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UNISERIAL MODULES OF GENERALIZED POWER

SERIES

R. ZHAO

Communicated by Bernhard Keller

Abstract. Let R be a ring, M a right R-module and (S,≤) a
strictly ordered monoid. In this paper we will show that if (S,≤)
is a strictly ordered monoid satisfying the condition that 0 ≤ s for
all s ∈ S, then the module [[MS,≤]] of generalized power series is

a uniserial right [[RS,≤]]-module if and only if M is a simple right
R-module and S is a chain monoid.

1. Introduction

A module is said to be uniserial if any two of its submodules are
comparable with respect to inclusion, i.e., any two of its cyclic sub-
modules are comparable by set inclusion. A ring R is said to be right
(respectively, left) uniserial if RR (respectively, RR) is a uniserial mod-
ule. Uniserial modules are also called chain modules in some literature.
Let R be a ring and M a right R-module. In [7], among others, it was
proved that M [[x]] is a uniserial right R[[x]]-module if and only if M is
a simple right module. In recent years, many researchers (for example,
Liu [2], Varadarajan [8, 9]) have carried out an extensive study of mod-
ules of generalized power series. Motivated by these facts, in this paper,
we study the uniserial condition for generalized power series modules,
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with restriction to monoids of exponents with all nonnegative elements.
Our result extends Tuganbaev’s result to such modules and partially
generalizes the results of [5, Theorem 4.3].

Throughout this paper, all rings are associative with identity and all
modules are unitary. If R is a ring, then the group of invertible elements
of R is denoted by U(R). Regarding ordered sets, monoids and ordered
monoids we will be following the terminology in [6].

Let (S,≤) be an ordered set. Recall that (S,≤) is artinian if every
strictly decreasing sequence of elements of S is finite, and that (S,≤) is
narrow if every subset of pairwise order-incomparable elements of S is
finite. Let S be a commutative monoid. Unless stated otherwise, the
operation of S will be denoted additively, and the neutral element by 0.
The following definition is due to Ribenboim (see [6]).

Assume that (S,≤) is a strictly ordered monoid, that is, (S,≤) is an
ordered monoid satisfying the condition that if s, s′, t ∈ S and s < s′,
then s + t < s′ + t, and R is a ring. Let [[RS,≤]] be the set of all maps
f : S −→ R such that supp(f) = {s ∈ S | f(s) 6= 0} is artinian and
narrow. With pointwise addition, [[RS,≤]] is an abelian additive group.
For every s ∈ S and f, g ∈ [[RS,≤]], let

Xs(f, g) = {(u, v) ∈ S × S | u+ v = s, f(u) 6= 0, g(v) 6= 0}.
It follows from [6, 4.1] that Xs(f, g) is finite. This fact allows one to
define the operation of convolution:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).

With this operation, and pointwise addition, [[RS,≤]] becomes an asso-
ciative ring, with identity element e, namely e(0) = 1, e(s) = 0 for every
0 6= s ∈ S. This is called the ring of generalized power series with coef-
ficients in R and exponents in S. To any r ∈ R and s ∈ S, we associate
the maps cr, es ∈ [[RS,≤]] defined by

cr(x) =

{
r, if x = 0,
0, otherwise,

es(x) =

{
1, if x = s,
0, otherwise.

It is clear that r 7→ cr is a ring embedding of R into [[RS,≤]], s 7→ es,
is a monoid embedding of S into the multiplicative monoid of the ring
[[RS,≤]], and cres = escr.

In [2, 8, 9], the notion of generalized power series rings was extended
to modules. Let M be a right R-module and (S,≤) a strictly ordered
monoid. We denote by [[MS,≤]] the set of all maps φ : S −→M such that
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supp(φ) is artinian and narrow, where supp(φ) = {s ∈ S | φ(s) 6= 0}.
With pointwise addition, [[MS,≤]] is an abelian additive group. For each
s ∈ S , f ∈ [[RS,≤]] and φ ∈ [[MS,≤]], let

Xs(φ, f) = {(u, v) ∈ S × S | u+ v = s, φ(u) 6= 0, f(v) 6= 0}.
Then by[2, Lemma 1], Xs(φ, f) is finite. This allows one to define the
scalar multiplication as follows:

(φf)(s) =
∑

(u,v)∈Xs(φ,f)

φ(u)f(v).

