and e(257, 5) = 256 > 30, similar to the previous argument we get a contradiction. If s = 3, then by checking |S| in different cases, we conclude that $\{r_1(s^{\alpha}), r_2(s^{\alpha}), r_3(s^{\alpha}), r_4(s^{\alpha}), r_6(s^{\alpha}), r_{12}(s^{\alpha})\} \subseteq \pi(S)$ and hence, $r_{12}(s) \in \pi(S) \subseteq \pi(B_n(5))$. Also, we can see that $r_{12}(3) = 73$ and e(73, 5) = 72 > 30, which is impossible.

Case 3. p = 7. By checking |S| in different cases, we can see that $\{r_1(s^{\alpha}), r_2(s^{\alpha}), r_5(s^{\alpha}), r_{10}(s^{\alpha})\} \subseteq \pi(S)$. If $s \in \{5, 19, 43, 1201\}$, then we can check that $e(r_5(s), 7) > 30$ and hence, similar to the case 1, part B, we get a contradiction. Also, if s = 3, then we replace $r_5(s)$ with $r_{10}(3) = 61$ and since e(61, 7) = 60 > 30, we get a contradiction. If s = 2 and $S \not\cong {}^2A_{m-1}(2^{\alpha})$, where α is an odd number, then all the statements in the case 1, part B is true. Otherwise, i.e., $S \cong {}^2A_{m-1}(2^{\alpha})$, where α is an odd number, since $m \ge 13$, by checking $|{}^2A_{m-1}(2^{\alpha})|$, we have $\{r_2(2^{\alpha}), r_{26}(2^{\alpha})\} \subseteq \pi(S)$ and hence, $2731 = r_{26}(2) \in \{r_2(2^{\alpha}), r_{26}(2^{\alpha})\} \subseteq \pi(S)$ and hence, 2730 > 30, which is impossible. The proof is now complete.

Lemma 3.4. If S is isomorphic to a finite simple group of Lie type of characteristic p, then $S \cong B_n(p)$ or $S \cong C_n(p)$.

Proof. Assume that S is isomorphic to a finite simple group of Lie type over a field of order p^{α} and $p \in \{3, 7\}$. By Lemma 2.2(3-a), $r_n(p) \in \pi(S)$.

Put $e_n = e(r_n(p), p^{\alpha})$. Since $r_n(p)$ divides $p^{\alpha e_n} - 1$, we get that n divides αe_n . Suppose that $\alpha e_n > n$. Then a prime r with $e(r, p) = \alpha e_n$ divides the order of S and hence, r divides the order of $B_n(p)$ and by $|B_n(p)|$, we conclude that $\alpha e_n \leq 2n$. Consequently, $\alpha e_n \in \{n, 2n\}$. Now to prove the lemma, we consider classical and exceptional groups of Lie type separately:

Part A. If S is a classical group of Lie type of characteristic p, then S is isomorphic to one of the groups $A_{m-1}^{\varepsilon}(p^{\alpha})$, $D_m^{\varepsilon}(p^{\alpha})$, $C_m(p^{\alpha})$ or $B_m(p^{\alpha})$. Now with a case by case analysis, we prove that $S \cong B_n(p)$ or $S \cong C_n(p)$: **Case 1.** $S \cong A_{m-1}(p^{\alpha})$. Since $(r_n(p), 2) \notin GK(S)$ and $e_n = e(r_n(p), p^{\alpha})$, it follows by Lemma 2.8 that $e_n \in \{m, m-1\}$. Moreover, since $\alpha e_n \in \{n, 2n\}$, we have the following four subcases:

Subcase a. $\alpha(m-1) = 2n$. In this case, since $\alpha m > \alpha(m-1) = 2n$ and we know that $p^{\alpha m} - 1$ divides the order of S, we conclude that $r_{\alpha m}(p) \in \pi(S)$. Also, since $\pi(S) \subseteq \pi(B_n(p))$, we have $r_{\alpha m}(p) \in \pi(B_n(p))$. But, $\alpha m > 2n$ and we can get a contradiction by $|B_n(p)|$.

