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NEWTON-PRODUCT INTEGRATION FOR A

TWO-PHASE STEFAN PROBLEM WITH KINETICS

B. BABAYAR-RAZLIGHI, K. IVAZ∗, M. R. MOKHTARZADEH AND A. N.
BADAMCHIZADEH

Communicated by Mohammad Asadzadeh

Abstract. We reduce the two phase Stefan problem with kinetic
to a system of nonlinear Volterra integral equations of second kind
and apply Newton’s method to linearize it. We provide the product
integration solution of the linear form. Sufficient conditions for con-
vergence of the numerical method are given and their applicability
is illustrated with an example.

1. Introduction

We consider the modified two-phase Stefan problem in one spatial
variable

(1.1) ut = uxx − γu, x 6= s(t),

(1.2) u(x, 0) = u0(x) ≥ 0,

(1.3) g(u(s(t), t)) = V (t), t > 0,

(1.4) [ux(s(t), t)] := u+x (s(t), t)− u−x (s(t), t) = V (t), t > 0.
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Here u(x, t) is temperature and γ ≥ 0 is damping term due to the
volumetric heat losses. The two boundary conditions above determine
the problem and allow us to find the free boundary denoted by s(t), and
V (t) = ṡ(t) is the interface velocity.
Assume that g(t) is monotonically decreasing differentiable function on

[0,∞) with |g′ | ≤ C and satisfying

−V0 ≤ g(t) ≤ −v0 for some v0 > 0, V0 > 0.

The free-boundary problem (1.1)-(1.4) arises naturally as a mathemati-
cal model of a variety of exothermic phase transition type processes, such
as solid combustion [7] also known as Self-propagating High-temperature
Synthesis or SHS [8], solidification with undercooling [6], laser induced
evaporation [5], rapid crystallization in thin films [10] and etc. These
processes are characterized by production of heat at the interface, and
their dynamics is determined by the feedback mechanism between the
heat release due to the kinetics and the heat dissipation by the medium.
In addition to its theoretical interest, SHS has industrial applications as
a method of synthesizing certain technologically advanced materials for
high-temperature semiconductors, nuclear safety devices, fuel cells etc.
(see [8], [11] and also [12] for a popular expositions). SHS propagates
through mixtures of fine elemental reactant powders (e.g., Ti + C, Ti +
2B), resulting in the synthesis of compounds.
In Section 2 a local existence condition is obtained. In Section 3 the
Stefan problem with kinetics reduced to a system of nonlinear Volterra
integral equations of second kind and Newton’s method is applied to lin-
earize it. A convergence analysis of Newton’s method for the problem is
provided in the Subsections of Section 3. Product integration solution of
the linear form is obtained in Section 4. Convergence of product integra-
tion method is given in Subsection 4.1. Finally in Section 5, numerical
results of test problem solved by the proposed method is reported.

2. Existence and Uniqueness of Local Classical Solutions

A short-time solution of the free boundary problem (1.1)-(1.4) will be
sought in the form of a superposition of heat potentials
(2.1)

u(x, t) = e−γt
∫ ∞
−∞

G(x, ξ, t)u0(ξ)dξ−
∫ t

0
G(x, s(τ), t−τ)e−γ(t−τ)V (τ)dτ,
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where G is the fundamental solution of the heat equation

G(x, ξ, t− τ) = exp

[
−(x− ξ)2

4(t− τ)

]
[4π(t− τ)]−

1
2 .

Taking the limit of (2.1) as x → s(t) and using the kinetics condition
(1.3) we obtain an integral equation in terms of V only [4]

(2.2) V = K(V ),

where the nonlinear operator K is defined as follows

K(V )(t) = g

{
e−γt

∫ ∞
−∞

G(s(t), ξ, t)u0(ξ)dξ

−
∫ t

0
G(s(t), s(τ), t− τ)e−γ(t−τ)V (τ)dτ

}
,

and here as usual,

s(t) =

∫ t

0
V (τ)dτ.

Now u(x, t), V (t) form a classical solution of (1.1)-(1.4) if

(i) u(x, t) and V (t) are continuous for t ≥ 0;
(ii) uxx and ut are continuous for x 6= s(t), t > 0;

(iii) equations (1.1)-(1.4) are satisfied.