With this operation and pointwise addition, [[MS,≤]] becomes a right
[[RS,≤]]-module, which is called the module of generalized power series
with coefficients in M and exponents in S. To any m ∈ M and any
s ∈ S, we associate the map dsm ∈ [[MS,≤]] via

dsm(x) =

{
m, if x = s,
0, otherwise.

It is clear that m 7→ d0m is a module embedding of M into [[MS,≤]].
For example, if S = N ∪ {0} and ≤ is the usual order, then

[[MN∪{0},≤]][[RN∪{0},≤]]
∼= M [[x]]R[[x]],

the right R[[x]]-module of formal power series over M . If S = Z and ≤ is
the usual order, then [[MZ,≤]][[RZ,≤]]

∼= M [[x−1, x]]R[[x−1,x]], the Laurent
series extension of MR. If S is a commutative monoid and ≤ is the
trivial order, then [[MS,≤]][[RS,≤]]

∼= M [S]R[S], the monoid extensions of

S over MR. Further examples are given in [2].

2. Main results

Recall from [4] that a strictly ordered monoid (S,≤) is said to be a
positively strictly ordered if 0 ≤ s for all s ∈ S. Note that in this case,
(φf)(0) = φ(0)f(0) for any φ ∈ [[MS,≤]] and any f ∈ [[RS,≤]]. The
following result appeared in [3, Lemma 5.2].

Lemma 2.1. Let R be a ring, (S,≤) a positively strictly ordered monoid
and f ∈ [[RS,≤]]. Then f ∈ U([[RS,≤]]) if and only if f(0) ∈ U(R).

Following [1], a monoid S is said to be a chain if the ideals of S are
totally ordered by set inclusion, i.e., for any s, t ∈ S, either s+S ⊆ t+S
or t+ S ⊆ s+ S. The following result appeared in [4, Lemma 4].
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Lemma 2.2. Let (S,≤) be a positively strictly ordered monoid. If S is
a chain monoid, then (S,≤) is a totally ordered monoid.

Remark 2.3. The example of the monoid S = (N, ·) shows that the
converse of Lemma 2.2 is false.

Lemma 2.4. Let M be a right R-module and (S,≤) a strictly ordered
monoid. Assume that W = {φ ∈ [[MS,≤]] | φ(0) = 0}. If (S,≤) is
positive, then W is an [[RS,≤]]-submodule of [[MS,≤]].

Proof. Let φ ∈W , f ∈ [[RS,≤]]. Then

(φf)(0) =
∑

(u,v)∈X0(φ,f)

φ(u)f(v) = φ(0)f(0) = 0.

This means that φf ∈ W . Now it is easy to see that W is an [[RS,≤]]-
submodule of [[MS,≤]]. �

Now, we are ready to prove the main result of our discussion.

Theorem 2.5. Let (S,≤) be a positively strictly ordered monoid and M
a nonzero right R-module. Then the following conditions are equivalent:
(1) [[MS,≤]] is a uniserial right [[RS,≤]]-module.
(2) M is a simple right R-module and S is a chain monoid.
(3) For any 0 6= ϕ ∈ [[MS,≤]], there exists an s ∈ S such that ϕ[[RS,≤]] =
[[MS,≤]]es.

Proof. (1)=⇒(2). First we show that S is a chain monoid. Let s, t ∈ S.
For any 0 6= m ∈ M , since [[MS,≤]] is a uniserial right [[RS,≤]]-module,
without loss of generality, we can assume dsm[[RS,≤]] ⊆ dtm[[RS,≤]]. Then
there exists an f ∈ [[RS,≤]] such that dsm = dtmf . Thus from

0 6= m = dsm(s) = (dtmf)(s) =
∑

(u,v)∈Xs(dtm,f)

dtm(u)f(v),

it follows that t+ v = s for some v ∈ S. Consequently s ∈ t+ S. Hence
S is a chain monoid.

Next we show that M is a simple right R-module. Let 0 6= m ∈ M .
We will show that M = mR. Set A = d0m[[RS,≤]]. Then for any φ ∈ A,
φ = d0mf for some f ∈ [[RS,≤]]. Thus, for any s ∈ S, φ(s) = (d0mf)(s) =
mf(s) ∈ mR. Let

B = {φ ∈ [[MS,≤]]|φ(0) = 0}.
Then B is a submodule of [[MS,≤]] by Lemma 2.4 and B ⊆ A since
[[MS,≤]] is a uniserial right [[RS,≤]]-module and 0 6= m ∈M . Let 0 6= s ∈



Uniserial modules of generalized power series 951

S and 0 6= n ∈M . Then dsn ∈ B, and so dsn ∈ A. Hence n = dsn(s) ∈ mR.
This implies that M = mR. Hence M is a simple right R-module.

