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AN ALEXANDROFF TOPOLOGY ON GRAPHS

S. M. JAFARIAN AMIRI, A. JAFARZADEH AND H. KHATIBZADEH∗

Communicated by Ebadollah S. Mahmoodian

Abstract. Let G = (V,E) be a locally finite graph, i.e. a graph
in which every vertex has finitely many adjacent vertices. In this
paper, we associate a topology to G, called graphic topology of
G and we show that it is an Alexandroff topology, i.e. a topology
in which intersection of each family of open sets is open. Then
we investigate some properties of this topology. Our motivation is
to give an elementary step toward investigation of some properties
of locally finite graphs by their corresponding topology which we
introduce in this paper.

1. Introduction

There are some publications to define a topology for discrete struc-
tures like numbers, words and graphs. The reader can refer to [5, 6, 7].
The Alexandroff topology that was introduced in [6, 7] on a graph G
is a topology on the vertex set V of a graph G by declaring subsets of
V as ”open”, so that a subset of V is topologically connected if and
only if it is connected in G (i.e. if the induced subgraph of G on V is
connected). There are some graphs which do not have such topology(
see Corollary 4.1 and Theorem 4.2 of [7]). In this paper we introduce an
Alexandroff topology on every locally finite graphs called graphic topol-
ogy. The topology is defined on each graph but unlike the topology
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introduced in [6, 7] there are some connected graphs like Kn and Cn
whose corresponding topological space is not connected.
In the article, we investigate some properties of graphic topology and
its relation with the corresponding graphs. Our motivation is to give
an elementary step toward investigation of some properties of locally
finite graphs by their corresponding topology which we introduce in this
paper. In Section 2 of the paper we give some definitions and prelim-
inaries of graph theory and topology. We also define our topology on
graphs by introducing a subbasis family for the topology. Section 3 is
devoted to some preliminaries results of graphic topology. In Section
4 more properties of graphic topology is discussed. In Section 5 some
continuity properties of functions between graphs is investigated. Con-
nectivity or disconectivity of graphic topology is the subject of Section
6. In Section 7 we study some necessary and sufficient conditions for
topological spaces to be graphic. Finally the last section of the paper is
devoted to the study of dense subsets of graphic topology. One of the
main results in this section is an upper bound for chromatic number of a
graph in term the cardinal of minimal dense subset in graphic topology.

2. Preliminaries

In this section we give the preliminaries. All definitions are standard
and can be found for example in [2, 3, 8].

For a set V , by [V ]k we denote the set of all k−element subsets of V .
A (simple) graph G is a pair G = (V,E) of sets such that E ⊆ [V ]2. The
elements of V and E are vertices and edges of the graph G, respectively.
A graph with vertex set V is said to be a graph on V . The vertex set
of a graph G is referred to as V (G), its edge set as E(G). A graph G
is finite, if V (G) (and so E(G)) are finite; otherwise it is infinite. A
vertex v is incident with an edge e if v ∈ e. An edge {x, y} is usually
written as xy (or yx). Two vertices x, y of G are adjacent if xy is an
edge of G. The set of all adjacent vertices of v and the set of all the
edges e ∈ E with v ∈ e are denoted by Av and E(v), respectively. The
degree dG(v) = d(v) of a vertex v is the number |E(v)| of edges at v,
that is equal to the number |Av| of adjacent vertices of v. A vertex of
degree 0 is isolated. An independent set in a graph is a set of pairwise
nonadjacent vertices. A clique is a set of pairwise adjacent vertices. The
complement G of a (simple) graph G is the (simple) graph with vertex
set V (G) defined by xy ∈ E(G)⇔ xy /∈ E(G).
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If V ′ ⊆ V and E′ ⊆ E, then G′ = (V ′, E′) is a subgraph of G = (V,E),
written as G′ ⊆ G. If G′ ⊆ G and G′ contains all the edges xy ∈ E
with x, y ∈ V ′, then G′ is the induced subgraph of G on V ′, written as
G′ = G[V ′].

We use notations Kn, Km,n, Pn and Cn for a complete graph with
n vertices, the complete bipartite graph when partite sets have sizes m
and n, the path on n vertices and the cycle on n vertices, respectively.
Obviously the n vertex star i.e. a tree with one vertex adjacent to all
the others is K1,n−1.

The maximum degree in a graph G is ∆(G), the minimum degree is
δ(G), and G is regular if ∆(G) = δ(G). It is k−regular if the common
degree is k.

An infinite graph is called locally finite if all its vertices have finite
degrees (see [2]).

