EXTENSIONS OF BAER AND QUASI-BAER MODULES

E. HASHEMI

Communicated by Freydoon Shahidi

Abstract

We study the relationships between the Baer, quasiBaer and p.q.-Baer property of an R-module M and the polynomial extensions of module M. As a consequence of our results, we obtain some results of [C.Y. Hong, N.K. Kim and T.K. Kwak, J. Pure Appl. Algebra 151 (2000) 215-226.] and [E. Hashemi and A. Moussavi, Acta Math. Hungar. 107 (2005) 207-224.].

1. Introduction

Throughout the paper, R will always denote an associative ring with identity and M_{R} will stand for a right R-module. Recall from [15] that R is a Baer ring if the right annihilator of every nonempty subset of R is generated by an idempotent. In [15], Kaplansky introduced Baer rings to abstract various properties of von Neumann algebras and complete *-regular rings. The class of Baer rings includes the von Neumann algebras. In [9], Clark defines a ring to be quasi-Baer if the left annihilator of every ideal is generated, as a left ideal, by an idempotent. He then uses the quasi-Baer concept to characterize when a finite-dimensional algebra with identity over an algebraically closed field is isomorphic to

[^0]a twisted matrix units semigroup algebra. Every prime ring is a quasiBaer ring. Another generalization of Baer rings is the p.p.-rings. A ring R is called right (resp. left) p.p. if right (resp. left) annihilator of an element of R is generated by an idempotent. Birkenmeier, et al. in [6] introduced the concept of principally quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal right ideal of R is generated by an idempotent.

In 1974, Armendariz considered the behavior of a polynomial ring over a Baer ring by obtaining the following result: Let R be a reduced ring (i.e., R has no nonzero nilpotent elements). Then, $R[x]$ is a Baer ring if and only if R is a Baer ring ([4], Theorem B). Armendariz provided an example to show that the reduced condition is not superfluous. In [6], Birkenmeier, et al. showed that the quasi-Baer condition is preserved by many polynomial extensions. Also, Birkenmeier, et al. [6] showed that a ring R is right p.q.-Baer if and only if $R[x]$ is right p.q.-Baer.

From now on, we always denote the Ore extension ring (or Ore polynomial ring) by $S:=R[x ; \alpha, \delta]$, where $\alpha: R \rightarrow R$ is an endomorphism and $\delta: R \rightarrow R$ is an α-derivation. Recall that an α-derivation δ is an additive operator on R with the property that $\delta(a b)=\delta(a) b+\alpha(a) \delta(b)$, for all $a, b \in R$. The Ore extension S is then the ring consisting of all (left) polynomials of the form $\sum a_{i} x^{i}\left(a_{i} \in R\right)$, which are multiplied using the distributive law and the Ore commutation rule $x a=\alpha(a) x+\delta(a)$, for all $a \in R$. From this rule, an inductive argument can be made to calculate an expression for $x^{j} a$, for all $j \in \mathbb{N}$ and $a \in R$.

Notation [19]. Let δ be an α-derivation of R. For integers $j \geq i \geq 0$, write f_{i}^{j} for the sum of all "words" in α and δ in which there are i factors of α and $j-i$ factors of δ. For instance, $f_{j}^{j}=\alpha^{j}, f_{0}^{j}=\delta^{j}$ and $f_{j-1}^{j}=\alpha^{j-1} \delta+\alpha^{j-2} \delta \alpha+\cdots+\delta \alpha^{j-1}$.

Using recursive formulas for the f_{i}^{j} and induction, as in [19], one can show with a routine computation that

$$
\begin{equation*}
x^{j} a=\sum_{i=0}^{j} f_{i}^{j}(a) x^{i} \tag{1.1}
\end{equation*}
$$

This formula uniquely determines a general product of (left) polynomials in S and will be used freely in what follows.

Given a right R-module M_{R}, we can make $M[x]$ into a right S-module by allowing polynomials from S to act on polynomials in $M[x]$ in the obvious way, and applying the above "twist" whenever necessary. The verification that this defines a valid S-module structure on $M[x]$ is almost identical to the verification that S is a ring, and it is straightforward.

For a nonempty subset X of M, put $a n n_{R}(X)=\{a \in R \mid X a=0\}$. In [21], Lee and Zhou introduced the notions of Baer, quasi-Baer and p.p.-modules as follows: (1) M_{R} is called B aer if for any subset X of $M, a n n_{R}(X)=e R$, where $e^{2}=e \in R$. (2) M_{R} is called quasi-Baer if, for any submodule $X \subseteq M, \operatorname{ann}_{R}(X)=e R$, where $e^{2}=e \in R$. (3) M_{R} is called $p . p$. if for any element $m \in M, \operatorname{ann}_{R}(m)=e R$, where $e^{2}=e \in R$. Clearly, a ring R is Baer (resp. p.p. or quasi-Baer) if and only if R_{R} is Baer (resp. p.p. or quasi-Baer) module. If R is a Baer (resp. p.p. or quasi-Baer) ring, then for any right ideal I of R, I_{R} is Baer (resp. p.p. or quasi-Baer) module.