Subcase b. $\alpha m = 2n$. First, we claim that $\{r_{2(n-1)}(p), r_{2(n-2)}(p)\}$ $\bigcap \pi(S) = \emptyset$:

If $r_{2(n-1)}(p) \in \pi(S)$, then according to |S| there exists an integer k such that $0 \leq k \leq m-2$ and $r_{2(n-1)}(p) \mid (p^{\alpha(m-k)}-1)$ and hence, $2(n-1) \mid \alpha(m-k) = \alpha m - \alpha k = 2n - \alpha k$. Thus $\alpha k = 2$ and this implies that $\alpha \in \{1, 2\}$. If $\alpha = 1$, then m = 2n and according to |S|, we can see that $r_{\alpha(m-1)}(p) \in \pi(S)$ and hence, $r_{2n-1}(p) \in \pi(S) \subseteq \pi(B_n(p))$, which is impossible according to $|B_n(p)|$. If $\alpha = 2$, then m = n and according to |S|, we have $r_{2n}(p) \in \pi(S)$. Since n is odd, it is easy to check that $e(r_{2n}(p), p^2) = e(r_n(p), p^2) = n$ and hence, by using Lemmas 2.6(1,3), we have $(r_{2n}(p), r_n(p)) \in GK(S)$ and $(r_{2n}(p), r_n(p)) \notin GK(B_n(p))$. But by Lemma 2.4(1,2), it is impossible. Thus $r_{2(n-1)}(p) \notin \pi(S)$. Also, by the same procedure, since n is an odd number, we can show that $r_{2(n-2)}(p) \notin \pi(S)$. Now by using the coclique $\rho = \{r_{2n}, r_{2(n-1)}, r_{2(n-2)}\}$ of $GK(B_n(p))$ and Lemma 2.2(2), we can get a contradiction.

Subcase c. $\alpha m = n$. In this case, we claim that $\rho \cap \pi(S) = \emptyset$, where ρ is the coclique which is stated above and hence, similar to the previous case, we can get a contradiction. If $r_{2n}(p) \in \pi(S)$, according to the order of S, there is a natural number k such that $2 \leq k \leq m$ and $r_{2n}(p) \mid (p^{\alpha k} - 1)$ and hence, $2n \mid \alpha k$. Also, since $(p^{\alpha k} - 1) \mid |S|$ and $|S| \mid |B_n(p)|$, according to $|B_n(p)|$, we conclude that $\alpha k \leq 2n$. Thus $\alpha k = 2n$. But, $k \leq m$ and hence, $2n = \alpha k \leq \alpha m = n$, which is impossible. By the same procedure, since $n \geq 9$, we can prove that

 $\{r_{2(n-1)}, r_{2(n-2)}\} \cap \pi(S) = \emptyset.$

Subcase d. $\alpha(m-1) = n$. Similar to the previous case, we use the set ρ and prove that $|\rho \bigcap \pi(S)| \leq 1$ and then we get a contradiction. If $r_{2n}(p) \in \pi(S)$, then similar to the subcase b, $r_{2n}(p) \mid (p^{\alpha(m-k)}-1)$, where $0 \leq k \leq m-2$ and hence, $2n \mid \alpha(m-k)$. If $k \geq 1$, then $m-k \leq m-1$. Thus $2n \leq \alpha(m-k) \leq \alpha(m-1) = n$, which is impossible. Therefore, k = 0 and $r_{2n}(p) \mid (p^{\alpha m} - 1)$. On the other hand, since $(p^{\alpha m} - 1) \mid |S|$ and $|S| \mid |B_n(p)|$, we conclude that $\alpha m = 2n$ and hence, $e(r_{2n}(p), p^{\alpha}) = m$. Similarly, since $n \geq 9$ we can prove that if $r_{2(n-1)}(p) \in \pi(S)$ or $r_{2(n-2)}(p) \in \pi(S)$, then $e(r_{2(n-1)}(p), p^{\alpha}) = m$ or $e(r_{2(n-2)}(p), p^{\alpha}) = m$, respectively. Now if $|\rho \bigcap \pi(S)| \geq 2$, then similar to the subcase b, by Lemmas 2.6(1,3) and 2.4(1,2), we can get a contradiction. Therefore, $|\rho \bigcap \pi(S)| \leq 1$ and we can get a contradiction by Lemma 2.2(2). Thus $S \ncong A_{m-1}(p^{\alpha})$.