Now, we define our topology on graphs. Suppose that G = (V,E) is
a (simple) graph without isolated vertex. Remember that Ax is the set
of all vertices adjacent to x. It is clear that x ∈ Ay if and only if y ∈ Ax
for all x, y ∈ V and x /∈ Ax for all x ∈ V . Define SG as follows:

SG = {Ax|x ∈ V },

Since G has no isolated vertex, we have V = ∪x∈VAx. Hence SG forms
a subbasis for a topology τG on V , called graphic topology of G. It
is easy to see that, the graphic topologies of Kn and Cn are discrete,
but the graphic topology of Pn is not discrete because the set contains
two vertices of degree one is not open. Also the graphic topology of
Kn,m is equal to {φ, V,A,B}, where A and B are partite sets of Kn,m.
Throughout the paper all graphs are locally finite.

3. Preliminary results

Proposition 3.1. Suppose that G = (V,E) is a graph. Then (V, τG) is
an Alexandroff space.

Proof. It is enough to prove that arbitrary intersection of members of
SG is open. Let S ⊆ V . If x ∈ ∩y∈SAy, then x ∈ Ay for each y ∈ S.
Hence y ∈ Ax for each y ∈ S and so S ⊆ Ax. Since G is locally finite, Ax
and so S are finite sets. This means that if S is infinite, then ∩y∈SAy is
empty, but if S is finite, then ∩y∈SAy is the intersection of finitely many
open sets and hence is open. �
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Let G = (V,E) be a graph. Then by Remark 1.1, for each x ∈ V ,
the intersection of all open sets containing x is the smallest open set
containing x, we still call it Ux and the family BG = {Ux| x ∈ V } is the
minimal basis for the topological space (V, τG).

Proposition 3.2. Let G = (V,E) be a graph. Then we have Ux =
∩y∈AxAy and so Ux is finite for every x ∈ V .

Proof. Since Ux is the smallest open set containing x and SG is a subbasis
of τG, we have Ux = ∩z∈SAz for some subset S of V . This implies that
x ∈ Az for each z ∈ S. Therefore S ⊆ Ax and so x ∈ ∩z∈AxAz ⊆ Ux.
Now by definition of Ux, the proof is complete. �

Corollary 3.3. Let G = (V,E) be a graph. Then for every x, z ∈ V we
have z ∈ Ux if and only if Ax ⊆ Az. Equivalently Ux = {z ∈ V |Ax ⊆
Az}.
Proof. By Proposition 2.2, z ∈ Ux if and only if z ∈ Ay for each y ∈ Ax
if and only if y ∈ Az for each y ∈ Ax. �

Remark 3.4. Suppose that G = (V,E) is a graph. By Corollary 2.3,
(V, τG) is a discrete topological space if and only if Ax * Ay and Ay * Ax
for every distinct pair of vertices x, y ∈ V .

Remark 3.5. We also know from Remark 1.1 that an Alexandroff topo-
logical space (X, τ) is T1 if and only if it is discrete. Now, Corollary 2.3,
implies that the graph G = (V,E) has T0 graphic topology if and only
if Ax 6= Ay for every distinct pair of vertices x, y ∈ V . Let T = (V,E)
be a tree. Then (V, τG) is a T0 space if and only if Ax 6= Ay for every
x, y ∈ V such that x 6= y and deg x = deg y = 1.

Corollary 3.6. Suppose that G = (V,E) is a graph and x ∈ V . Then
we have Ux ⊆ {x} ∪ {y ∈ V | d(x, y) = 2} and so Ux ∩ Ax = φ. In
particular, Ux ⊆ Acx and Ax ⊆ U cx. Moreover, If x, y ∈ V are adjacent,
then Ux ∩ Uy = φ.

Proof. Let z ∈ Ux \ {x}. By Proposition 2.2, z ∈ Ay for each y ∈ Ax.
Hence d(x, z) ≤ 2. If d(x, z) = 1, then z ∈ Ax and so z ∈ Az which is
a contradiction. The second part of the corollary is then obvious. Now
suppose x, y be adjacent then we have y ∈ Ax and Ax is an open set. So
Uy ⊆ Ax and by the first part of corollary, Ax ⊆ U cx. Hence Uy ⊆ U cx or
equivalently Ux ∩ Uy = φ. �

An obvious consequence of Corollary 2.6 implies for every x ∈ V we
have {x} ⊆ Ux ⊆ Acx and Ax ⊆ U cx.
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Finally, the following is a trivial consequence of Remark 1.1 and Corol-
lary 2.3.

Corollary 3.7. Let G = (V,E) be a graph. For every x, y ∈ V , y ∈ {x}
if and only if Ay ⊆ Ax.