The module M_{R} is called principally quasi-Baer (or simply p.q.-Baer) if for any $m \in M, \operatorname{ann}_{R}(m R)=e R$, where $e^{2}=e \in R$. It is clear that R is a right p.q.-Baer ring if and only if R_{R} is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is quasi-Baer.

Here, we impose (α, δ)-compatibility assumption on the module M_{R} and prove the following results, extending many results on rings to modules:
(1) The module M_{R} is quasi-Baer (resp. p.q.-Baer) if and only if $M[x]_{S}$ is quasi-Baer (resp. p.q.-Baer), where $S=R[x ; \alpha, \delta]$.
(2) If M_{R} is (α, δ)-Armendariz, then M_{R} is Baer (resp. p.p.) if and only if $M[x]_{S}$ is Baer (resp. p.p.).

Also, we give examples to show that (α, δ)-compatibility assumption on M_{R} in the preceding results is not superfluous. Among applications, we obtain some results of [12] and [10] as corollaries of our results.

2. Polynomials over Baer and Quasi-Baer Modules

Definition 2.1. (Annin [3]) Given a module M_{R}, an endomorphism $\alpha: R \rightarrow R$, and an α-derivation $\delta: R \rightarrow R$, we say that M_{R} is α compatible if for each $m \in M, r \in R$, we have $m r=0 \Leftrightarrow m \alpha(r)=0$. Moreover, we say that M_{R} is δ-compatible if for each $m \in M, r \in R$, we have $m r=0 \Rightarrow m \delta(r)=0$. If M_{R} is both α-compatible and δ compatible, we say that M_{R} is (α, δ)-compatible.

Recall that an R-module N_{R} is called prime if $N \neq 0$ and $a n n_{R}(N)=$ $\operatorname{ann}_{R}\left(N^{\prime}\right)$, for every nonzero submodule $N^{\prime} \subseteq N$.

The following example shows that there exists an (α, δ)-compatible module M_{R} such that M_{R} and $M[x]_{R[x ; \alpha, \delta]}$ are quasi-Baer.

Example 2.2. [3, Example 4.6] Let R_{0} be a domain of characteristic zero, and $R:=R_{0}[t]$. Define $\left.\alpha\right|_{R_{0}}=I d$ and $\alpha(t)=-t$. Now, for $a \in R_{0}$, set

$$
\delta\left(a t^{l}\right):= \begin{cases}a t^{l-1} & \text { if } 1 \text { is odd } \\ 0 & \text { if } 1 \text { is even. }\end{cases}
$$

It is shown in [19] that δ is an α-derivation on R. Let $M_{R}:=R_{0} \oplus R_{0} \oplus$ $R_{0} \oplus \cdots$, where $t \in R$ acts on M_{R} as follows: for $\left(m_{0}, m_{1}, m_{2}, \cdots\right) \in M$, we set $\left(m_{0}, m_{1}, m_{2}, \cdots\right) t:=\left(0, m_{0} k_{0}, m_{1} k_{1}, m_{2} k_{2}, \cdots\right)$, where the $k_{i}(i \in$ \mathbb{N}) are fixed nonzero integers. We show that M_{R} is (α, δ)-compatible. For this, it suffices to show that $\operatorname{ann}_{R}(m)=0$, whenever $0 \neq m \in$ M. Suppose that $\left(a_{0}, a_{1}, a_{2}, \cdots\right)\left(b_{r} t^{r}+b_{r+1} t^{r+1}+\right.$ "higher terms" $)=0$, where $a_{i}, b_{i} \in R_{0}$, for every $i \in \mathbb{N}$ and $b_{r} \neq 0$. First, applying t^{r} to $\left(a_{0}, a_{1}, a_{2}, \cdots\right)$ gives:
$\left(0,0, \cdots, 0, a_{0} k_{0} k_{1} \cdots k_{r-1}, a_{1} k_{1} k_{2} \cdots k_{r}, \cdots\right)\left(b_{r}+b_{r+1} t+" h i g h e r\right.$ terms" $)=0$.
Upon computing this expression, we deduce that $a_{0} k_{0} k_{1} \cdots k_{r-1} b_{r}=0$. Since the characteristic is zero, R is a domain, and $k_{0} k_{1} \cdots k_{r-1} b_{r} \neq 0$, we deduce that $a_{0}=0$. Now, we may proceed inductively to show that $a_{i}=0$, for all i. From this calculation, we deduce at once that M_{R} is (α, δ)-compatible. Moreover, the calculation implies that M_{R} is prime, and $\operatorname{ann}_{R}(N)=\{0\}$, for each nonzero submodule N of M. Therefore, M_{R} is quasi-Baer. Hence, $M_{[x]_{R[x ; \alpha, \delta]}}$ is quasi-Baer, by Theorem 2.11.