Case 2. $S \cong {}^{2}A_{m-1}(p^{\alpha})$. Since $(r_{n}(p), 2) \notin GK(S)$ and $e_{n} = e(r_{n}(p), p^{\alpha})$, by Lemma 2.9 and the definition of $\nu(m)$, we have $e_{n} \in \{m, 2m, 2(m-1), \frac{m}{2}\}$ and since $\alpha e_{n} \in \{n, 2n\}$ and n is odd, we have the following four subcases:

Subcase a. $\alpha m = 4n$. According to |S|, we have $p^{\alpha m} - (-1)^m | |S|$ and hence, $r_{\alpha m}(p)$ or $r_{2\alpha m}(p)$ belongs to $\pi(S)$. But, since $\alpha m = 4n$ and $\pi(S) \subseteq \pi(B_n(p))$, according to $|B_n(p)|$ we can get a contradiction.

Subcase b. $\alpha m = 2n$. If *m* is odd, then according to |S|, we have $p^{\alpha m} + 1 = p^{\alpha m} - (-1)^m ||S|$ and hence, $r_{2\alpha m}(p) \in \pi(S) \subseteq \pi(B_n(p))$. But, $2\alpha m > 2n$ and this is impossible according to $|B_n(p)|$. If *m* is even, then according to |S|, $r_{2\alpha(m-1)}(p) \in \pi(S) \subseteq \pi(B_n(p))$ and hence, $2\alpha(m-1) \leq 2n$ and this implies that $2n - \alpha = \alpha(m-1) \leq n$. Thus $n \leq \alpha$. Moreover, since *n* is odd, *m* is even and $\alpha m = 2n$, we have $\alpha|n$. Therefore, $\alpha = n$ and this implies that m = 2, which is impossible, according to Table 1.

Subcase c. $\alpha m = n$. First, we claim that $\{r_{2(n-1)}(p), r_{2(n-3)}(p)\} \cap \pi(S) = \emptyset$. If $r_{2(n-1)}(p) \in \pi(S)$, according to |S|, there exists an integer number k such that $0 \leq k \leq m-2$ and $r_{2(n-1)}(p) \mid (p^{\alpha(m-k)} - (-1)^{m-k})$ and hence, $r_{2(n-1)}(p) \mid (p^{2\alpha(m-k)} - 1)$. Thus $(n-1) \mid \alpha(m-k) = n - \alpha k$ and this implies that $\alpha k = 1$ and hence, m = n. But, since n is odd, we have $p^{\alpha(m-k)} - (-1)^{m-k} = p^{n-1} - 1$ and hence, $r_{2(n-1)}(p) \mid (p^{n-1} - 1)$, which is impossible. Thus $r_{2(n-1)}(p) \notin \pi(S)$. Similarly, we can prove that $r_{2(n-3)}(p) \notin \pi(S)$. Therefore, $\{r_{2(n-1)}(p), r_{2(n-3)}(p)\} \cap \pi(S) = \emptyset$. Now by using the coclique $\rho = \{r_{2n}, r_{2(n-1)}, r_{2(n-3)}\}$ of $GK(B_n(p))$ and

Lemma 2.2(2), we can get a contradiction.

Subcase d. $\alpha(m-1) = n$. Similar to the previous subcase, we can prove that $\{r_{2(n-1)}(p), r_{2(n-3)}(p)\} \cap \pi(S) = \emptyset$ and get a contradiction. Therefore, $S \not\cong {}^{2}A_{m-1}(p^{\alpha})$.