4. Some Properties of Graphic Topology

Definition 4.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.
We call G1 and G2 isomorphic, and write G1

∼= G2, if there exists a
bijection ϕ : V1 −→ V2 with xy ∈ E1 ⇔ ϕ(x)ϕ(y) ∈ E2 for all x, y ∈ V1.
Such a map ϕ is called an isomorphism; if G1 = G2, it is called an
automorphism of G1.

Remark 4.2. It is easy to check, If G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic graphs, then topological spaces (V1, τG1) and (V2, τG2) are
homeomorphic. The converse is not true, in general. For example, Cn
and Kn for n > 4 are not isomorphic graphs, but their corresponding
graphic topologies are both discrete and hence homeomorphic. Also, we
can obtain two infinite nonisomorphic graphs G1 and G2 with discrete
graphic topologies as follows: Let P be the infinite path on x1 − x2 −
x3−· · · , Kn be the complete graph on {x1, y2, · · · , yn} for n ≥ 5 and Cn
the cycle on {x1, y2, · · · , yn} for n ≥ 5. Let V = {y2, · · · , yn, x1, x2, · · · }
and put G1 = (V,E(Kn) ∪ E(P )), and G2 = (V,E(Cn) ∪ E(P )).

Proposition 4.3. Let G = (V,E) be a locally finite graph. Then (V, τG)
is a compact topological space if and only if V is finite.

Proof. By Proposition 2.2, Ux is finite for every x ∈ V . Hence if V
is infinite, then BG is an open covering of (V, τG) which has no finite
subcover. �

Proposition 4.4. Let G = (V,E) be a graph and T = {x ∈ V | deg x =
∆}. Then T ∈ τG.

Proof. Suppose that x ∈ T and y ∈ Ux. It follows from Corollary 2.3
that ∆ = deg x ≤ deg y and this implies that deg y = ∆ and so y ∈ T .
Thus x ∈ Ux ⊆ T and so x is an interior point of T . �

Proposition 4.5. Suppose that G = (V,E) is a graph L = {x ∈
V | deg x = δ}. Then L is a closed set in (V, τG).
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Proof. By Remark 1.1, we have L =
⋃
x∈L {x}. Suppose that y ∈ L.

Thus y ∈ {x} for some x ∈ L. It follows from Corollary 2.9 that deg y ≤
deg x = δ. Hence deg y = δ and y ∈ L. Therefore L ⊆ L and the proof
is complete. �

Definition 4.6. For a graph G, if S ⊆ V (G), then we write G − S
for the subgraph obtained by deleting the set of vertices S, equivalently
G−S = G[V \S]. A cut-vertex of G is a vertex whose deletion increases
the number of components of G, i.e. a vertex v ∈ V (G) such that G−{v}
has more components than G. A vertex cut of a connected graph G is a
set C ⊆ V (G) such that G−C has more than one component. A vertex
cut C of G is said to be minimal if every proper subset of C is not a
vertex cut.

It is obvious that, if x be a cut-vertex in a (not necessarily connected)
graph G = (V,E). Then {x} ∈ τG. It is well-known that a connected
graph is a tree if and only if every vertex of degree greater than one is a
cut-vertex. Therefore, if T = (V,E) is a tree and x ∈ V with deg x ≥ 2,
then {x} ∈ τT .

Proposition 4.7. Let G = (V,E) be a connected graph and C is a
minimal vertex cut in G. Then C ∈ τG.

Proof. Suppose that G−C has k ≥ 2 components, say Gi = (Vi, Ei) for
i = 1, 2, . . . , k. Every vertex x ∈ C must be adjacent to vertices of at
least two different components, say G1 and G2, because C is a minimal
vertex cut. Suppose that {y1, . . . , yk1} = Ax ∩ V1 and {z1, . . . , zk2} =

Ax ∩ V2, then we have x ∈ ∩k1i=1Ayi ⊆ C ∪ V1 and x ∈ ∩k2i=1Azi ⊆ C ∪ V2

and so

x ∈ (

k1⋂
i=1

Ayi) ∩ (

k2⋂
i=1

Azi) ⊆ C ∪ (V1 ∩ V2) = C

that is x is an interior point of C. �

Definition 4.8. A graph G is vertex-transitive if for every pair u, v ∈
V (G), there is an automorphism of G that maps u to v.

It is easy to see, if G = (V,E) is a vertex-transitive graph, then (V, τG)
is a discrete topological space if and only if Ux = {x} for some vertex
x ∈ V .

