UNISERIAL MODULES OF GENERALIZED POWER SERIES

R. ZHAO

Communicated by Bernhard Keller

Abstract

Let R be a ring, M a right R-module and (S, \leq) a strictly ordered monoid. In this paper we will show that if (S, \leq) is a strictly ordered monoid satisfying the condition that $0 \leq s$ for all $s \in S$, then the module $\left[\left[M^{S, \leq]]}\right.\right.$ of generalized power series is a uniserial right $\left[\left[R^{S, \leq}\right]\right]$-module if and only if M is a simple right R-module and S is a chain monoid.

1. Introduction

A module is said to be uniserial if any two of its submodules are comparable with respect to inclusion, i.e., any two of its cyclic submodules are comparable by set inclusion. A ring R is said to be right (respectively, left) uniserial if R_{R} (respectively, ${ }_{R} R$) is a uniserial module. Uniserial modules are also called chain modules in some literature. Let R be a ring and M a right R-module. In [7], among others, it was proved that $M[[x]]$ is a uniserial right $R[[x]]$-module if and only if M is a simple right module. In recent years, many researchers (for example, Liu [2], Varadarajan $[8,9]$) have carried out an extensive study of modules of generalized power series. Motivated by these facts, in this paper, we study the uniserial condition for generalized power series modules,

[^0]with restriction to monoids of exponents with all nonnegative elements. Our result extends Tuganbaev's result to such modules and partially generalizes the results of [5, Theorem 4.3].

Throughout this paper, all rings are associative with identity and all modules are unitary. If R is a ring, then the group of invertible elements of R is denoted by $U(R)$. Regarding ordered sets, monoids and ordered monoids we will be following the terminology in [6].

Let (S, \leq) be an ordered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S will be denoted additively, and the neutral element by 0 . The following definition is due to Ribenboim (see [6]).

Assume that (S, \leq) is a strictly ordered monoid, that is, (S, \leq) is an ordered monoid satisfying the condition that if $s, s^{\prime}, t \in S$ and $s<s^{\prime}$, then $s+t<s^{\prime}+t$, and R is a ring. Let $\left[\left[R^{S, \leq}\right]\right]$ be the set of all maps $f: S \longrightarrow R$ such that $\operatorname{supp}(f)=\{s \in S \mid f(s) \neq 0\}$ is artinian and narrow. With pointwise addition, $\left[\left[R^{S, \leq]]}\right.\right.$ is an abelian additive group. For every $s \in S$ and $f, g \in\left[\left[R^{S, \leq}\right]\right]$, let

$$
X_{s}(f, g)=\{(u, v) \in S \times S \mid u+v=s, f(u) \neq 0, g(v) \neq 0\}
$$

It follows from $[6,4.1]$ that $X_{s}(f, g)$ is finite. This fact allows one to define the operation of convolution:

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) g(v)
$$

With this operation, and pointwise addition, $\left[\left[R^{S, \leq}\right]\right]$ becomes an associative ring, with identity element e, namely $e(0)=1, e(s)=0$ for every $0 \neq s \in S$. This is called the ring of generalized power series with coefficients in R and exponents in S. To any $r \in R$ and $s \in S$, we associate the maps $c_{r}, e_{s} \in\left[\left[R^{S, \leq}\right]\right]$ defined by

$$
c_{r}(x)=\left\{\begin{array}{lc}
r, & \text { if } x=0, \\
0, & \text { otherwise },
\end{array} \quad e_{s}(x)=\left\{\begin{array}{lc}
1, & \text { if } x=s \\
0, & \text { otherwise }
\end{array}\right.\right.
$$

It is clear that $r \mapsto c_{r}$ is a ring embedding of R into $\left[\left[R^{S, \leq]], s \mapsto e_{s}, ~}\right.\right.$ is a monoid embedding of S into the multiplicative monoid of the ring $\left[\left[R^{S, \leq}\right]\right]$, and $c_{r} e_{s}=e_{s} c_{r}$.