Remark 2.3. (a) If M_{R} is α-compatible (resp. δ-compatible), then so is any submodule of M_{R}.
(b) If M_{R} is α-compatible (resp. δ-compatible), then M_{R} is α^{i}-compatible (resp. δ^{i}-compatible), for all $i \geq 1$.

Lemma 2.4. Let M_{R} be an (α, δ)-compatible R-module. Let $m \in M$, and $a, b \in R$. Then, we have the followings:
(1) If $m a=0$, then $m \alpha^{i}\left(\delta^{j}(a)\right)=0=m \delta^{j}\left(\alpha^{i}(a)\right)$, for any positive integers i, j.
(2) If $m a b=0$, then $m \alpha^{i}(a) \delta^{j}(b)=0=m \delta^{j}(a) \alpha^{i}(b)$, for any positive integers i, j.
(3) $a n n_{R}(m a)=a n n_{R}(m \alpha(a)) \subseteq a n n_{R}(m \delta(a))$.

Proof. (1) It follows from Remark 2.3.
(2) It is enough to show that $m \alpha(a) \delta(b)=0=m \delta(a) \alpha(a)$. Since M_{R} is δ-compatible, $m a b=0$ implies that $\operatorname{ma\delta }(b)=0$ and $m \delta(a b)=$ $m \delta(a) b+m \alpha(a) \delta(b)=0$. Since M_{R} is α-compatible, $m a b=0$ implies that $m \alpha(a b)=m \alpha(a) \alpha(b)=0$, and so $m \alpha(a) b=0$. Thus, $m \alpha(a) \delta(b)=$ 0 . Hence, $m \delta(a) b=0$ and $m \delta(a) \alpha(a)=0$.
(3) Observe that the α-compatibility of M_{R} yields $m \alpha(a) b=0 \Leftrightarrow$ $m \alpha(a) \alpha(b)=0 \Leftrightarrow m \alpha(a b)=0 \Leftrightarrow m a b=0$, for each $b \in R$. It is remains only to show that $a n n_{R}(m a) \subseteq a n n_{R}(m \delta(a))$. Let $m a b=0$, for some $b \in$ R. Using δ-compatibility, we get $0=m \delta(a b)=m \alpha(a) \delta(b)+m \delta(a) b=0$ and hence $m \delta(a) b=0$, as desired.

Lemma 2.5. Let M_{R} be an ($\left.\alpha, \delta\right)$-compatible module, $m(x)=m_{0}+\cdots+$ $m_{k} x^{k} \in M[x]$ and $r \in R$. If $m(x) r=0$, then $m_{i} r=0$, for each i.

Proof. An easy calculation using Eq. (1.1) shows that $0=m(x) r=\sum_{i=0}^{k} \sum_{j=i}^{k} m_{j} f_{i}^{j}(r) x^{i}$ and so

$$
\begin{equation*}
\sum_{j=i}^{k} m_{j} f_{i}^{j}(r)=0 \text { for each } i \leq k \tag{2.1}
\end{equation*}
$$

Starting with $i=k$, Eq. (2.1) yields $m_{k} \alpha^{k}(r)=0$, and so α-compatibility of M_{R} yields $m_{k} r=0$. Now, assume inductively that $m_{j} r=0$, for each $j>i$. By (α, δ)-compatibility of M_{R}, for $j>i$ we have $m_{j} f_{i}^{j}(r)=0$. Using Eq. (2.1) again, we deduce that $m_{i} \alpha^{i}(r)=0$, and so $m_{i} r=0$ as needed.

Following Anderson and Camillo [1], a module M_{R} is called Armendariz if whenever $m(x) f(x)=0$, where $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x]$, we have $m_{i} a_{j}=0$, for all i, j.

Definition 2.6. Given a module M_{R}, an endomorphism $\alpha: R \rightarrow R$, and an α-derivation $\delta: R \rightarrow R$, we say M_{R} is (α, δ)-quasi Armendariz (resp. (α, δ)-Armendariz), if whenever $m(x)=\sum_{i=0}^{k} m_{i} x^{i} \in M[x]$ and $f(x)=$ $\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \alpha, \delta]$ satisfy $m(x) R[x ; \alpha, \delta] f(x)=0$ (resp. $m(x) f(x)=$ 0), we have $m_{i} x^{i} R b_{j} x^{j}=0$ (resp. $m_{i} x^{i} a_{j} x^{j}=0$), for all i, j.