The following theorem is stated in [4]:

Theorem 2.1. Suppose that the kinetic function g satisfies the following
assumptions:
(A1) g(u) is a continuously differentiable, monotone decreasing, negative
function on (0,∞) with g(0) = −v0 for some velocity −v0 < 0;
(A2) g(u) is sublinear: limu→∞ g(u)/u = 0;
and that the initial data u0(x) ≥ 0 are bounded.
Then there exists one and only one classical solution u(x, t) > 0 and
V (t) of the free interface problem (1.1)-(1.4). This solution is uniformly
bounded for all t > 0.

3. Application of the Newton’s Method

For applying Newton’s method to linearize the problem (2.2), define

(3.1) S :=
{
V
∣∣V ∈ C[0, b]

}
,
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for some b > 0. Then S is a Banach space with the maximum norm of
C[0, b]. Introducing an operator T : S → S through the formula

(3.2) T (V ) = V −K(V ), V ∈ S.

Problem (2.2) can be written in the form

(3.3) T (V ) = 0.

Now Newton’s method for finding roots of (3.3) is

Vn+1 = Vn − [T ′(Vn)]−1T (Vn),

where n = 0, 1, 2 · · · . Putting

δn+1 := Vn+1 − Vn,

gives the following linear system

(3.4) [T ′(Vn)]δn+1 = −T (Vn).

To set the numerical process it is sufficient to evaluate derivative of T .
Let U, V ∈ C[0, b], then

(3.5)

T ′(V )U = lim
h→0

h−1[T (V + hU)− T (V )]

=U − lim
h→0

h−1[K(V + hU)−K(V )]

=U − lim
h→0

h−1
[
g

{
e−γt

∫ ∞
−∞

G((s+ hσ)(t), ξ, t)u0(ξ)dξ

−
∫ t

0
G((s+ hσ)(t), (s+ hσ)(τ), t− τ)e−γ(t−τ)(V + hU)(τ)dτ

}
−g
{
e−γt

∫ ∞
−∞

G(s(t), ξ, t)u0(ξ)dξ

−
∫ t

0
G(s(t), s(τ), t− τ)e−γ(t−τ)V (τ)dτ

}]
= U − lim

h→0
h−1[g(α(V + hU ; t))− g(α(V ; t))]

= U − lim
h→0

h−1[∆αg′(α1)]

= U − g′(α(V ; t)) lim
h→0

h−1∆α,
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where

α(V ; t) = e−γt
∫ ∞
−∞

G(s(t), ξ, t)u0(ξ)dξ(3.6)

−
∫ t

0
G(s(t), s(τ), t− τ)e−γ(t−τ)V (τ)dτ,

∆α(t) = α(V + hU ; t)− α(V ; t), σ(t) =

∫ t

0
U(τ)dτ,

α1 = θα(V + hU ; t)− (1− θ)α(V ; t), for some θ ∈ (0, 1).

The last term in (3.5) is

(3.7)

lim
h→0

h−1∆α

= lim
h→0

h−1
[
e−γt

∫ ∞
−∞
{G((s+ hσ)(t), ξ, t)−G(s(t), ξ, t)}u0(ξ)dξ

−
∫ t

0
{G((s+ hσ)(t), (s+ hσ)(τ), t− τ)(V + hU)(τ)

−G(s(t), s(τ), t− τ)V (τ)}e−γ(t−τ)dτ
]

= e−γt
∫ ∞
−∞

lim
h→0

h−1δG(ξ, t)u0(ξ)dξ

−
∫ t

0
lim
h→0

h−1∆G(t, τ)V (τ)e−γ(t−τ)dτ

−
∫ t

0
G(s(t), s(τ), t− τ)U(τ)e−γ(t−τ)dτ,

where

lim
h→0

h−1δG(ξ, t) := lim
h→0

h−1{G((s+ hσ)(t), ξ, t)−G(s(t), ξ, t)}

= σ(t)
ξ − s(t)

2t
G(s(t), ξ, t),

lim
h→0

h−1∆G(t, τ) := lim
h→0

h−1
{
G((s+ hσ)(t), (s+ hσ)(τ), t− τ)