In $[2,8,9]$, the notion of generalized power series rings was extended to modules. Let M be a right R-module and (S, \leq) a strictly ordered monoid. We denote by $\left[\left[M^{S, \leq}\right]\right]$ the set of all maps $\phi: S \longrightarrow M$ such that
$\operatorname{supp}(\phi)$ is artinian and narrow, where $\operatorname{supp}(\phi)=\{s \in S \mid \phi(s) \neq 0\}$. With pointwise addition, $\left[\left[M^{S, \leq} \leq\right]\right]$ is an abelian additive group. For each $s \in S, f \in\left[\left[R^{S, \leq}\right]\right]$ and $\phi \in\left[\left[M^{S, \leq}\right]\right]$, let

$$
X_{s}(\phi, f)=\{(u, v) \in S \times S \mid u+v=s, \phi(u) \neq 0, f(v) \neq 0\} .
$$

Then by[2, Lemma 1], $X_{s}(\phi, f)$ is finite. This allows one to define the scalar multiplication as follows:

$$
(\phi f)(s)=\sum_{(u, v) \in X_{s}(\phi, f)} \phi(u) f(v) .
$$

With this operation and pointwise addition, $\left[\left[M^{S, \leq}\right]\right]$ becomes a right $\left[\left[R^{S, \leq}\right]\right]$-module, which is called the module of generalized power series with coefficients in M and exponents in S. To any $m \in M$ and any $s \in S$, we associate the map $d_{m}^{s} \in\left[\left[M^{S, \leq}\right]\right]$ via

$$
d_{m}^{s}(x)=\left\{\begin{array}{rc}
m, & \text { if } x=s \\
0, & \text { otherwise }
\end{array}\right.
$$

It is clear that $m \mapsto d_{m}^{0}$ is a module embedding of M into $\left[\left[M^{S, \leq}\right]\right]$.
For example, if $S=\mathbb{N} \cup\{0\}$ and \leq is the usual order, then

$$
\left[\left[M^{\mathbb{N} \cup\{0\}, \leq}\right]_{\left[\left[R^{\mathbb{N} \cup\{0\}, \leq]]}\right.\right.} \cong M[[x]]_{R[x x]},\right.
$$

the right $R[[x]]$-module of formal power series over M. If $S=\mathbb{Z}$ and \leq is
 series extension of M_{R}. If S is a commutative monoid and \leq is the trivial order, then $\left[\left[M^{S, \leq]]_{\left[\left[R^{S, \leq},\right]\right]} \cong M[S]_{R[S]} \text {, the monoid extensions of }}\right.\right.$ S over M_{R}. Further examples are given in [2].

2. Main results

Recall from [4] that a strictly ordered monoid (S, \leq) is said to be a positively strictly ordered if $0 \leq s$ for all $s \in S$. Note that in this case, $(\phi f)(0)=\phi(0) f(0)$ for any $\phi \in\left[\left[M^{S, \leq}\right]\right]$ and any $f \in\left[\left[R^{S, \leq}\right]\right]$. The following result appeared in [3, Lemma 5.2].

Lemma 2.1. Let R be a ring, (S, \leq) a positively strictly ordered monoid and $f \in\left[\left[R^{S, \leq}\right]\right]$. Then $f \in U\left(\left[\left[R^{\bar{S}, \leq}\right]\right]\right)$ if and only if $f(0) \in U(R)$.

Following [1], a monoid S is said to be a chain if the ideals of S are totally ordered by set inclusion, i.e., for any $s, t \in S$, either $s+S \subseteq t+S$ or $t+S \subseteq s+S$. The following result appeared in [4, Lemma 4].

Lemma 2.2. Let (S, \leq) be a positively strictly ordered monoid. If S is a chain monoid, then (S, \leq) is a totally ordered monoid.