Case 3. $S \cong {}^{2}D_{m}(p^{\alpha})$. Since $(r_{n}(p), 2) \notin GK(S)$ and $e_{n} = e(r_{n}(p), p^{\alpha})$, by Lemma 2.10(2), we have $e_{n} \in \{2m, 2(m-1)\}$. Moreover, we know that $\alpha e_{n} \in \{n, 2n\}$ and n is odd and hence, there are the following two subcases:

Subcase a. $\alpha m = n$. Since $t(S) \ge t(G) - 1 = t(B_n(p)) - 1$, by Table 8 in [24], we have $\left[\frac{3m+4}{4}\right] \ge \left[\frac{3n+5}{4}\right] - 1 = \left[\frac{3n+1}{4}\right]$. Also, since *n* is odd, we have α is odd as well. If $\alpha \ge 3$, then $n = \alpha m \ge 3m$ and since $n \ge 9$, we conclude that $3n + 1 \ge 3m + 4$. Therefore, $\left[\frac{\overline{3m+4}}{4}\right] = \left[\frac{3n+1}{4}\right]$ and this implies that 2 and 1 and 2 implies that 3n + 1 - (3m + 4) < 4 and hence, $n - m \leq 2$. On the other hand, $n \geq 3m$ and hence, $2m \leq n - m \leq 2$, which implies that m = 1 and this is impossible according to Table 1. Thus $\alpha = 1$ and $S \cong {}^{2}D_{n}(p)$. Since n is odd, according to $|B_{n}(p)|$ and $|{}^{2}D_{n}(p)|$, we can see that $r_n \in \pi(B_n(p)) \setminus \pi(^2D_n(p))$. Also, since $S \leq \overline{G} = G/\overline{K} \leq Aut(S)$ and $Out(^2D_n(p))$ is a 2-group, we conclude that $r_n \in \pi(K)$. Hence, using the cocliques $\rho = \{r_n, r_{2n}, r_{2(n-2)}\}$ and $\tau = \{r_n, r_{2n}, r_4\}$ of $GK(B_n(p))$ in Lemma 2.1, implies that $\{r_4, r_{2(n-2)}\} \bigcap \pi(K) = \emptyset$. By Lemma 2.6(3), we can see that $(r_4, r_{2(n-2)}) \in GK(B_n(p))$. Therefore, by Lemma 2.4(3), we conclude that G has an element g of order $r_4 r_{2(n-2)}$. On the other hand, since $\overline{G}/S \leq Out(S)$ and $Out(^{2}D_{n}(p))$ is a 2-group, we can assume that $g \in S$ and hence, $(r_4, r_{2(n-2)}) \in GK(S)$. But by Lemma 2.6(4), it is impossible.

Subcase b. $\alpha(m-1) = n$. Similar to the previous argument, we can show that $\alpha = 1$ and hence, $S \cong {}^{2}D_{n+1}(p)$. But, since $p^{n+1} + 1$ divides the order of ${}^{2}D_{n+1}(p)$, we have $r_{2(n+1)}(p) \in \pi(S)$, which is impossible, because $\pi(S) \subseteq \pi(B_n(p))$ and according to $|B_n(p)|, r_{2(n+1)}(p) \notin \pi(B_n(p))$. Therefore, $S \not\cong {}^{2}D_m(p^{\alpha})$.

Case 4. $S \cong D_m(p^{\alpha})$. Similar to the previous case, Lemma 2.10(2) imposes some restrictions on e_n and we have $e_n \in \{2(m-1), m-1, m\}$. Also, since $\alpha e_n \in \{n, 2n\}$ and n is odd, there are the following four subcases:

Subcase a. $\alpha(m-1) = 2n$. Since $p^{\alpha m} - 1$ divides the order of S, we have $r_{\alpha m}(p) \in \pi(S)$ and hence, $r_{\alpha m}(p) \in \pi(B_n(p))$. But, since $\alpha m > \alpha(m-1) = 2n$, according to $|B_n(p)|$, we get a contradiction.

Subcase b. $\alpha(m-1) = n$. Since *n* is odd, we have α is odd as well. If $\alpha = 1$, then $S \cong D_{n+1}(p)$. Since *n* is odd, according to