−G(s(t), s(τ), t− τ)
}

= (σ(τ)− σ(t))
s(t)− s(τ)

2(t− τ)
G(s(t), s(τ), t− τ).
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Substitution the above results in (3.7) gives

(3.8) lim
h→0

h−1∆α = σ(t)I1(V ; t) + I2(V,U ; t) + I3(V,U ; t),

where

I1(V ; t) =
e−γt

2t

∫ ∞
−∞

(ξ − s(t))G(s(t), ξ, t)u0(ξ)dξ,

I2(V,U ; t) = −
∫ t

0
lim
h→0

h−1∆G(t, τ)V (τ)e−γ(t−τ)dτ

=

∫ t

0
U(τ)

[∫ τ

0

s(t)− s(τ̂)

2(t− τ̂)
G(s(t), s(τ̂), t− τ̂)V (τ̂)e−γ(t−τ̂)dτ̂

]
dτ,

I3(V,U ; t) = −
∫ t

0
U(τ)G(s(t), s(τ), t− τ)e−γ(t−τ)dτ.

Using (3.5) and (3.8) gives
(3.9)
T ′(V )U = U(t)− g′(α(V ; t))(σ(t)I1(V ; t) + I2(V,U ; t) + I3(V,U ; t)).

3.1. Convergence of Newton’s Method. The operator T in (3.2)
satisfies the hypothesis of the following theorem.

Theorem 3.1. (Kantorovich) Let X,Y be two Banach spaces and sup-
pose that
(a) T : D(T ) ⊆ X → Y is differentiable on an open convex set D(T ),
and the derivative is Lipschitz continuous

‖T ′(U)− T ′(V )‖ ≤ L‖U − V ‖ ∀U, V ∈ D(T ).

(b)For some V0 ∈ D(T ), [T ′(V0)]
−1 exists and is a continuous operator

from X to Y , and such that h = acL ≤ 1/2 for some a ≥ ‖[T ′(V0)]−1‖
and c ≥ ‖[T ′(V0)]−1T (V0)‖. Denote

t∗ =
1− (1− 2h)1/2

aL
, t∗∗ =

1 + (1− 2h)1/2

aL
.

(c) V1 is chosen so that B(V1, r) ⊆ D(T ), where r = t∗ − c.
Then the equation (3.3) has a solution V ∗ ∈ B(V1, r) and the solution is
unique in B(V0, t

∗∗) ∩D(T ); the sequence {Vn}, generated by Newton’s
method, converges to V ∗, and the error estimate is given by

‖Vn − V ∗‖ ≤
(1− (1− 2h)1/2)2

n

2naL
, n = 0, 1, ....
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Proof. See Theorem 4.4.2 [1]. �

By choosing D(T ) = S in (3.1), it is clear that condition (c) is au-
tomatically satisfied. For condition (b), if we let V0 ∈ S such that
‖T (V0)‖ ≤ 1, then

‖[T ′(V0)]−1(T (V0))‖ ≤ ‖[T ′(V0)]−1‖ ≤ a.
Thus putting c = a; it is sufficient to show that a2L ≤ 1/2. By (3.9)
one can write

T ′(V ) = I −A(V ),

where

A(V )U = g′(α(V ; t))(σ(t)I1(V ; t) + I2(V,U ; t) + I3(V,U ; t)).

If δ := ‖A(V0)‖ < 1, then from the geometric series theorem [1], [T ′(V0)]
−1

is a linear continuous operator on S, and ‖[T ′(V0)]−1‖ ≤ 1
1−δ . Take

a = 1
1−δ . Then it follows that for condition (b) it is sufficient to show

that

(1) ‖T (V0)‖ ≤ 1 is valid for some V0 ∈ S and g ∈ C[0,∞),
(2) δ := ‖A(V0)‖ < 1 is valid for some b > 0, V0 ∈ S,
(3) L

(1−δ)2 ≤
1
2 is valid for some b > 0.

These plus condition (a) will prove the Theorem. The proofs of (1), (2)
and (3) are given on 3.3-3.5.