(2)=⇒(3). Since (S,≤) is a positively strictly ordered monoid and
S is a chain monoid, (S,≤) is strictly totally ordered by Lemma 2.2.
Hence, for any 0 6= φ ∈ [[MS,≤]], supp(φ) contains a minimal element,
which we denote by π(φ).

Let ϕ be a nonzero element of [[MS,≤]]. Assume that π(ϕ) = s0. We
will show that ϕ[[RS,≤]] = [[MS,≤]]es0 .

First we show that there exists a ϕ′ ∈ [[MS,≤]] such that ϕ = ϕ′es0 .
Since (S,≤) is a strictly totally ordered monoid, it is easy to see that
for the element ϕ′ : S −→ M defined via ϕ′(s) = ϕ(s + s0), we have
ϕ′ ∈ [[MS,≤]].

Let s0 ≤ s. Since (S,≤) is a positively ordered chain monoid, there
exists s′ ∈ S such that s = s0 + s′. Otherwise, s0 = s + v for some
0 6= v ∈ S and we get s+v = s0 ≤ s. Since 0 < v we get a contradiction.
Hence

ϕ(s) = ϕ(s0 + s′) = ϕ′(s′) = ϕ′(s′)es0(s0)

=
∑

(u,v)∈Xs′+s0
(ϕ′,es0 )

ϕ′(u)es0(v) = (ϕ′es0)(s′ + s0) = (ϕ′es0)(s).

This means that ϕ = ϕ′es0 .
Next we show that ϕ[[RS,≤]] = [[MS,≤]]es0 . Let m0 = ϕ′(0). Since M

is a simple right R-module, M = m0R. Thus [[MS,≤]] = [[(m0R)S,≤]] =
d0m0

[[RS,≤]], and, for any s ∈ supp(ϕ′), there exists an rs ∈ R such that
ϕ′(s) = m0rs. Define f : S −→ R via:

f(s) =


1, s = 0,

rs, 0 6= s ∈ supp(ϕ′),

0, s /∈ supp(ϕ′).

Clearly f ∈ [[RS,≤]]. For any s ∈ S,

ϕ′(s) = m0rs = m0f(s) =
∑

(u,v)∈Xs(d0m0
,f)

d0m0
(u)f(v) = (d0m0

f)(s).

Thus d0m0
f = ϕ′. Since f(0) = 1, by Lemma 2.1, f ∈ U([[RS,≤]]). Hence

[[MS,≤]]es0 = d0m0
[[RS,≤]]es0 = d0m0

f [[RS,≤]]es0

= d0m0
fes0 [[RS,≤]] = ϕ′es0 [[RS,≤]]

= ϕ[[RS,≤]].
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(3)=⇒(1). First we show that S is a chain monoid. Let u 6= v ∈ S.
Fix any 0 6= m ∈M . Then 0 6= dum + dvm ∈ [[MS,≤]]. By (3), there exists
an s ∈ S such that

dum + dvm = φes and dsm = (dum + dvm)f

for some φ ∈ [[MS,≤]] and some f ∈ [[RS,≤]]. From 0 6= m = (dum +
dvm)(v) = (φes)(v) it follows that v ∈ supp(φes) ⊆ s + S and a similar
argument shows that u ∈ s+ S. On the other hand,

0 6= m = dsm(s) = [(dum + dvm)f ](s) = (dumf)(s) + (dvmf)(s),

and thus (dumf)(s) 6= 0 or (dvmf)(s) 6= 0. In the first case, we obtain
s ∈ u+S and so v ∈ u+S follows. Similarly, in the second case we have
u ∈ v + S. Hence S is a chain monoid.

Secondly, we show that [[MS,≤]] is a uniserial right [[RS,≤]]-module.
Let 0 6= ϕ,ψ ∈ [[MS,≤]]. By (3), there exist s, t ∈ S such that ϕ[[RS,≤]] =
[[MS,≤]]es, ψ[[RS,≤]] = [[MS,≤]]et. Since S is a chain, s ∈ t + S or
t ∈ s+ S. Assume that s = t+ u, u ∈ S. Then

ϕ[[RS,≤]] = [[MS,≤]]es = [[MS,≤]]euet ≤ [[MS,≤]]et = ψ[[RS,≤]].