$$\begin{split} |D_{n+1}(p)|, & \text{we have } \{r_{n-1}(p), r_{n+3}(p)\} \subseteq \pi(D_{n+1}(p)). & \text{Also, since } n \geq 9, \\ \text{Lemma } 2.6(3,4) & \text{implies that } (r_{n-1}(p), r_{n+3}(p)) \in GK(D_{n+1}(p)) & \text{and} \\ (r_{n-1}(p), r_{n+3}(p)) \notin GK(B_n(p)). & \text{But, } S \leq G/K & \text{and we can get} \\ \text{a contradiction by Lemma } 2.4(1,2). & \text{Thus } \alpha \geq 3. & \text{We know that} \\ t(S) \geq t(B_n(p)) - 1 & \text{and by Appendix in } [25], t(D_m(p)) \in \{\frac{3m+3}{4}, [\frac{3m+1}{4}]\} \\ \text{and by Table 8 in } [25], t(B_n(p)) = [\frac{3n+5}{4}] & \text{and hence, if } t(S) = [\frac{3m+1}{4}], \\ \text{then } [\frac{3m+1}{4}] \geq [\frac{3n+1}{4}]. & \text{Moreover, } \alpha \geq 3 \text{ implies that } n \geq 3(m-1) \text{ and} \\ \text{since } n \geq 9, & \text{we conclude that } \frac{3n+1}{4} \geq \frac{3m+1}{4}. & \text{Therefore, } [\frac{3m+1}{4}] = [\frac{3n+1}{4}], \\ \text{which implies that } 3n+1-(3m+1)<4 & \text{and hence, } m \in \{n, n-1\}. \\ \text{This is impossible, because } \alpha(m-1) = n \geq 9. & \text{If } t(S) = \frac{3m+3}{4}, \text{ then} \\ \text{similar to the above argument we can get a contradiction.} \end{split}$$

Subcase c. $\alpha m = 2n$. If $\alpha \geq 3$, then similar to the subcase b, we can get a contradiction. Thus we should consider the cases $\alpha = 1$ and $\alpha = 2$. If $\alpha = 1$, then m = 2n and since $r_{2(m-1)} \in \pi(S)$, we have $r_{2(m-1)} \in \pi(B_n(p))$, but 2(m-1) = 2(2n-1) > 2n, which is impossible, according to $|B_n(p)|$. If $\alpha = 2$, then m = n and $S \cong D_n(p^2)$. Thus $(p^2)^{2(n-1)} - 1$ divides the order of S and hence, $r_{4(n-1)}(p) \in \pi(B_n(p))$, which is impossible, because 4(n-1) > 2n.

Subcase d. $\alpha m = n$. Since *n* is odd, we have α is odd as well. If $\alpha \geq 3$, similar to the subcase b, we can get a contradiction. If $\alpha = 1$, then m = n and $S \cong D_n(p)$. In this case, since *n* is odd, we have $Out(D_n(p))$ is a 2-group. Also, the order of $D_n(p)$ implies that $r_{2n} \in \pi(B_n(p)) \setminus \pi(D_n(p))$ and since $\overline{G}/S \leq Out(S)$, we can conclude that $r_{2n} \in \pi(K)$. Thus it is enough to replace the set ρ in the subcase a, case 3, with the set $\{r_n, r_{2n}, r_{n-2}\}$ and conclude that $(r_4, r_{n-2}) \in GK(\overline{G})$, then use the same procedure to get a contradiction. Therefore $S \ncong D_m(p^{\alpha})$.

Case 5. $S \cong B_m(p^{\alpha})$ or $S \cong C_m(p^{\alpha})$. Since $(r_n(p), 2) \notin GK(S)$ and $e_n = e(r_n(p), p^{\alpha})$, by Lemma 2.10(1), we have $e_n \in \{m, 2m\}$. Moreover, we know that $\alpha e_n \in \{n, 2n\}$ and n is odd and hence, there are the following two subcases:

Subcase a. $\alpha m = 2n$. In this case, by considering the order of $B_m(p^{\alpha})$ which equals the order of $C_m(p^{\alpha})$ we can see that $r_{2\alpha m}(p) \in \pi(S)$ and hence, $r_{2\alpha m}(p) = r_{4n}(p) \in \pi(B_n(p))$, which is impossible by considering the order of $B_n(p)$.