3.2. The Derivative Operator is Lipschitz Continuous. It is suf-
ficient to show that for all b > 0 there exists L = L(b) > 0 such that for

V, Ṽ ∈ C[0, b],

‖T ′(V )− T ′(Ṽ )‖ ≤ L‖V − Ṽ ‖,
where all norms are the standard norm in C[0, b]. Let V̂ ∈ C[0, b] and

‖V̂ ‖ ≤ 1 be arbitrary. Then

‖(T ′(V )− T ′(Ṽ ))V̂ ‖ = ‖(I −AV )V̂ − (I −AṼ )V̂ ‖ = ‖(AV −AṼ )V̂ ‖.
Thus it is sufficient to show that

‖A(V )V̂ −A(Ṽ )V̂ ‖ ≤ L‖V − Ṽ ‖.

Let α = α(V ; t), β = β(V, V̂ ; t), α̃ = α(Ṽ ; t), β̃ = β(Ṽ , V̂ ; t), where α is
defined in (3.6) and

β(V, V̂ ; t) = ŝ(t)I1(V ; t) + I2(V, V̂ ; t) + I3(V, V̂ ; t), ŝ(t) =

∫ t

0
V̂ (τ)dτ.
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Since g′ is bounded and Lipschitz continuous, hence

∃C1 > 0, ∃L1 > 0 such that |g′(x)| ≤ C1, |g′(x)− g′(y)| ≤ L1|x− y|,
∀x, y ∈ [0,∞).

Thus

(3.10)

|A(V )V̂ −A(Ṽ )V̂ | = |g′(α)β − g′(α̃)β̃|
= |g′(α)β − g′(α)β̃ + g′(α)β̃ − g′(α̃)β̃|
≤ |g′(α)||β − β̃|+ |β̃||g′(α)− g′(α̃)|
≤ C1|β − β̃|+ L1|β̃||α− α̃|.

The following gives some upper bounds for the right hand side quantities
in (3.10).

|α− α̃| =∣∣∣∣e−γt ∫∞−∞(s(t)− s̃(t))∂G∂x (s(t), ξ, t)u0(ξ)dξ

−
∫ t
0

[
G(s(t)− s(τ), 0, t− τ)V (τ)−G(s(t)− s(τ), 0, t− τ)Ṽ (τ)

+G(s(t)− s(τ), 0, t− τ)Ṽ G(s̃(t)− s̃(τ), 0, t− τ)Ṽ (τ)
]

e−γ(t−τ)dτ

∣∣∣∣
≤ e−γt√

4πt
|s(t)− s̃(t)|

∫∞
−∞

ξ−s(t)
2t exp

{
− (s(t)−ξ)2

4t

}
u0(ξ)dξ

+
∫ t
0 e
−γ(t−τ)G(s(t)− s(τ), 0, t− τ)|V (τ)− Ṽ (τ)|dτ

+
∫ t
0 e
−γ(t−τ)|Ṽ (τ)||G(s(t)− s(τ), 0, t− τ)−G(s̃(t)

−s̃(τ), 0, t− τ)|dτ

≤
(√

t
πe
−γt‖u0‖+ Erf(

√
γt)

2
√
γ

)
‖V − Ṽ ‖

+ ‖Ṽ ‖√
4π
‖V − Ṽ ‖

∫ t
0e
−γ(t−τ)

∣∣∣∣ s(t,τ)√
4(t−τ)

∣∣∣∣ exp

{
−
∣∣∣∣ s(t,τ)√

4(t−τ)

∣∣∣∣2
}
dτ

≤
(√

t
πe
−γt‖u0‖+ Erf(

√
γt)

2
√
γ + ‖Ṽ ‖

γ
√
8eπ

(1− e−γt)
)
‖V − Ṽ ‖

=: B(t)‖V − Ṽ ‖,
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where s (t) and s(t, τ) are intermediate values obtained from the mean
value theorem. Similar evaluations yield

(3.11)

|β − β̃| ≤ |ŝ(t)[I1(V ; t)− I1(Ṽ ; t)]|+ |I2(V, V̂ ; t)− I2(Ṽ , V̂ ; t)|
+|I3(V, V̂ ; t)− I3(Ṽ , V̂ ; t)|