For a module M_{R}, put
$\operatorname{Ann}_{R}(\operatorname{sub}(M))=\left\{\operatorname{ann}_{R}(N) \mid N\right.$ is a submodule of $\left.M\right\}$.

Clearly, $A=\operatorname{ann}_{R}(N)$ is an ideal of R for each submodule N of M.
Proposition 2.7. Let M_{R} be an (α, δ)-compatible module and S be the skew polynomials ring $R[x ; \alpha, \delta]$. Then, the following statements are equivalent:
(1) M_{R} is (α, δ)-quasi Armendariz.
(2) $\psi: \operatorname{Ann}_{R}(\operatorname{sub}(M)) \rightarrow \operatorname{Ann}_{S}(\operatorname{sub}(M[x])) ; A \rightarrow A S$ is bijective.

Proof. (2) \Rightarrow (1). Let $m(x)=m_{0}+m_{1} x+\ldots+m_{k} x^{k} \in M[x]$ and $f(x)=b_{0}+b_{1} x+\ldots+b_{m} x^{m} \in S$ satisfy $m(x) S f(x)=0$. Then, $f(x) \in$ $a n n_{S}(m(x) S)=A S$, where A is an ideal of R. Hence, $b_{0}, \cdots, b_{m} \in$ A, and so $m(x) R b_{j}=0$, for $j=0, \cdots, m$. By lemmas 2.4 and 2.5, $m_{i} x^{i} R b_{j} x^{j}=0$, for all i, j. Therefore, M_{R} is (α, δ)-quasi Armendariz.
$(1) \Rightarrow(2)$. Let $A \in A n n_{R}(\operatorname{sub}(M))$. Then, there exists a submodule N of M such that $A=a n n_{R}(N)$, and hence $a n n_{S}(N[x])=A S$, by Lemmas 2.4 and 2.5. Thus, ψ is a well defined map. Assume that $B \in$ $A n n_{S}(\operatorname{sub}(M[x]))$. Then, there exists a submodule N of $M[x]$ such that $B=a n n_{S}(N)$. Let B_{1} denote the set of all coefficients of elements of B in R and N_{1} denote the set of all coefficients of elements of N in M. We claim that $\operatorname{ann}_{R}\left(N_{1} R\right)=B_{1} R$. Let $m(x)=m_{0}+m_{1} x+\ldots+m_{k} x^{k} \in N$ and $f(x)=b_{0}+b_{1} x+\ldots+b_{m} x^{m} \in B$. Then, $m(x) S g(x)=0$. Since M_{R} is (α, δ)-quasi Armendariz and ($\left.\alpha, \delta\right)$-compatible, $m_{i} R b_{j}=0$, for all i, j. Thus, $\left(N_{1} R\right)\left(B_{1} R\right)=0$, and so $B_{1} R \subseteq \operatorname{ann}_{R}\left(N_{1} R\right)$. Since M_{R} is (α, δ)-compatible, $\operatorname{ann}_{R}\left(N_{1} R\right) \subseteq B_{1} R$. Thus, $\operatorname{ann}_{R}\left(N_{1} R\right)=B_{1} R$, and so $\operatorname{ann}_{S}(N)=\left(B_{1} R\right) S$.

Following Tominaga [25], an ideal I of R is said to be left s-unital if for each $a \in I$ there is an $x \in I$ such that $x a=a$. If an ideal I of R is left s-unital, then, for any finite subset F of I, there exists an element $e \in I$ such that $e x=x$, for each $x \in F$. A submodule N of a right R-module M is called a pure submodule if $N \otimes_{R} L \longrightarrow M \otimes_{R} L$ is a monomorphism for every left R-module L. By [25, Proposition 11.3.13], an ideal I is left s-unital if and only if R / I is flat as a right R-module if and only if I is pure as a right ideal of R.

Proposition 2.8. Let M_{R} be an (α, δ)-compatible module and $S=$ $R[x ; \alpha, \delta]$. Then, the followings are equivalent:
(1) $a n n_{R}(m R)$ is left s-unital for any element $m \in M$.
(2) $\operatorname{ann}_{S}(m(x) S)$ is left s-unital for any element $m(x) \in M[x]$. In this case, M_{R} is (α, δ)-quasi Armendariz.