Subcase b. $\alpha m = n$. In this case, it is enough to show that $\alpha = 1$. If not, then set $\rho = \{r_{2(n-1)}(p), r_{2(n-2)}(p), r_{2(n-4)}(p)\}$. We claim that $\rho \bigcap \pi(S) = \emptyset$. If $r_{2(n-1)}(p) \in \pi(S)$, then by considering the order of S, there exists an integer number k such that $0 \leq k \leq m - 1$ and $r_{2(n-1)}(p) \mid (p^{2\alpha(m-k)} - 1)$. Thus, $n - 1 \mid (\alpha m - \alpha k) = n - \alpha k$ and this implies that $\alpha k = 1$ and hence, $\alpha = 1$, which is a contradiction. Therefore, $r_{2(n-1)}(p) \notin \pi(S)$. Also, by the same argument, we can see that $r_{2(n-2)}(p), r_{2(n-4)}(p) \notin \pi(S)$. Thus $\rho \bigcap \pi(S) = \emptyset$. On the other hand, by Lemma 2.6(3), ρ is a coclique of $GK(B_n(p))$. Now we can get a contradiction by Lemma 2.2(2). Thus $\alpha = 1$ and $S \cong B_n(p)$ or $S \cong C_n(p)$.

Part B. If S is isomorphic to a finite simple exceptional group of Lie type of characteristic p, then by Table 4 in [25], we can see that $t(S) \leq 12$. Since $t(S) \geq t(B_n(p)) - 1 = [\frac{3n+5}{4}] - 1$ and $n \geq 9$ and n is odd, we conclude that $n \in \{9, 11, 13, 15\}$ and $t(S) \geq t(B_9(p)) - 1 = 7$. Therefore, $S \cong E_7(p^{\alpha})$ or $S \cong E_8(p^{\alpha})$ (see Table 4 in [25]). We consider these two cases separately:

Case 1. $S \cong E_7(p^{\alpha})$. Since $(r_n(p), 2) \notin GK(S)$ and $e_n = e(r_n(p), p^{\alpha})$, by Lemma 2.10(3), we have $e_n \in \{7,9\}$ or $e_n \in \{14,18\}$. Also, since $n \in \{9,11,13,15\}$ and $\alpha e_n \in \{n,2n\}$, by checking all different cases, we conclude that n = 9 and $\alpha \in \{1,2\}$. Thus $S \cong E_7(p)$ or $S \cong E_7(p^2)$, when $GK(G) = GK(B_9(p))$. If $S \cong E_7(p^2)$, then by checking $|E_7(p^2)|$, we can see that $r_{18}(p^2) = r_{36}(p) \in \pi(S) \subseteq \pi(B_n(p))$, which is impossible. If $S \cong E_7(p)$, then according to $|B_9(p)|$ and $|E_7(p)|$, we can see that $r_{16}(p) \in \pi(B_9(p)) \setminus \pi(E_7(p))$. Also, since $S \leq \overline{G} \leq Aut(S)$ and $Out(E_7(p))$ is a 2-group, we conclude that $r_{16}(p) \in \pi(K)$. Hence, using the cocliques $\rho = \{r_7, r_{16}, r_{18}\}$ and $\tau = \{r_4, r_{16}, r_{18}\}$ of $GK(B_9(p))$ in Lemma 2.1, implies that $\{r_4, r_7\} \cap \pi(K) = \emptyset$. Also, by Lemma 2.6(3,5), we can see that $(r_4, r_7) \in GK(B_9(p))$ and $(r_4, r_7) \notin GK(S)$. Now by the same argument in the subcase a, case 3, part A, we can get a contradiction.

Case 2. $S \cong E_8(p^{\alpha})$. Since $(r_n(p), 2) \notin GK(S)$ and $e_n = e(r_n(p), p^{\alpha})$, by Lemma 2.10(4), we have $e_n \in \{15, 20, 24, 30\}$, and similar to the previous case, by checking all different cases, we conclude that n = 15and $\alpha \in \{1, 2\}$. Thus $S \cong E_8(p)$ or $S \cong E_8(p^2)$, when GK(G) = $GK(B_{15}(p))$. If $S \cong E_8(p^2)$, then by checking the order of $E_8(p^2)$, we can see that $p^{60} - 1$ divides the order of $E_8(p^2)$, and hence, $r_{60}(p) \in$ $\pi(B_{15}(p))$, which is impossible. If $S \cong E_8(p)$, then the order of $E_8(p)$ implies that the coclique $\rho = \{r_{13}, r_{22}, r_{26}\}$ of $GK(B_{15}(p))$ has an empty intersection with $\pi(E_8(p))$ and we can get a contradiction by Lemma 2.2(2). Therefore, S can not be isomorphic to an exceptional groups of Lie type of characteristic p, where $p \in \{3, 7\}$. Moreover, if p = 5, then $r_{2n}(p) \in \pi(S)$ and if we put $e_{2n} = e(r_n(p), p^{\alpha})$, then we can see that $\alpha e_{2n} = 2n$ and hence, by omitting the subcases c and d, case 1, part A and the subcase d, case 4, part A and using the remaining statements in part A and part B, we can conclude that S can not be isomorphic to a finite simple group of Lie type of characteristic p, and the proof is now complete.