Hence, [[MS,≤]] is a uniserial right [[RS,≤]]-module. �

Let M be a right R-module. Recall that M is a serial module if M is a
direct sum of uniserial modules. A ring R is called a right (respectively,
left) serial ring, if RR (respectively, RR) is a serial module. A ring R is
called a serial ring, if R is both a right and a left serial ring.

Lemma 2.6. Let M be a right R-module, (S,≤) a positively strictly
ordered monoid and S a chain monoid. If M is a semisimple artinian
module, then [[MS,≤]] is a serial right [[RS,≤]]-module.

Proof. Assume that M = M1 ⊕M2 ⊕ · · · ⊕Mn, where Mi is a simple

right R-module, i = 1, 2, . . . , n, n ∈ N. Then [[MS,≤]] ∼= [[MS,≤
1 ]] ⊕

[[MS,≤
2 ]] ⊕ · · · ⊕ [[MS,≤

n ]]. By Theorem 2.5, [[MS,≤
i ]] is a uniserial right

[[RS,≤]]-module. Therefore, [[MS,≤]] is a serial right [[RS,≤]]-module. �

Lemma 2.7. Let R be a ring and (S,≤) a strictly totally ordered monoid.
Then R is a semiprime ring if and only if [[RS,≤]] is a semiprime ring.

Proof. =⇒) Assume the contrary. Then there exists a nonzero f ∈
[[RS,≤]] such that ([[RS,≤]]f [[RS,≤]])2 = 0. Thus f [[RS,≤]]f = 0. Let
π(f) = s0. Then f(s0)Rf(s0) = 0. Set I = Rf(s0)R. Then I is a
nonzero ideal of R and I2 = 0, which is contradict to the fact that R is
a semiprime ring.
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⇐=) Let I be an ideal of ring R with I2 = 0. Then [[IS,≤]] is an ideal
of the ring [[RS,≤]]. For any f, g ∈ [[IS,≤]] and any s ∈ S,

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v) = 0.

Thus fg = 0, which implies that [[IS,≤]]2 = 0. Hence [[IS,≤]] = 0
since [[RS,≤]] is a semiprime ring. Consequently, I = 0, and so R is a
semiprime ring. �

Theorem 2.8. Let R be a ring, (S,≤) a positively strictly ordered
monoid and S a chain monoid. Then the following are equivalent:
(1) R is a semisimple artinian ring,
(2) [[RS,≤]] is a right serial ring,
(3) [[RS,≤]] is a serial semiprime ring.

Proof. (3)=⇒(2) is obvious.
(1)=⇒(3). Note that semisimple artinian rings are semiprime rings.

Thus by Lemma 2.2 and Lemma 2.7, [[RS,≤]] is a semiprime ring. On
the other hand, by Lemma 2.6 and its left version, [[RS,≤]] is a serial
ring.

(2)=⇒(1). Since right serial rings are right finite-dimensional semiper-
fect rings, [[RS,≤]] is a right finite-dimensional semiperfect ring. Thus
R, as a quotient ring of [[RS,≤]], is a right finite-dimensional semiperfect
ring. Hence, there exists a complete set {e1, e2, . . . , en} of pairwise or-
thogonal primitive idempotents in R such that R = e1R+e2R+· · ·+enR.
Thus

[[RS,≤]] ∼= [[(e1R)S,≤]]⊕ [[(e2R)S,≤]]⊕ · · · ⊕ [[(enR)S,≤]]

= ce1 [[RS,≤]]⊕ ce2 [[RS,≤]]⊕ · · · ⊕ cen [[RS,≤]],

and cei is a primitive idempotent of [[RS,≤]], for all i = 1, 2, . . . , n. In
fact, if there exist f2 = f , g2 = g ∈ [[RS,≤]] such that cei = f + g, then
ei = cei(0) = f(0) + g(0), and f(0)2 = f(0), g(0)2 = g(0). Since ei is
primitive, either f(0) = 0 or g(0) = 0. If f(0) = 0, then f = 0. In fact,
if f 6= 0, then supp(f) is a nonempty set. Set π(f) = s. Since (S,≤) is
a positively strictly ordered monoid, Xs(f, f) = {(0, s), (s, 0)}. Thus

0 6= f(s) = f2(s) =
∑

(u,v)∈Xs(f,f)

f(u)f(v) = 0,
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which is a contradiction. Hence cei [[R
S,≤]] is a uniserial right [[RS,≤]]-

module, i = 1, 2, . . . , n. Thus, by Theorem 2.5, each eiR is a simple
right R-module. Therefore, R is a semisimple artinian ring. �
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