Proof. (1) $\Rightarrow(2)$. First, we prove that M_{R} is (α, δ)-quasi Armendariz. Suppose that $\left(m_{0}+m_{1} x+\ldots+m_{k} x^{k}\right) S\left(b_{0}+b_{1} x+\ldots+b_{n} x^{n}\right)=0$, with $m_{i} \in M$ and $b_{j} \in R$. Then,

$$
\begin{equation*}
\left(m_{0}+m_{1} x+\ldots+m_{k} x^{k}\right) R\left(b_{0}+b_{1} x+\ldots+b_{n} x^{n}\right)=0 \tag{2.2}
\end{equation*}
$$

Since M_{R} is α-compatible, $m_{k} R b_{n}=0$. Then, $b_{n} \in a n n_{R}\left(m_{k} R\right)$, and so $m_{k} x^{k} R b_{n} x^{n}=0$, by Lemma 2.4. Since $a n n_{R}\left(m_{k} R\right)$ is left s-unital, there exists $e_{k} \in \operatorname{ann} n_{R}\left(m_{k} R\right)$ such that $e_{k} b_{n}=b_{n}$. Replacing R by $R e_{k}$ in Eq. (2.2), and using Lemma 2.4, we obtain $\left(m_{0}+m_{1} x+\ldots+\right.$ $\left.m_{k-1} x^{k-1}\right) R e_{k}\left(b_{0}+b_{1} x+\ldots+b_{n} x^{n}\right)=0$. Hence, $m_{k-1} R b_{n}=0$, since M_{R} is α-compatible. Then, $b_{n} \in \operatorname{ann}_{R}\left(m_{k-1} R\right)$, and so $m_{k-1} x^{k-1} R b_{n} x^{n}=$ 0 , by Lemma 2.4. Hence, $b_{n} \in a n n_{R}\left(m_{k} R\right) \cap a n n_{R}\left(m_{k-1} R\right)$. Since $\operatorname{ann}_{R}\left(m_{k-1} R\right)$ is left s-unital, there exists $f \in \operatorname{ann}_{R}\left(m_{k-1} R\right)$ such that $f b_{n}=b_{n}$. If we put $e_{k-1}=e_{m} f$, then $e_{k-1} b_{n}=b_{n}$ and $e_{k-1} \in$ $\operatorname{ann}_{R}\left(m_{k} R\right) \cap \operatorname{ann}_{R}\left(m_{k-1} R\right)$. Next, replacing R by $R e_{k-1}$ in Eq. (2.2), and using Lemma 2.4, we obtain $\left(m_{0}+m_{1} x+\ldots+m_{k-2} x^{k-2}\right) R e_{k-1}\left(b_{0}+\right.$ $\left.b_{1} x+\ldots+b_{n} x^{n}\right)=0$. Hence, we have $b_{n} \in \operatorname{ann}_{R}\left(m_{k-2} R\right)$, and so $m_{k-2} x^{k-2} R b_{n} x^{n}=0$, by Lemma 2.4. Continuing this process, we get $m_{i} x^{i} R b_{n} x^{n}=0$, for $i=0, \cdots, k$. Using induction on $k+n$, we obtain $m_{i} x^{i} R b_{j} x^{j}=0$, for all i, j. Therefore, M_{R} is (α, δ)-quasi Armendariz. Let $m(x)=m_{0}+m_{1} x+\ldots+m_{k} x^{k} \in M[x]$ and $f(x)=$ $b_{0}+b_{1} x+\ldots+b_{m} x^{m} \in \operatorname{ann}_{S}(m(x) S)$. Then, $m_{i} R b_{j}=0$, for all i, j. Since $a n n_{R}\left(m_{i} R\right)$ is left s-unital, there exists $e_{i} \in a n n_{R}\left(m_{i} R\right)$ such that $b_{j}=e_{i} b_{j}$, for $j=0,1, \cdots, m$. Put $e=e_{0} e_{1} \cdots e_{k}$. Then, $b_{j}=e b_{j}$, for $j=0,1, \cdots, m$, and so $e f(x)=f(x)$. Clearly, $e \in a n n_{S}(m(x) S)$. Therefore, $\operatorname{ann}_{S}(m(x) S)$ is left s-unital.
$(2) \Rightarrow(1)$. Let $m \in M$. By using Lemma 2.4, ann $n_{R}(m R) \subseteq$ $a n n_{S}(m S)$. Hence, for any $b \in a n n_{R}(m R)$, there exists a polynomial $f(x) \in S$ such that $f(x) b=b$. Let a_{0} be the constant term of $f(x)$. Then, $a_{0} b=b$, by (α, δ)-compatibility of M_{R}. Clearly, $a_{0} \in a n n_{R}(m R)$. Therefore, $a n n_{R}(m R)$ is left s-unital.

By Proposition 2.8, if $a n n_{R}(m R)$ is left s-unital for any element $m \in$ M, then M_{R} is α-quasi Armendariz. But the converse is not true, in general. The following example shows that there exists an α-compatible ring R such that R_{R} is α-quasi Armendariz, but $a n n_{R}(m R)$ is not left s-unital for some $m \in R$.