Hence by Lemmas 3.1, 3.2, 3.3 and 3.4 the Main Theorem is proved. \Box

Corollary 3.5. Let n be an odd number. The simple group $B_n(p)$, where $n \ge 9$ and $p \in \{3, 5, 7\}$ are quairecognizable by its spectrum.

Proof. Let G be a finite group with $\omega(G) = \omega(B_n(p))$. Therefore, $GK(G) = GK(B_n(p))$ and hence, if S is a unique nonabelian composition factor of G, then by using the Main Theorem, we conclude that S is isomorphic to $B_n(p)$ or $C_n(p)$. If $S \cong C_n(p)$, then $\omega(C_n(p)) \subseteq \omega(G) =$ $\omega(B_n(p))$ and this is impossible, because $p(p^{n-1} + 1) \in \omega(C_n(p)) \setminus$ $\omega(B_n(p))$ (see [19, Proposition]). Therefore, the simple groups $B_n(3)$, $B_n(5)$ and $B_n(7)$ are quasirecognizable by their spectra.

Corollary 3.6. Let n be an odd number and $n \ge 9$ and $p \in \{3, 5, 7\}$. If G is a finite group with $|G| = |B_n(p)|$ and $\omega(G) = \omega(B_n(p))$, then $G \cong B_n(p)$.

Proof. Since $\omega(G) = \omega(B_n(p))$, so $GK(G) = GK(B_n(p))$ and hence, by Lemma 2.2(1), there exists a finite nonabelian simple group S such that $S \leq \overline{G} = G/K \leq Aut(S)$ for the maximal normal soluble subgroup Kof G and according to the Corollary 3.5, we have $S \cong B_n(p)$. Moreover, since $|G| = |B_n(p)|, |S| = |B_n(p)|$ and $S \leq G/K$, we conclude that $S \cong G$ and hence, $G \cong B_n(p)$. Therefore, the Shi conjecture is true for the simple groups $B_n(3), B_n(5)$ and $B_n(7)$.

Acknowledgments

This work was partially supported by Center of Excellence of Algebraic Hyperstructures and its Applications of Tarbiat Modares University (CEAHA).

References

^[1] Z. Akhlaghi, M. Khatami and B. Khosravi, Quasirecogniton by prime graph of the simple group ${}^{2}F_{4}(q)$, Acta. Math. Hungar. **122** (2009), no. 4, 387–397.