Let G = (V,E) be a locally finite graph. Set τ cG = {U c|U ∈ τG}.
Then τ cG is a topology on V . We have the following proposition only for
finite graphs:
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Proposition 4.9. Let G = (V,E) be a finite graph and τ cG = {U c|U ∈
τG}. If G is a connected graph and τG = τ cG, then (V, τG) is a discrete
topological space.

Proof. Let Ax be the set of adjacent vertices of x in G, as usual. Then
the set of adjacent vertices of x in G is (Ax ∪ {x})c, that is open in
τG. Since τG = τ cG, we have (Ax ∪ {x})c ∈ τ cG and so Ax ∪ {x} ∈ τG.
Therefore Ux ⊆ Ax ∪ {x}, where Ux is the smallest open set containing
x in τG. Hence Ux = {x}, because Ux ⊆ Acx, by Corollary 2.6. Thus
(V, τG) is discrete. �

The following example shows, the graphic topology of the complement
G of a graph G with discrete graphic topology can have also discrete
topology.

Example 1. Suppose G = C5 then G = C5 and both of them have
discrete topology.

5. On Functions Between Graphs

In section 3, we saw that an isomorphism of graphs, induces a home-
omorphism of topological spaces. In this section, we generalize this fact.

It is known that a function ϕ : (X1, τ1) −→ (X2, τ2) between topolog-

ical spaces is continuous if and only if ϕ(A) ⊆ ϕ(A) for every subset A

of X1 and is closed if and only if ϕ(A) ⊆ ϕ(A) for every subset A of X1

(see [3] pages 80,87).

Theorem 5.1. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs and
τG1 and τG2 be the corresponding graphic topologies. Suppose that ϕ :
V1 −→ V2 is a function. Consider ϕ as a function between topological
spaces (V1, τG1) and (V2, τG2). Then we have the following:
1. ϕ is continuous if and only if Ay ⊆ Ax implies Aϕ(y) ⊆ Aϕ(x) for
every x, y ∈ V1.
2. If ϕ is closed and injective, then Aϕ(y) ⊆ Aϕ(x) implies Ay ⊆ Ax for
every x, y ∈ V1. Conversely, if ϕ is surjective and Aϕ(y) ⊆ Aϕ(x) implies
Ay ⊆ Ax for every x, y ∈ V1, then ϕ is closed.

Proof. (i) By Corollary 2.3 and Remark 1.1, it is enough to show that

ϕ is continuous if and only if y ∈ {x} implies ϕ(y) ∈ {ϕ(x)} for every

x, y ∈ V1. Let ϕ be continuous and y ∈ {x}. Then ϕ(y) ∈ ϕ({x}). By

continuity of ϕ, ϕ({x}) ⊆ {ϕ(x)} and so ϕ(y) ∈ {ϕ(x)}. For the con-
verse, let A be a subset of V1 and y ∈ A. Note that A =

⋃
x∈A{x} and so
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A =
⋃
x∈A{x} =

⋃
x∈A {x} by Remark 1.1. Hence there exist an element

x ∈ A such that y ∈ {x}. By the assumption, ϕ(y) ∈ {ϕ(x)} ⊆ ϕ(A).

Therefore ϕ(A) ⊆ ϕ(A) and so ϕ is continuous.
(ii) If ϕ is closed and injective, then ϕ−1 is continuous on ϕ(V1). There-
fore, by (i) for all x, y ∈ V1 Aϕ(y) ⊂ Aϕ(x) impliesAϕ−1(ϕ(y)) ⊂ Aϕ−1(ϕ(x)),
then Ay ⊂ Ax. Suppose ϕ is surjective and ψ is a right inverse of ϕ. For
each x, y ∈ V1, suppose that Ay ⊂ Ax. Hence Aϕ(ψ(x)) ⊂ Aϕ(ψ(y)), be-
cause ϕoψ = idV2 . By assumption Aψ(x) ⊂ Aψ(y). By (i) ψ is continuous.

If ϕ(x) = ϕ(y), then by assumption x ∈ {y} and y ∈ {x}. Therefore, if
x ∈ C ⊂ V1 and C is closed, then y ∈ C. Hence, ϕ(C) = ψ−1(C) which
is closed, because ψ is continuous. �

Corollary 5.2. By notation of Theorem 4.1, ϕ is a homeomorphism if
and only if it is bijective and Ay ⊆ Ax if and only if Aϕ(y) ⊆ Aϕ(x) for
every x, y ∈ V1.

6. Connectedness of Graphic Topology

It is easy to see that, every disconnected graph has disconnected
graphic topology. Also the graphic topology of a bipartite graph G =
(V,E), is disconnected. Since every tree is a bipartite graph, then
graphic topology of a tree is disconnected. In this section, we investigate
some other conditions which guarantee connectedness or disconnected-
ness of a graphic topology for a connected graph G.