Example 2.9. [26, Example 2.4] For a given field F, let

$$
S=\left\{\left(a_{n}\right)_{n=1}^{\infty} \in \prod F \mid a_{n} \text { is eventually constant }\right\}
$$

which is a subring of the countably infinite direct product ΠF. Then, S is a commutative ring. Let $R=S[[x]]$. Clearly S is a reduced ring. Suppose that $f(x)=a_{0}+a_{1} x+\cdots$ and $g(x)=b_{0}+b_{1} x+\cdots \in S[[x]]$ are such that $f(x) g(x)=0$. Then, from [1, p. 2269], it follows that $a_{i} b_{j}=0$, for all i, j. Thus, R is a reduced ring. Let α be the S automorphism of R such that $\alpha(x)=-x$. Clearly, R_{R} is α-compatible. Hence R is α-quasi Armendariz, by [12, Proposition 6], and [10, Lemma 2.2]. We show that there exists $m \in R$ such that $\operatorname{ann}_{R}(m R)$ is not left s-unital. Let $m=m_{0}+m_{1} x+\cdots$, where $m_{0}=(0,1,0,0, \cdots), m_{1}=$ $(0,1,0,1,0,0, \cdots), m_{2}=(0,1,0,1,0,1,0,0, \cdots), \cdots$. We show that $\operatorname{ann}_{R}(m R)$ is not left s-unital. Suppose that ann $n_{R}(m R)$ is left s-unital. Let $f=f_{0}+f_{1} x+\cdots \in R$, where
$f_{0}=(1,0,0,0, \cdots), f_{1}=(1,0,1,0,0,0, \cdots), f_{2}=(1,0,1,0,1,0,0,0, \cdots), \cdots$.
Then, $m f=0$, and so $m R f=0$, since R is reduced. Hence, $f \in$ $\operatorname{ann}_{R}(m R)$. Thus, there exists $h \in \operatorname{ann}_{R}(m R)$ such that $h f=f$. Suppose that $h=h_{0}+h_{1} x+\cdots$. Now, $m h=0$ and from [1, p. 2269], it follows that $m_{i} h_{j}=0$, for all i, j, and so there exists $n_{j} \in \mathbb{N}$ such that h_{j} has the form $\left(b_{1}^{j}, 0, b_{3}^{j}, 0, \cdots, b_{2 n_{j}+1}^{j}, 0,0,0, \cdots\right)$, where $b_{k}^{j} \in F$, $j=0,1,2, \cdots$. From $(h-1) f=0$, it follows that $\left(h_{0}-1\right) f_{i}=0$ and $h_{j} f_{i}=0$, for all i and $j \geq 1$, and so there exists $m_{j} \in \mathbb{N}$ such that h_{j} has the form $\left(0, b_{2}^{j}, 0, b_{4}^{j}, 0, \cdots, b_{2 m_{j}}^{j}, 0,0,0, \cdots\right)$, where $b_{k}^{j} \in F$, $j=1,2, \cdots$. Thus, $h_{1}=h_{2}=\cdots=0$, and so $h=h_{0}$. This contradicts with $h_{0} f_{i}=f_{i}, i=0,1, \cdots$. Thus, ann $R_{R}(m R)$ is not left s-unital.

Clearly, if M_{R} is quasi-Baer, then $\operatorname{ann}_{R}(m R)$ is left s-unital for each $m \in M$. But the converse is not true, in general. The following example shows that there exists a ring R such that $\operatorname{ann}_{R}(m R)$ is left s-unital for each $m \in R$, but R is not quasi-Baer. Recall that a ring R is called a right Bezout ring if every finitely generated right ideal of R is principal. Recall that the weak global dimension of a ring R is defined as $\sup \{f d(A) \mid A$ is a right R-module $\}$. Note that the weak global dimension ≤ 1 if and only if every right ideal of R is flat.

Example 2.10. [26, Example 2.5] Let \mathbb{Z} be the ring of integers and let

$$
S=\left(\prod_{i=1}^{\infty} \mathbb{Z} / 2 \mathbb{Z}\right) /\left(\bigoplus_{i=1}^{\infty} \mathbb{Z} / 2 \mathbb{Z}\right)
$$

Then, S is clearly a Boolean ring and by [8, p. 64], the weak global dimension of $S[[x]]$ is one and $S[[x]]$ is not semihereditary. Let $R=$ $S[[x]]$. Then, every principal ideal of R is flat, and so $R / \operatorname{ann}_{R}(a R)=$ $R / a n n_{R}(a) \cong a R$ is flat. Thus, $a n n_{R}(a R)$ is pure as a right ideal of R, for every $a \in R$. In [8, Theorem 43], it was shown that the power series ring $A[[x]]$ over a von Neumann regular ring A is semihereditary if and only if $A[[x]]$ is a Bezout ring, in which all principal ideals are projective. On the other hand, by $[8$, Theorem 42], $S[[x]]$ is a Bezout ring since the weak global dimension of $S[[x]]$ is one. Thus, R is not p.q.-Baer.