Remark 2.3. The example of the monoid $S=(\mathbb{N}, \cdot)$ shows that the converse of Lemma 2.2 is false.

Lemma 2.4. Let M be a right R-module and (S, \leq) a strictly ordered monoid. Assume that $W=\left\{\phi \in\left[\left[M^{S, \leq}\right]\right] \mid \phi(0)=0\right\}$. If (S, \leq) is positive, then W is an $\left[\left[R^{S, \leq}\right]\right]$-submodule of $\left[\left[M^{S, \leq}\right]\right]$.
Proof. Let $\phi \in W, f \in\left[\left[R^{S, \leq}\right]\right]$. Then

$$
(\phi f)(0)=\sum_{(u, v) \in X_{0}(\phi, f)} \phi(u) f(v)=\phi(0) f(0)=0 .
$$

This means that $\phi f \in W$. Now it is easy to see that W is an $\left[\left[R^{S, \leq]]-}\right.\right.$ submodule of $\left[\left[M^{S, \leq}\right]\right]$.

Now, we are ready to prove the main result of our discussion.
Theorem 2.5. Let (S, \leq) be a positively strictly ordered monoid and M a nonzero right R-module. Then the following conditions are equivalent: (1) $\left[\left[M^{S, \leq}\right]\right]$ is a uniserial right $\left[\left[R^{S, \leq}\right]\right]$-module.
(2) M is a simple right R-module and S is a chain monoid.
(3) For any $0 \neq \varphi \in\left[\left[M^{S, \leq}\right]\right]$, there exists an $s \in S$ such that $\varphi\left[\left[R^{S, \leq}\right]\right]=$ $\left[\left[M^{S, \leq}\right]\right] e_{s}$.
Proof. (1) $\Longrightarrow(2)$. First we show that S is a chain monoid. Let $s, t \in S$. For any $0 \neq m \in M$, since $\left[\left[M^{S, \leq}\right]\right]$ is a uniserial right $\left[\left[R^{S, \leq]] \text {-module, }}\right.\right.$ without loss of generality, we can assume $d_{m}^{s}\left[\left[R^{S, \leq}\right]\right] \subseteq d_{m}^{t}\left[\left[R^{S, \leq}\right]\right]$. Then there exists an $f \in\left[\left[R^{S, \leq}\right]\right]$ such that $d_{m}^{s}=d_{m}^{t} f$. Thus from

$$
0 \neq m=d_{m}^{s}(s)=\left(d_{m}^{t} f\right)(s)=\sum_{(u, v) \in X_{s}\left(d_{m}^{t}, f\right)} d_{m}^{t}(u) f(v),
$$

it follows that $t+v=s$ for some $v \in S$. Consequently $s \in t+S$. Hence S is a chain monoid.

Next we show that M is a simple right R-module. Let $0 \neq m \in M$. We will show that $M=m R$. Set $A=d_{m}^{0}\left[\left[R^{S, \leq}\right]\right]$. Then for any $\phi \in A$, $\phi=d_{m}^{0} f$ for some $f \in\left[\left[R^{S, \leq}\right]\right]$. Thus, for any $s \in S, \phi(s)=\left(d_{m}^{0} f\right)(s)=$ $m f(s) \in m R$. Let

$$
B=\left\{\phi \in\left[\left[M^{S, \leq}\right]\right] \mid \phi(0)=0\right\}
$$

Then B is a submodule of $\left[\left[M^{S, \leq} \leq\right]\right]$ by Lemma 2.4 and $B \subseteq A$ since $\left[\left[M^{S, \leq}\right]\right]$ is a uniserial right $\left[\left[R^{S, \leq}\right]\right]$-module and $0 \neq m \in M$. Let $0 \neq s \in$
S and $0 \neq n \in M$. Then $d_{n}^{s} \in B$, and so $d_{n}^{s} \in A$. Hence $n=d_{n}^{s}(s) \in m R$. This implies that $M=m R$. Hence M is a simple right R-module.
$(2) \Longrightarrow(3)$. Since (S, \leq) is a positively strictly ordered monoid and S is a chain monoid, (S, \leq) is strictly totally ordered by Lemma 2.2 . Hence, for any $0 \neq \phi \in\left[\left[M^{S, \leq}\right]\right], \operatorname{supp}(\phi)$ contains a minimal element, which we denote by $\pi(\phi)$.
 will show that $\varphi\left[\left[R^{S, \leq]]}=\left[\left[M^{S, \leq}\right]\right] e_{s_{0}}\right.\right.$.