Definition 6.1. Let (X, τ) be a topological space. A subset A of X is
clopen, if it is both open and closed in (X, τ).

It is easy to see that if G = (V,E) is a disconnected graph, then
(V, τG) is a disconnected topological space.

Proposition 6.2. Let G = (V,E) be a graph with n vertices. If G has
k vertices of degree n− k that form an independent set, then the set of
these vertices is clopen in (V, τG). In particular, (V, τG) is disconnected.

Proof. Let {x1, . . . , xk} be an independent set in G such that deg xi =
n − k for each i ∈ {1, . . . , k}. Hence Axi = V \ {x1, . . . , xk} for each
i ∈ {1, . . . , k}, because deg xi = n−k and xi is not adjacent to x1, . . . , xk.
It follows from Corollary 2.6 that Uxi ⊆ Acxi = {x1, . . . , xk} for each
i ∈ {1, . . . , k}. Therefore, on one hand {x1, . . . , xk} is a closed set, and
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on the other hand
k⋃
i=1

Uxi = {x1, . . . , xk}

which implies that {x1, . . . , xk} is open, too. �

The following corollary is an immediate consequence of Proposition
5.2.

Corollary 6.3. Let G = (V,E) be a graph with n vertices. If x ∈ V
is of degree n − 1, then {x} is both open and closed in (V, τG) and so
(V, τG) is disconnected.

Proposition 6.4. Let X be an Alexandroff space. If there is a point
x ∈ X such that Ux is both maximal and minimal in B = {Uy| y ∈ X},
then Ux is clopen and X is disconnected.

Proof. It is enough to show that Ux is closed or equivalently Ux = Ux.
Suppose that y ∈ Ux. Then there exists an element z ∈ Ux such that
y ∈ {z}. By using definition of Uz and Remark 1.1, we obtain Uz ⊆ Ux
and Uz ⊆ Uy. By minimality of Ux we get Uz = Ux, so we have Ux ⊆ Uy
and by maximality of Ux we get Ux = Uy. Hence y ∈ Ux. �

Remark 6.5. It is a consequence of Corollary 2.3 that for a graph
G = (V,E), Ux is minimal in BG if and only if Ax is maximal in SG and
Ux is maximal in BG if and only if Ax is minimal in SG. Therefore by
Proposition 5.4, If there is a vertex x ∈ V such that Ax is both maximal
and minimal in SG, then (V, τG) is disconnected. In particular, every
k−regular graph is disconnected.

Proposition 6.6. Let G = (V,E) be a graph such that for every x, y ∈ V
we have x ∈ Ay or Ax ⊆ Ay or Ay ⊆ Ax. Then (V, τG) is disconnected.

Proof. By Corollaries 2.3,2.6 and by the assumption of the proposition,
we have Ux ∩ Uy = φ or Ux ⊆ Uy or Uy ⊆ Ux for every x, y ∈ V . Let
x ∈ V be a vertex with Ax minimal in SG. Then Ux is maximal in
{Uy| y ∈ V } by Remark 5.5. Let W =

⋃
y/∈Ux

Uy, then W is an open

set. We prove that Ux ∪W = V and Ux ∩W = φ. First let y ∈ V \ Ux.
By definition of W , we have Uy ⊆W and so y ∈W . Secondly, Suppose
that z ∈ Ux ∩W . Since z ∈ W , there exists a vertex y ∈ V such that
y /∈ Ux and z ∈ Uy. Therefore z ∈ Ux ∩ Uy. By assumption, we have
Ux ⊆ Uy or Uy ⊆ Ux. We claim that in both cases we will have y ∈ Ux,
which is a contradiction. If Ux ⊆ Uy, then by maximality of Ux, we get
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Ux = Uy and hence y ∈ Ux, and if Uy ⊆ Ux, then it is immediate that
y ∈ Ux. Therefore (Ux,W ) is a separation for (V, τG). �

Example 2. Let G = (V,E) be a graph. Suppose that P = {x ∈
V | deg x = 1} has at least two elements that are adjacent to two distinct
vertices of V \ P . If V \ P is a clique with at least three elements, then
(V, τG) is connected. To prove this, assume that P = {a1, . . . , ak} and
k ≥ 2. We claim that V = ∪ki=1Uai and Uai ∩ Uaj 6= φ for every i, j ∈
{1, . . . , k}. Suppose that x ∈ V \ P , then there are y ∈ V and ai ∈ P
such that x ∈ Ay and y ∈ Aai and so x ∈ Ay = Uai, because deg ai = 1.
It implies the first claim. Now suppose that ai, aj are elements of P such
that there are distinct vertices yi, yj ∈ V \P with yi ∈ Aai and yj ∈ Aaj .
Therefore Uai = Ayi and Uaj = Ayj . Since V \ P is a clique with at
least three elements, there is a z ∈ V \ P such that z ∈ Ayi ∩ Ayj and
so z ∈ Uai ∩ Uaj and Uai ∩ Uaj 6= φ. Now let by contrary V = A ∪ B
with A and B open sets such that A∩B = φ and let ai ∈ A and aj ∈ B.
Hence Uai ⊆ A and Uaj ⊆ B which implies Uai ∩ Uaj = φ. This is a
contradiction.