≤ (B1 +B2 +B3)(t)‖V − Ṽ ‖,

where

B1(t) =
‖u0‖

2
e−γt

[(
1

2
√
eπ

exp

{
−s(t)2

8t

}
+ 1

)
t

+2
√

2πs(t)
√
tErf

(
s(t)√

8t

)
+ |s̃(t)|

√
2t

e

]
,

B2(t) =
1− e−γt

γ
√

8eπ
+
‖Ṽ ‖

8γ
√
γπ

(√
πErf(

√
γt)− 2e−γt

√
γt
)
,

B3(t) =
1− e−γt

γ
√

8eπ
.

Thus (3.10)-(3.11) imply ‖AV −AṼ ‖ ≤ L(b)‖V − Ṽ ‖ where

L(t) := C1(B1 +B2 +B3)(t) + L1|β̃|B(t),

and

(3.12) lim
t→0

L(t) = 0.

3.3. ‖T (V0)‖ ≤ 1 is valid for some V0 ∈ S and g ∈ C[0,∞). If V0 ≡ 0
then s ≡ 0. On the other hand the function −g is monoton increasing
and for t ∈ [0, b]

T (0)(t) = K(0)(t) = −g
(
e−γt√

4πt

∫ ∞
−∞

exp

{
−ξ2

4t

}
u0(ξ)dξ

)
≤ −g

(
e−γt‖u0‖

)
≤ −g

(
‖u0‖

)
.

Therefor, ‖T (0)‖ ≤ −g
(
‖u0‖

)
, and a sufficient condition for ‖T (0)‖ ≤ 1

is

−g
(
‖u0‖

)
≤ 1.
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3.4. δ := ‖A(V0)‖ < 1 is valid for some b > 0, V0 ∈ S. For V0 ≡ 0, let
δ := ‖A(0)‖ < 1. Put b > 0, V ∈ C[0, b], and ‖V ‖ ≤ 1. Using definition
of α, β, I1, I2, I3 from Section 3 it follows

|A(0)V | (t) =
∣∣∣g′(α(0; t))β(0, V ; t)

∣∣∣
≤ C1

(
|s(t)I1(0; t)|+ |I2(0, V ; t)|+ |I3(0, V ; t)|

)
≤ C1

(
4‖u0‖te−γt +

Erf(
√
γt)

2
√
γ

)
=: C1B4(t).

Since limt→0B4(t) = 0, then there exists b > 0 such that
δ := ‖A(V0)‖C[0,b] < 1.

3.5. L
(1−δ)2 ≤

1
2 is valid for some b > 0. This is a consequence of

equation (3.12).

4. The Product Integration Technique Applied to One Step of
Newton’s Method

The weakly singular integral equation (3.4) will be solved by the
method described in [9]. This method allows us to overcome the dif-
ficulty caused by the poor behavior of the solution U(t) at the initial
point t = 0.
Given a relatively short interval [0, b] we first solve the problem

(4.1) U(t) = F (t) +

∫ t

0
K(t, τ)U(τ)dτ t ∈ [0, b],

by a Nystrom-type method based upon a whole-interval product inte-
gration rule of interpolation type, witch integrates exactly the kernel

p(t, τ). Here K(t, τ) = p(t, τ)K̃(t, τ) where p(t, τ) is weakly singular

kernel and K̃(t, τ) is continuous.
After the initial interval, the bad behavior of the derivative of U is of
less significance. Now by a step-by-step method the following can be
solved

U(t) = U1(t) +

∫ t

b
K(t, τ)U(τ)dτ t ∈ [b,∞),

with

U1(t) = F (t) +

∫ b

0
K(t, τ)U(τ)dτ.
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Since the computation of U1(t) depends on the starting approximation
of U(t), t ∈ [0, b], the two methods have to be regarded as paired.
Now a Nystrom-type method is used to solve equation (4.1) numerically.
Having chosen N + 1 distinct points {tn}Nn=0 in the interval [0, b], we
collocate the equation (4.1) at the nodes {tn}Nn=0