2-quasirecognizability of the simple groups $B_n(p)$ and $C_n(p)$ by prime graph

- [2] O. A. Alekseeva and A. S. Kondrat'ev, Quasirecognition of one class of finite simple groups by the set of element orders, *Sib. Math. J.* 44 (2003), no. 2, 195– 207.
- [3] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
- [4] M. Foroudi Ghasemabadi and A. Iranmanesh, Quasirecognition by the prime graph of the group $C_n(2)$, where $n \neq 3$ is odd, *Bull. Malays. Math. Sci. Soc.* **34** (2011), no. 3, 529–540.
- The GAP Group, GAP Groups, Algorithms, and Programming, Version 4.4.9; 2006, (http://www.gap-system.org).
- [6] M. Hagie, The prime graph of a sporadic simple group, Comm. Algebra 31 (2003), no. 9, 4405–4424.
- [7] A. Khosravi and B. Khosravi, Quasirecogniton by prime graph of the simple group ${}^{2}G_{2}(q)$ by a prime graph, Sib. Math. J. 48 (2007), no. 3, 570–577.
- [8] A. Khosravi and B. Khosravi, 2-Recognizability by prime graph of PSL(2, p²), Sibirsk. Mat. Zh. 48 (200), no. 4, 749–757.
- B. Khosravi, Quasirecogniton by prime graph of L₁₀(2), Sib. Math. J. 50 (2009), no. 2, 355–359.
- [10] B. Khosravi, n-Recognition by prime graph of the simple group PSL(2,q), J. Algebra Appl. 7 (2008), no. 6, 735–748.
- [11] B. Khosravi, A. Babai and N. Hasani, Quasirecognition by prime graph of ${}^{2}D_{p}(3)$ where $p = 2^{n} + 1 \ge 5$ is a prime, *Bull. Malays. Math. Sci. Soc.*, (2) **32** (2009), no. 3, 343-350.
- [12] B. Khosravi and A. Zarea Moghanjoghi, Quasirecognition by prime graph of some alternating groups, Int. J. Contemp. Math. Sciences, 2 (2007), no. 28, 1351–1358.
- [13] B. Khosravi, B. Khosravi and B. Khosravi, A characterization of the finite simple group $L_{16}(2)$ by its prime graph, *Manuscripta. Math.* **126** (2008) 49–58.
- [14] B. Khosravi, B. Khosravi and B. Khosravi, Groups with the same prime graph as a CIT simple group, *Houston J. Math.* **33** (2007), no. 4, 967–977.
- [15] B. Khosravi, B. Khosravi and B. Khosravi, On the prime graph of PSL(2, p) where p > 3 is a prime number, *Acta. Math. Hungar.* **116** (2007), no. 4, 295–307.
- [16] B. Khosravi and S. Salehi Amiri, On the prime graph of $L_2(q)$ where $q = p^{\alpha} < 100$, Quasigroups Related Systems 14 (2006) 179–190.
- [17] R. Shen, W. J. Shi and M. R. Zinov'eva, Recognition of simple groups $B_p(3)$ by the set of element orders, *Sib. Math. J.* **51** (2010), no. 2, 244–254.
- [18] W. J. Shi, A new characterization of the sporadic simple groups, In: Group Theory (Singapore, 1987), 531–540, Walter de Gruyter, Berlin, 1989.
- [19] W. J. Shi, Pure quantitative characterization of finite simple groups, Front. Math. China 2 (2007), no. 1, 123–125.
- [20] A. V. Vasil'ev, On connection between the structure of a finite group and the properties of its prime graph, Sib. Math. J. 46 (2005), no. 3, 396–404.
- [21] A. V. Vasil'ev and I. B. Gorshkov, On recognition of finite simple groups with connected prime graph, Sib. Math. J. 50 (2009), no. 2, 233–238.

- [22] A. V. Vasil'ev, M. A. Grechkoseeva and V. D. Mazurov, Characterization of the finite simple groups by spectrum and order, *Algebra Logic* 48 (2009), no. 6, 385–409.
- [23] A. V. Vasil'ev, M. A. Grechkoseeva and V. D. Mazurov, On Finite groups isospectral to simple symplectic and orthogonal groups, *Sib. Math. J.* 50 (2009), no. 6, 965–981.
- [24] A. V. Vasil'ev and E. P. Vdovin, An adjacency criterion for the prime graph of a finite simple group, *Algebra Logic* 44 (2005), no. 6, 381–406.
- [25] A. V. Vasil'ev and E. P. Vdovin, Cocliques of maximal size in the prime graph of a finite simple group, *Algebra Logic* 50 (2011), no. 4, 291–322.
- [26] A. V. Zavarnitsine, Recognition of finite groups by the prime graph, Algebra Logic 45 (2006), no. 4, 220–231.
- [27] A. V. Zavarnitsine, Uniqueness of the prime graph of $L_{16}(2)$, Sib. Èlektron. Mat. Izv. 7 (2010) 119–121.

Mahnaz Foroudi Ghasemabadi

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-137, Tehran, Iran Email: foroudi@modares.ac.ir

Ali Iranmanesh

Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-137, Tehran, Iran Email: iranmanesh@modares.ac.ir