Problem 1. What are the necessary and sufficient conditions for con-
nectivity of graphic topology?

7. Conditions on Topological Spaces to be Graphic

Definition 7.1. A topological space (V, τ) is called graphic, if there
is some (locally finite) graph G with vertex set V and without isolated
vertex, such that τG = τ .

In this section, we show that the property of being graphic is a topo-
logical one, i.e. it is invariant under homeomorphisms, and then inves-
tigate some necessary or sufficient conditions for the topological spaces
to be graphic.

Proposition 7.2. Let G = (V,E) be a graph and τG be the correspond-
ing graphic topology. If (V ′, τ) is a topological space homeomorphic to
(V, τG), then (V ′, τ) is graphic. In particular, being graphic is a topolog-
ical property.

Proof. Let ϕ : (V, τG) −→ (V ′, τ) be a homeomorphism. Then (V ′, τ) is
also an Alexandroff space. We construct a graph structure G′ = (V ′, E′)
on V ′ in the way that ϕ(x) is adjacent to ϕ(y) in G′ if and only if x is
adjacent to y in G for every x, y ∈ V . Then we have ϕ(Ax) = A′ϕ(x) for
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every x ∈ V , where Ax and A′ϕ(x) are the sets of adjacent vertices to x in

G and to ϕ(x) in G′, respectively. Hence G′ is also a locally finite graph.
We prove that τ = τG′ . For this purpose, let Ux be the smallest open
set containing x in (V, τG) and U ′y (resp. Wy) be the smallest open set
containing y in (V ′, τG′) (resp. (V ′, τ)). We prove that U ′y = Wy. Since
ϕ is a homeomorphism, ϕ(Ux) = Wϕ(x). But ϕ is also an isomorphism of
graphs G and G′, therefore ϕ(Ux) = U ′ϕ(x) and the proof is complete. �

We know that in a graphic topology (V, τG), Ux is finite for each
x ∈ V . Therefore if an Alexandroff space (X, τ) is graphic, then Ux
is finite. In the following proposition we investigate another necessary
condition for a topological space to be graphic:

Proposition 7.3. Let (V, τ) be a graphic topological space and let Ux
be the smallest open set containing x for every x ∈ V . Then Ux 6= V .
In particular, {x} 6= V for every x ∈ V .

Proof. Let G be a graph on V such that τG = τ and let x ∈ V . Since G
has no isolated vertex, we have Ax 6= φ and so Acx 6= V . Hence Ux 6= V
by Corollary 2.6. �

The following example shows that the condition in Proposition 6.3 is
not sufficient:

Example 3. Let V = {1, 2, 3, 4} and

τ = {φ, V, {1}, {4}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}}.

here we have U1 = {1}, U2 = {1, 2}, U3 = {1, 3} and U4 = {4}. By

Remark 1.1, we know that y ∈ {x} if and only if x ∈ Uy, and hence

{1} = {1, 2, 3}, {2} = {2}, {3} = {3} and {4} = {4}. Therefore U1 =
U2 = U3 = {1, 2, 3} and U4 = {4}. Hence (V, τ) satisfies Proposition
6.3, but it is not graphic.

The following proposition gives a sufficient condition for a finite topo-
logical space to be graphic.

Proposition 7.4. Let (V, τ) be a finite topological space and Wx be the
smallest open set containing x for every x ∈ V . If for every x, y ∈ V ,
Wx = Wy or Wx ∩Wy = φ, then (V, τ) is graphic.