First we show that there exists a $\varphi^{\prime} \in\left[\left[M^{S, \leq}\right]\right]$ such that $\varphi=\varphi^{\prime} e_{s_{0}}$. Since (S, \leq) is a strictly totally ordered monoid, it is easy to see that for the element $\varphi^{\prime}: S \longrightarrow M$ defined via $\varphi^{\prime}(s)=\varphi\left(s+s_{0}\right)$, we have $\varphi^{\prime} \in\left[\left[M^{S, \leq}\right]\right]$.

Let $s_{0} \leq s$. Since (S, \leq) is a positively ordered chain monoid, there exists $s^{\prime} \in S$ such that $s=s_{0}+s^{\prime}$. Otherwise, $s_{0}=s+v$ for some $0 \neq v \in S$ and we get $s+v=s_{0} \leq s$. Since $0<v$ we get a contradiction. Hence

$$
\begin{aligned}
\varphi(s) & =\varphi\left(s_{0}+s^{\prime}\right)=\varphi^{\prime}\left(s^{\prime}\right)=\varphi^{\prime}\left(s^{\prime}\right) e_{s_{0}}\left(s_{0}\right) \\
& =\sum_{(u, v) \in X_{s^{\prime}+s_{0}}\left(\varphi^{\prime}, e_{s_{0}}\right)} \varphi^{\prime}(u) e_{s_{0}}(v)=\left(\varphi^{\prime} e_{s_{0}}\right)\left(s^{\prime}+s_{0}\right)=\left(\varphi^{\prime} e_{s_{0}}\right)(s) .
\end{aligned}
$$

This means that $\varphi=\varphi^{\prime} e_{s_{0}}$.
Next we show that $\varphi\left[\left[R^{S, \leq}\right]\right]=\left[\left[M^{S, \leq]}\right] e_{s_{0}}\right.$. Let $m_{0}=\varphi^{\prime}(0)$. Since M is a simple right R-module, $M=m_{0} R$. Thus $\left[\left[M^{S, \leq]]}=\left[\left[\left(m_{0} R\right)^{S, \leq}\right]\right]=\right.\right.$
 $\varphi^{\prime}(s)=m_{0} r_{s}$. Define $f: S \longrightarrow R$ via:

$$
f(s)= \begin{cases}1, & s=0 \\ r_{s}, & 0 \neq s \in \operatorname{supp}\left(\varphi^{\prime}\right) \\ 0, & s \notin \operatorname{supp}\left(\varphi^{\prime}\right)\end{cases}
$$

Clearly $f \in\left[\left[R^{S, \leq}\right]\right]$. For any $s \in S$,

$$
\varphi^{\prime}(s)=m_{0} r_{s}=m_{0} f(s)=\sum_{(u, v) \in X_{s}\left(d_{m_{0}}^{0}, f\right)} d_{m_{0}}^{0}(u) f(v)=\left(d_{m_{0}}^{0} f\right)(s) .
$$