Since quasi-Baer (p.q.-Baer) modules satisfy the hypotheses of Proposition 2.8, by using Proposition 2.7 we have the following results.

Theorem 2.11. Let M_{R} be an (α, δ)-compatible module. Then, M_{R} is quasi-Baer (resp. p.q.-Baer) if and only if $M[x]_{S}$ is quasi-Baer (resp. p.q.-Baer); in this case, M_{R} is an (α, δ)-quasi Armendariz module.

The following examples show that the α-compatibility condition on M_{R} in Theorem 2.11 is not superfluous.

Example 2.12. [3, Example 2.7] Let F be any field of characteristic zero, and set $R:=F[t]$. Let α be the F-automorphism of R such that $\alpha(t)=t+1$, and set $S:=R[x ; \alpha]$. Consider the right R-module $M_{R}:=$ $\frac{F[t]}{\left(t^{2}\right)}$ and the right S-module $P_{S}:=M[x]_{S}$. Using " -" to mean "modulo $\left(t^{2}\right)$ ", note that since $\bar{t} . t=\overline{0}$ but $\bar{t} .(t+1) \neq \overline{0}$, the α-compatibility condition fails here. We show that P_{S} is prime. It suffices to show that, for any nonzero submodule $P_{S}^{\prime} \subseteq P_{S}$, we have ann $\left(P^{\prime}\right)=0$. Choose any $0 \neq p^{\prime} \in P^{\prime}$. We may write

$$
p^{\prime}=\overline{g_{k}(t)} x^{k}+\overline{g_{k+1}(t)} x^{k+1}+\cdots \in P
$$

where $\overline{g_{k}(t)} \neq \overline{0}$ in M_{R}. It suffices to show that $\operatorname{ann}\left(p^{\prime} S_{S}\right)=0$. Suppose there exists $s \in S$ with $\left(p^{\prime} S\right) s=0$. Write $s=f_{0}(t)+f_{1}(t) x+\cdots \in S$ with $f_{j}(t) \in R$, for each j. Now, for each $i \geq 0$, we have

$$
\begin{gathered}
\overline{0}=\left(\overline{g_{k}(t)} x^{k+i}+\text { "higher terms" }\right)\left(f_{0}(t)+\text { "higher terms" }\right) \\
=\overline{g_{k}(t)} f_{0}(t+k+i) x^{k+i}+\text { "higher terms." }
\end{gathered}
$$

Hence, we have $\overline{g_{k}(t)} f_{0}(t+k+i)=\overline{0}$ in M_{R}. So, for each $i \geq 0$, we have $g_{k}(t) f_{0}(t+k+i) \in\left(t^{2}\right)$ in R. But $\overline{g_{k}(t)} \neq \overline{0}$ implies that $g_{k}(t) \notin\left(t^{2}\right)$. From this, we conclude that t divides $f_{0}(t+k+i)$, for
each $i \geq 0$. Putting $t=0$, we have that $f_{0}(k+i)=0$, for each $i \geq 0$. Since F has characteristic zero, we conclude that $f_{0}(t)=0$. Now, we may go back and repeat this argument for f_{1}, f_{2}, \cdots, in turn, eventually concluding that $s=0$. Thus, as desired, we have ann $n_{S}\left(p^{\prime} S\right)=0$. Hence, P_{S} is prime with ann $(P)=0$. Thus, $M[x]_{S}$ is quasi-Baer. Since $\operatorname{ann}_{R}(M)=\left(t^{2}\right)$ and $\left(t^{2}\right)$ does not have any idempotents, M_{R} is not quasi-Baer.

Example 2.13. Let R_{0} denote any domain and let $R:=R_{0}[t]$. Let $\alpha: R \rightarrow R$ be defined by $\alpha(t)=0$ and $\left.\alpha\right|_{R_{0}}=I d$. Next, let $M:=R$ and $S=R[x ; \alpha]$. Observe that α-compatibility evidently fails in this case. Since R is a domain, it is quasi-Baer. Now, consider the S-submodule $Q=x S$. Then, $\operatorname{ann}_{S}(Q)=t S$ and $t S$ does not have any idempotents. Hence, $M[x]_{S}$ is not quasi-Baer.