U(tn) = F (tn) +

∫ tn

0
K̃(tn, τ)p(tn, τ)U(τ)dτ n = 0, 1, 2, ..., N.

Substituting Lagrange interpolation polynomial

LN (f ; t) =

N∑
j=0

lN,j(t)f(tj),

we approximate U(τ). The following algorithm is set up

(4.2) UN,n = F (tn) +

∫ tn

0

N∑
j=0

lN,j(τ)UN,jK̃(tn, τ)p(tn, τ)dτ,

from now on where n = 0, 1, 2, ..., N . The equation (4.2) is equivalent to

(4.3) UN,n = F (tn) +
N∑
j=0

ωj(tn)UN,j ,

where

ωj(t) =

∫ t

0
lN,j(τ)p(t, τ)K̃(t, τ)dτ.

By solving the linear system (4.3) we obtain UN (t) as a Nystrom ap-
proximation for U(t):

UN (t) = F (t) +
N∑
j=0

ωj(t)UN,j .

Now we are ready to give the convergence of product integration method.

4.1. Convergence of Product Integration for Solving Weakly
Singular Integral Equation. In convergence analysis we examine the
linear test equation

(4.4) U(t) = F (t) +

∫ t

0
p(t, τ)U(τ)dτ, t ∈ [0, b].

And assume that the forcing function F ∈ C[0, b] and p is defined by
p(t, τ) = (t − τ)−α, α ∈ (0, 1) or p(t, τ) = log |t − τ |. Then the test
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equation (4.4) has a unique solution U ∈ C[0, b] that may be expected
to have unbounded derivatives at the end point t = 0.
If for a given mesh {tj}Nj=0 we apply the method of Section 4 to the test

equation (4.4) to obtain UN (t) in the following Nystrom interpolant as
approximate solution

UN (t) = F (t) +
N∑
j=0

ωj(p; t)UN (tj),

where

ωj(p; t) =

∫ t

0
p(t, τ)lN,j(τ)dτ.

In order to examine the uniform convergence of the approximate solution
UN (t) to the exact solution U(t) of (4.4), note that

U(t)− UN (t) =

N∑
j=0

ωj(p; t){U(tj)− UN (tj)}+ tN (p, U, t).

Where tN (p, U, t) is the local truncated error defined by

tN (p, U, t) :=

∫ t

0
p(t, τ)U(τ)dτ −

N∑
j=0

ωj(p; t)U(tj).

Hence we obtain

(4.5) ‖U − UN‖∞ ≤
∥∥(I −AN )−1

∥∥
∞ ‖tN‖∞ ,

where AN is the linear operator defined by

(4.6)

{
AN : C[0, b]→ C[0, b],

ANU(t) =
∑N

j=0 ωj(p; t)U(tj), U ∈ C[0, b], t ∈ [0, b].

Convergence properties of the underling product quadrature rule is pro-
vided by:

Lemma 4.1. Let {pi}Ni=1 be a sequence of orthogonal polynomials on
[−1, 1] with respect to the weight function ω(t). Then {qi}Ni=1 is a se-
quence of orthogonal polynomials on [a, b] with respect the weight func-
tion ω̃(t) where

qi(t) = pi(
2

b− a
[t− b+ a

2
]), t ∈ [a, b],

ω̃(t) = ω(
2

b− a
[t− b+ a

2
]), t ∈ [a, b].
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Proof. Put x = 2
b−a [t− b+a

2 ]. Then for i, j ∈ {1, ..., N} and i 6= j∫ b

a
qi(t)qj(t)ω̃(t)dt =

b− a
2

∫ 1

−1
pi(x)pj(x)ω(x)dx = 0.

�

Theorem 4.2. Let {tj}Nj=0 be the zeros of the (N + 1)st-degree member

of a set of polynomials that are orthogonal on [0, b] with respect to the
weight function

(4.7) ω(t) = u(
2t

b
− 1)(2− 2t

b
)α(

2t

b
)β, −1 < α ≤ 3

2
, β > −1

2
.