Thus $d_{m_{0}}^{0} f=\varphi^{\prime}$. Since $f(0)=1$, by Lemma 2.1, $f \in U\left(\left[\left[R^{S, \leq]]) \text {. Hence }}\right.\right.\right.$

$$
\begin{aligned}
{\left[\left[M^{S, \leq}\right]\right] e_{s_{0}} } & =d_{m_{0}}^{0}\left[\left[R^{S, \leq}\right]\right] e_{s_{0}}=d_{m_{0}}^{0} f\left[\left[R^{S, \leq}\right]\right] e_{s_{0}} \\
& =d_{m_{0}}^{0} f e_{e_{0}}\left[\left[R^{S, \leq]]}=\varphi^{\prime} e_{s_{0}}\left[\left[R^{S, \leq \leq]]}\right.\right.\right.\right. \\
& =\varphi\left[\left[R^{S, \leq}\right]\right] .
\end{aligned}
$$

$(3) \Longrightarrow(1)$. First we show that S is a chain monoid. Let $u \neq v \in S$. Fix any $0 \neq m \in M$. Then $0 \neq d_{m}^{u}+d_{m}^{v} \in\left[\left[M^{S, \leq]] \text {. By (} 3) \text {, there exists }}\right.\right.$ an $s \in S$ such that

$$
d_{m}^{u}+d_{m}^{v}=\phi e_{s} \quad \text { and } \quad d_{m}^{s}=\left(d_{m}^{u}+d_{m}^{v}\right) f
$$

for some $\phi \in\left[\left[M^{S, \leq}\right]\right]$ and some $f \in\left[\left[R^{S, \leq}\right]\right]$. From $0 \neq m=\left(d_{m}^{u}+\right.$ $\left.d_{m}^{v}\right)(v)=\left(\phi e_{s}\right)(v)$ it follows that $v \in \operatorname{supp}\left(\phi e_{s}\right) \subseteq s+S$ and a similar argument shows that $u \in s+S$. On the other hand,

$$
0 \neq m=d_{m}^{s}(s)=\left[\left(d_{m}^{u}+d_{m}^{v}\right) f\right](s)=\left(d_{m}^{u} f\right)(s)+\left(d_{m}^{v} f\right)(s),
$$

and thus $\left(d_{m}^{u} f\right)(s) \neq 0$ or $\left(d_{m}^{v} f\right)(s) \neq 0$. In the first case, we obtain $s \in u+S$ and so $v \in u+S$ follows. Similarly, in the second case we have $u \in v+S$. Hence S is a chain monoid.

Secondly, we show that $\left[\left[M^{S, \leq}\right]\right]$ is a uniserial right $\left[\left[R^{S, \leq}\right]\right]$-module. Let $0 \neq \varphi, \psi \in\left[\left[M^{S, \leq}\right]\right]$. By (3), there exist $s, t \in S$ such that $\varphi\left[\left[R^{S, \leq}\right]\right]=$ $\left[\left[M^{S, \leq}\right]\right] e_{s}, \psi\left[\left[R^{S, \leq]]}=\left[\left[M^{S, \leq}\right]\right] e_{t}\right.\right.$. Since S is a chain, $s \in t+S$ or $t \in s+S$. Assume that $s=t+u, u \in S$. Then

$$
\varphi\left[\left[R^{S, \leq}\right]\right]=\left[\left[M^{S, \leq}\right]\right] e_{s}=\left[\left[M^{S, \leq}\right]\right] e_{u} e_{t} \leq\left[\left[M^{S, \leq}\right]\right] e_{t}=\psi\left[\left[R^{S, \leq]]}\right.\right.
$$