Proof. We construct a graph G = (V,E) as follows

(7.1) {x, y} ∈ E ⇔Wx ∩Wy = φ, for every x, y ∈ V.
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For every x ∈ V let Ux and Ax be the smallest set containing x in τG
and the set of all adjacent vertices to x in G, respectively. We prove that
τG = τ . Let x ∈ V . It is enough to show that Ux = Wx. By (7.1), we
have Ay = {z ∈ V |Wy ∩Wz = φ} for every y ∈ V . Therefore y ∈ Ux if
and only if Ax ⊆ Ay if and only if {z ∈ V |Wx∩Wz = φ} ⊆ {z ∈ V |Wy∩
Wz = φ}. Suppose that y ∈ Ux \Wx. Hence Wx ∩Wy = φ, otherwise
Wx = Wy and so y ∈ Wx which is a contradiction. Therefore y ∈ Ax,
but Ax ⊆ Ay and this implies that y ∈ Ay which is a contradiction. So
Ux ⊆ Wx. Conversely, if y ∈ Wx, then Wx = Wy. So if z ∈ Ax for some
z ∈ V , then Wx∩Wz = φ and so Wy∩Wz = φ. This implies that z ∈ Ay
and so Ax ⊆ Ay. Therefore y ∈ Ux and Wx ⊆ Ux. This completes the
proof. �

The next example shows that the condition in Proposition 6.4 is not
necessary.

Example 4. If V = {1, 2, 3, 4} and

τ = {φ, V, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, {1, 2, 4}},
then (V, τ) does not satisfy the condition of Proposition 6.4, but it is
graphic.

Problem 2. What is the necessary and sufficient condition for an Alexan-
droff space to be graphic?

8. Density in Graphic Topologies

In this section, we investigate some conditions for dense subsets in the
graphic topology associated to a graph G = (V,E). For every x ∈ V , we
have x ∈ Ux and so U cx 6= V . Therefore Ax 6= V by Corollary 2.6. Then
Ax 6= V for every x ∈ V .

Remark 8.1. Let (V, τ) be a topological space and A be a subset of V . It
is a well-known fact that A is dense in (V, τ) if and only if A∩U 6= φ for
every nonempty open subset U of V . Specially, if (V, τ) is an Alexandroff
topological space and Ux is the smallest open set containing x for every
x ∈ V , then A is dense in (V, τ) if and only if A ∩ Ux 6= φ for every
x ∈ V . In particular, {x ∈ V | {x} ∈ τ} ⊆ A. Since Ax is a nonempty
open set in (V, τG), we have Ax ∩A 6= φ. Let y ∈ Ax ∩A, then x ∈ Ay.

Proposition 8.2. Let G = (V,E) be a connected graph which is not a
star. Then the set of all vertices of G with degree greater than one is
dense in (V, τG).
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Proof. Let A = {x ∈ V | deg x > 1}. By Remark 7.1, it is enough to
show that Ux ∩A 6= φ for all x ∈ V \A. If x ∈ V \A, Then there exists
some y ∈ V such that Ax = {y} and hence Ux = Ay, because deg x = 1.
Since G is not a star, deg y > 1 and there exists some z ∈ A such that
z ∈ Ay. Therefore z ∈ A ∩Ay = A ∩ Ux. �

Corollary 8.3. Let T = (V,E) be a tree which is not a star and A a
subset of V and B = {x ∈ V | deg x > 1}. Then A is dense in (V, τT ) if
and only if B ⊆ A.

Proof. (⇒) If A is dense in (V, τT ), then by Remark 7.1, we have {x ∈
V | {x} ∈ τ} ⊆ A. On the other hand, if x ∈ B, then {x} ∈ τ , by
proposition 3.7. This proves the necessity.
(⇐) By Proposition 7.2 we have B = V . So if B ⊆ A, then A = V and
this is the sufficiency condition. �

The following theorem which we could not find any proof for it else-
where, is true in every Alexandroff topological space and specially in
every graphic topological space.

Theorem 8.4. Let (V, τ) be an Alexandroff topological space, Bτ =
{Ux|x ∈ V } and B = {Ux|x ∈ V, Ux is minimal in Bτ}.
1. If A ⊆ V is a minimal dense subset in (V, τ), then there exists a
surjective function f : B −→ A such that f(Ux) ∈ Ux for every Ux ∈ B.
In particular, A ⊆ {x ∈ V |Ux is minimal in Bτ}.
2. Conversely, if f : B −→ V is a function such that f(Ux) ∈ Ux for
every Ux ∈ B, then f(B) is a minimal dense subset in (V, τ).
Specially, if A and A′ are minimal dense subsets in (V, τ), then we have
|A| = |A′|.