Here u(t) is positive and continuous on [0, b] and the modulus of con-

tinuity ϕ of u satisfies
∫ 1
0 ϕ(u, δ)dδδ < ∞. Let LN (f ; t) denote the in-

terpolating polynomial of degree ≤ N that coincides with the function
f at the nodes {tj}Nj=0. Then, for every vector function f containing

only endpoint singularity of the type sσ, σ > −1 (not an integer), and in
particular for every function f ∈ C[0, b] there holds

lim
N→∞

‖tN (p, f, t)‖∞ = 0.

More particularly, we have the bounds

(4.8)
∥∥∥tN (|t− τ |−

1
2 , f, t)

∥∥∥
∞

= O{(N + 1)−2σ−1 log(N + 1)}.

Proof. See [9, Theorem 1]. Apply Lemma 4.1 for balance of interval of
orthogonality. The bound (4.8) is an immediate consequence of Theorem
5 in [3]. �

Now we investigate the behavior of the first term
∥∥(I −A)−1

∥∥
∞ on

the right hand side of (4.5).

Theorem 4.3. Let the operator AN be defined as in (4.6) and the nodes
{tj}Nj=1 chosen as in Theorem 4.2. Then for all N sufficiently large,
there exists a constant C > 0 independent of N such that∥∥(I −A)−1

∥∥
∞ ≤ C.

Proof. Conditions of Lemmas 1,2 of [9] are satisfied and hence by The-
orem 2 of [9] the result follows. �

Theorem 4.4. Let U be the exact solution of the equation (4.4). Let UN
be the approximate solution obtained by discretizing the integral term of
(4.4) by a product quadrature rule of interpolatory type constructed on
a set of distinct nodes {tj}Nj=0. If the nodes {tj}Nj=0 are the zeros of the
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(N + 1)st-degree member of a set of polynomials that are orthogonal on
[0, b] with respect to the weight function (4.7) with −1

2 < α, β < 3
2 . Then

UN converges uniformly to U . Moreover, the rate of convergence of UN
to U coincides with that of the basic quadrature rule to approximate the
integral term of (4.4).

The proof follows immediately from the estimate (4.5) together with
Theorems 4.2 and 4.3. The bound (4.8) supply an estimate of the rate
of convergence.
Another approach which is based on compactness of sequence AN , is
discussed in [2]

5. Numerical Examples and Discussion

Consider the following integral equation
(5.1)

V (t)=g

(
f(t)− 1√

4π

∫ t

0

V (τ)√
t− τ

exp

{
−(s(t)− s(τ))2

4(t− τ)
− γ(t− τ)

}
dτ

)
,

where

f(t) = − log(2− 2α)− α√
α2 + 4γ

erf
(√

(α2/4 + γ)t
)
,

g(u) =
1

2
e−u − 1,

and γ ≥ 0 is the constant value in (1.1), 1/2 < α < 1 and as usual

s(t) =
∫ t
0 V (τ)dτ . Equation (5.1) has the exact solution V (t) = −α.

This equation is equivalent with (1.1)-(1.4) where u0 satisfies

exp
(
−
√

(α2/4 + γ)t
)

√
4πt

∫ ∞
−∞

exp

{
−ξ

2

4t
− 1

2
αξ

}
u0(ξ)dξ = f(t).

In numerical result we put b = 0.01, α = 0.6 and V0(t) = −0.54, t ∈
[0, b]. The nodal points are zeros of p6(t) = 1 − 4200t + 42 × 105t2 −
168× 107t3 + 315× 109t4− 2772× 1010t5 + 924× 1012t6, where {pn}∞n=0

are orthogonal polynomials on [0, b] with respect to the weight function
ω(t) = 1. The initial relative error at all points is |(V −V0)/V |(t) = 0.1.
This means that the relative error is 10%. After one step of Newton’s
method, the maximum error is 0.00101772, that is reasonable. This
shows further steps of Newton’s method will give better approximations
if applied to the problem. Table 1 shows the relative errors at the points
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i
∣∣V−V1

V (ti)
∣∣

1 0.000338024
2 0.000475247
3 0.000578661
4 0.000664345
5 0.000738572
6 0.000804649
7 0.000864481
8 0.000919377
9 0.000970233
10 0.00101772

Table 1. After one step of Newton’s method

ti = 0.001i, i = 1, ..., 10. V1 is the value of V after one step of Newton’s
method.
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