Hence, $\left[\left[M^{S, \leq]]}\right.\right.$ is a uniserial right $\left[\left[R^{S, \leq]]-m o d u l e . ~}\right.\right.$
Let M be a right R-module. Recall that M is a serial module if M is a direct sum of uniserial modules. A ring R is called a right (respectively, left) serial ring, if R_{R} (respectively, ${ }_{R} R$) is a serial module. A ring R is called a serial ring, if R is both a right and a left serial ring.
Lemma 2.6. Let M be a right R-module, (S, \leq) a positively strictly ordered monoid and S a chain monoid. If M is a semisimple artinian module, then $\left[\left[M^{S, \leq}\right]\right]$ is a serial right $\left[\left[R^{S, \leq}\right]\right]$-module.
Proof. Assume that $M=M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$, where M_{i} is a simple right R-module, $i=1,2, \ldots, n, n \in \mathbb{N}$. Then $\left[\left[M^{S, \leq}\right]\right] \cong\left[\left[M_{1}^{S, \leq}\right]\right] \oplus$ $\left[\left[M_{2}^{S, \leq}\right]\right] \oplus \cdots \oplus\left[\left[M_{n}^{S, \leq}\right]\right]$. By Theorem 2.5, $\left[\left[M_{i}^{S, \leq}\right]\right]$ is a uniserial right $\left[\left[R^{S, \leq}\right]\right]$-module. Therefore, $\left[\left[M^{S, \leq}\right]\right]$ is a serial right $\left[\left[R^{S, \leq}\right]\right]$-module.
Lemma 2.7. Let R be a ring and (S, \leq) a strictly totally ordered monoid. Then R is a semiprime ring if and only if $\left[\left[R^{S, \leq}\right]\right]$ is a semiprime ring.
Proof. $\Longrightarrow)$ Assume the contrary. Then there exists a nonzero $f \in$ $\left[\left[R^{S, \leq]]}\right.\right.$ such that $\left(\left[\left[R^{S, \leq]]} f\left[\left[R^{S, \leq]]}\right)^{2}=0\right.\right.\right.\right.$. Thus $f\left[\left[R^{S, \leq]]} f=0\right.\right.$. Let $\pi(f)=s_{0}$. Then $f\left(s_{0}\right) R f\left(s_{0}\right)=0$. Set $I=R f\left(s_{0}\right) R$. Then I is a nonzero ideal of R and $I^{2}=0$, which is contradict to the fact that R is a semiprime ring.
$\Longleftarrow)$ Let I be an ideal of ring R with $I^{2}=0$. Then $\left[\left[I^{S, \leq}\right]\right]$ is an ideal of the ring $\left[\left[R^{S, \leq}\right]\right]$. For any $f, g \in\left[\left[I^{S, \leq}\right]\right]$ and any $s \in S$,

$$
(f g)(s)=\sum_{(u, v) \in X_{s}(f, g)} f(u) g(v)=0
$$

Thus $f g=0$, which implies that $\left[\left[I^{S, \leq]}\right]\right]^{2}=0$. Hence $\left[\left[I^{S, \leq}\right]\right]=0$ since $\left[\left[R^{S, \leq}\right]\right]$ is a semiprime ring. Consequently, $I=0$, and so R is a semiprime ring.

Theorem 2.8. Let R be a ring, (S, \leq) a positively strictly ordered monoid and S a chain monoid. Then the following are equivalent:
(1) R is a semisimple artinian ring,
(2) $\left[\left[R^{S, \leq}\right]\right]$ is a right serial ring,
(3) $\left[\left[R^{S, \leq}\right]\right]$ is a serial semiprime ring.

Proof. (3) $\Longrightarrow(2)$ is obvious.
$(1) \Longrightarrow(3)$. Note that semisimple artinian rings are semiprime rings. Thus by Lemma 2.2 and Lemma 2.7, $\left[\left[R^{S, \leq]] \text { is a semiprime ring. On }}\right.\right.$ the other hand, by Lemma 2.6 and its left version, $\left[\left[R^{S, \leq}\right]\right]$ is a serial ring.
$(2) \Longrightarrow(1)$. Since right serial rings are right finite-dimensional semiperfect rings, $\left[\left[R^{S, \leq]] \text { is a right finite-dimensional semiperfect ring. Thus }}\right.\right.$ R, as a quotient ring of $\left[\left[R^{S, \leq]] \text {, is a right finite-dimensional semiperfect }}\right.\right.$ ring. Hence, there exists a complete set $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of pairwise orthogonal primitive idempotents in R such that $R=e_{1} R+e_{2} R+\cdots+e_{n} R$. Thus