Proof. (i) By minimality of elements of B, the intersection of every pair
of distinct elements of B is empty. We claim that U ∩ A has a single
element for each U ∈ B. Since A = V , there exists some x ∈ U ∩ A, so
Ux ⊆ U and by minimality of U we have Ux = U . Suppose by contrary
that y ∈ U ∩A\{x}. Then Uy = Ux = U . Therefore z ∈ {x} if and only

if z ∈ {y}. Hence A \ {y} = V , which contradicts minimality of A. Now
define f(U) to be the single element of U ∩A for every U ∈ B. Suppose
that a ∈ A. We show that Ua ∈ B which implies f(Ua) = a and this will
prove that f is surjective. Suppose by contrary that Ua /∈ B, so there
exists Ux ∈ B such that Ux $ Ua. If b ∈ Ux ∩ A, then Ux ∩ A = {b}
by above claim and so Ux = Ub $ Ua. Therefore y ∈ {a} implies that

y ∈ {b} for every y ∈ V . Thus A \ {a} = V , which is a contradiction.
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The next statement, is an obvious consequence of the first one.
(ii) For every x ∈ V , there exists an element a ∈ V such that Ua ⊆ Ux
and Ua ∈ B. Therefore f(Ua) ∈ Ux ∩ f(B) and so f(B) is dense in V .
Now suppose that A = V and A ⊆ f(B). Let Ux ∈ B and f(Ux) /∈ A.
Then there exists Uy ∈ B such that f(Uy) ∈ Ux ∩ A. On one hand,
f(Ux) /∈ A implies that f(Ux) ∈ Ux \A and on the other hand, we have
f(Uy) ∈ Ux ∩ Uy which implies Ux = Uy and so f(Ux) = f(Uy) ∈ A
which is a contradiction.
To prove the last statement, if A is a minimal dense subset in (V, τ),
then there exists a surjective function f : B −→ A such that f(Ux) ∈ Ux
for every Ux ∈ B, by part (i). Hence f must be injective, because if
f(Ux) = f(Uy) for some Ux, Uy ∈ B, then Ux ∩ Uy 6= φ and so Ux = Uy
by their minimality. Therefore |A| = |B| is constant. �

Corollary 8.5. Let G = (V,E) be a graph and A ⊆ V . If A is a
minimal dense set in (V, τG), then A ⊆ {x ∈ V |Ax is maximal in SG}.
More precisely, if Ax0 is maximal in SG and V0 = {x ∈ V |Ax = Ax0},
then |A ∩ V0| = 1.

Proof. By Remark 5.5, we have

{x ∈ V |Ux is minimal in BG} = {x ∈ V |Ax is maximal in SG}.
Now the first statement is obvious by part (i) of Theorem 7.4. To prove
the next statement, note that Ax0 is maximal if and only if Ux0 is min-
imal. Hence Ax = Ax0 if and only if Ux = Ux0 if and only if x ∈ Ux0 .
Therefore V0 = Ux0 and so A ∩ V0 6= φ. Now if x 6= y, x, y ∈ A ∩ V0

then similar to the proof of Theorem 7.4, we have A \ {y} = V and this
contradicts minimality of A. �

Definition 8.6. A k−coloring of a graph G is a labeling c : V (G) −→ S,
where |S| = k. A k−coloring is proper if adjacent vertices have differ-
ent labels, i.e., xy ∈ E(G) implies c(x) 6= c(y) for every x, y ∈ V (G).
A graph is k−colorable if it has a proper k−coloring. The chromatic
number χ(G) is the least k such that G is k−colorable.

Proposition 8.7. Let G = (V,E) be a finite graph and A ⊆ V . If A is
a minimal dense set in (V, τG), then χ(G) ≤ |A|.

Proof. Let A = {a1, . . . , ak} and note that Aai is maximal in SG, by
Corollary 7.5. We define a coloring c : V −→ {1, . . . , k}. For every
1 ≤ i ≤ k, set c(ai) = i and for every x ∈ V \A there exists some x0 ∈ V
such that Ax ⊆ Ax0 and Ax0 is maximal in SG. By Corollary 7.5, there
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exists some 1 ≤ i ≤ k such that Aai = Ax0 . Therefore Ax ⊆ Aai . We
choose such i and put c(x) = i. Suppose that c(x) = c(y) = i. Then
we have Ax ⊆ Aai and Ay ⊆ Aai . This implies Uai ⊆ Ux ∩ Uy. Hence
Ux ∩ Uy 6= φ and so x is not adjacent to y, by Corollary 2.6. �

Example 5. Suppose that A be a minimal dense set of graphic topology
of Kn,m, then χ(Kn,m) = 2 which is equal to |A|.

Proposition 8.8. Let G = (V,E) be a finite connected graph and A ⊆
V . If A = V , then the induced subgraph on A is connected.

Proof. Let H = G[A] be the induced subgraph on A. If H is not con-
nected, then we can choose a minimal vertex cut C ⊆ V \A. By Propo-
sition 3.7, C is an open subset of V . However, C ∩ A = φ and this
contradicts density of A. �
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