$$
\begin{aligned}
{\left[\left[R^{S, \leq}\right]\right] } & \left.\cong\left[\left[\left(e_{1} R\right)^{S, \leq}\right]\right] \oplus\left[\left[\left(e_{2} R\right)^{S, \leq}\right]\right] \oplus \cdots \oplus\left[\left[\left(e_{n} R\right)^{S, \leq}\right]\right]\right] \\
& =c_{e_{1}}\left[\left[R^{S, \leq}\right]\right] \oplus c_{e_{2}}\left[\left[R^{S, \leq}\right]\right] \oplus \cdots \oplus c_{e_{n}}\left[\left[R^{S, \leq}\right]\right]
\end{aligned}
$$

and $c_{e_{i}}$ is a primitive idempotent of $\left[\left[R^{S, \leq}\right]\right]$, for all $i=1,2, \ldots, n$. In fact, if there exist $f^{2}=f, g^{2}=g \in\left[\left[R^{S, \leq}\right]\right]$ such that $c_{e_{i}}=f+g$, then $e_{i}=c_{e_{i}}(0)=f(0)+g(0)$, and $f(0)^{2}=f(0), g(0)^{2}=g(0)$. Since e_{i} is primitive, either $f(0)=0$ or $g(0)=0$. If $f(0)=0$, then $f=0$. In fact, if $f \neq 0$, then $\operatorname{supp}(f)$ is a nonempty set. Set $\pi(f)=s$. Since (S, \leq) is a positively strictly ordered monoid, $X_{s}(f, f)=\{(0, s),(s, 0)\}$. Thus

$$
0 \neq f(s)=f^{2}(s)=\sum_{(u, v) \in X_{s}(f, f)} f(u) f(v)=0
$$

which is a contradiction. Hence $c_{e_{i}}\left[\left[R^{S, \leq}\right]\right]$ is a uniserial right $\left[\left[R^{S, \leq]]-}\right.\right.$ module, $i=1,2, \ldots, n$. Thus, by Theorem 2.5, each $e_{i} R$ is a simple right R-module. Therefore, R is a semisimple artinian ring.

Acknowledgments

The author wishes to thank the referee for his/her valuable suggestions. This research is supported by the National Natural Science Foundation of China (10961021) and the Project on Science and Technique, Gansu Province (1010RJZA025).

References

[1] M. Ferrero, R. Mazurek and A. Sant'Ana, On right chain semigroups, J. Algebra 292 (2005) 574-584.
[2] Z. Liu, A note on Hopfian modules, Comm. Algebra 28 (2000), no. 6, 3031-3040.
[3] Z. Liu, Special properties of rings of generalized power series, Comm. Algebra 32 (2004), no. 8, 3215-3226.
[4] R. Mazurek and M. Ziembowski, On Bezout and distributive generalized power series rings, J. Algebra 306 (2006), no. 2, 397-411.
[5] R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra 318 (2007), no. 2, 737-764.
[6] P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), no. 2, 327-338.
[7] A. A. Tuganbaev, Polynomial and series rings and principal ideals, J. Math. Sci. 114 (2003), no. 2, 1204-1226.
[8] K. Varadarajan, Noetherian generalized power series rings and modules, Comm. Algebra 29 (2001), no. 1, 245-251.
[9] K. Varadarajan, Generalized power series modules, Comm. Algebra 29 (2001), no. 3, 1281-1294.

Renyu Zhao

College of Economics and Management, Northwest Normal University, 730070, Lanzhou, Gansu, People's Republic of China
Email: renyuzhao026@gmail.com

[^0]: MSC(2010): Primary: 16W60; Secondary: 13F25, 13C11.
 Keywords: Uniserial module, chain monoid, generalized power series ring, generalized power series module.
 Received: 13 March 2011, Accepted: 30 May 2011.
 (c) 2012 Iranian Mathematical Society.