The following example shows that δ-compatibility condition on R_{R} in Theorem 2.11 is not superfluous.
Example 2.14. [4, Example 11] There is a ring R and a derivation δ of R such that $R[x ; \delta]$ is a Baer (hence a quasi-Baer) ring, but R is not quasi-Baer. In fact, let $R=\mathbb{Z}_{2}[t] /\left(t^{2}\right)$ with the derivation δ such that $\delta(\bar{t})=1$, where $\bar{t}=t+\left(t^{2}\right)$ in R and $\mathbb{Z}_{2}[t]$ is the polynomial ring over the field \mathbb{Z}_{2} of two elements. Consider the Ore extension $R[x ; \delta]$. If we set $e_{11}=\bar{t} x, e_{12}=\bar{t}, e_{21}=\bar{t} x^{2}+x$, and $e_{22}=1+\bar{t} x$ in $R[x ; \delta]$, then they form a system of matrix units in $R[x ; \delta]$. Now, the centralizer of these matrix units in $R[x ; \delta]$ is $\mathbb{Z}_{2}\left[x^{2}\right]$. Therefore, $R[x ; \delta] \cong M_{2}\left(\mathbb{Z}_{2}\left[x^{2}\right]\right) \cong M_{2}\left(\mathbb{Z}_{2}\right)[y]$, where $M_{2}\left(\mathbb{Z}_{2}\right)[y]$ is the polynomial ring over $M_{2}\left(\mathbb{Z}_{2}\right)$. So, $R[x ; \delta]$ is a Baer ring, but R is not quasi-Baer.

Corollary 2.15. [7, Corollary 2.8] Let R be a ring. Then, R is quasiBaer (resp. right p.q.-Baer) if and only if $R[x]$ is quasi-Baer (resp. right p.q.-Baer).

Corollary 2.16. [10, Corollary 2.8] Let R be an (α, δ)-compatible ring. Then, R is quasi-Baer (resp. right p.q.-Baer) if and only if $R[x ; \alpha, \delta]$ is quasi-Baer (resp. right p.q.-Baer).

According to Lee-Zhou [21], a module M_{R} is called reduced if for any $m \in M$ and any $a \in R, m a=0$ implies $m R \cap M a=0$. It is clear that R is a reduced ring if an only if R_{R} is reduced. If M_{R} is reduced, then M_{R} is p.p. if and only if M_{R} is p.q.-Baer.

Lemma 2.17. The followings are equivalent for a module M_{R}.
(1) M_{R} is reduced and (α, δ)-compatible.
(2) The following conditions hold: for any $m \in M$ and $a \in R$,
(a) $m a=0$ implies $m R a=0=m R \alpha(a)$.
(b) $m \alpha(a)=0$ implies $m a=0$.
(c) $m a=0$ implies $m \delta(a)=0$.
(d) $m a^{2}=0$ implies $m a=0$.

Proof. The proof is straightforward.

Lemma 2.18. Let M_{R} be a reduced (α, δ)-compatible module. Then, M_{R} is (α, δ)-Armendariz.

Proof. Let $m(x)=m_{0}+\cdots+m_{k} x^{k} \in M[x]$, and $f(x)=a_{0}+\cdots+a_{n} x^{n} \in$ $R[x ; \alpha, \delta]$ such that $m(x) f(x)=0$. Hence, $m_{k} R a_{n}=0$, by Lemmas 2.4 and 2.17. Thus, the coefficient of x^{k+n-1} in equation $m(x) f(x)=0$ is $m_{k} \alpha^{k}\left(a_{n-1}\right)+m_{k-1} \alpha^{k-1}\left(a_{n}\right)=0$. Multiplying this equation by a_{n} from the right-hand side, we obtain $m_{k-1} \alpha^{k-1}\left(a_{n}\right) a_{n}=0$. Hence, $m_{k-1} a_{n}^{2}=$ 0 , and so $m_{k-1} a_{n}=0$, by Lemma 2.17. Therefore, $m_{k} a_{n-1}=0$, and so $m_{k} x^{k} a_{n-1} x^{n-1}=m_{k-1} x^{k-1} a_{n} x^{n}=0$, by Lemma 2.4. Continuing this process, we can prove $m_{i} x^{i} a_{j} x^{j}=0$, for each i, j.

For a module M_{R}, put $\operatorname{Ann}_{R}\left(2^{M}\right)=\left\{\operatorname{ann}_{R}(N) \mid N\right.$ is a subset of $\left.M\right\}$. In a similar way as in the proof of Proposition 2.7, we can prove the following.

Proposition 2.19. Let M_{R} be an (α, δ)-compatible module and S be the skew polynomial ring $R[x ; \alpha, \delta]$. Then, the following statements are equivalent.
(1) M_{R} is (α, δ)-Armendariz.
(2) $\psi: A n n_{R}\left(2^{M}\right) \rightarrow \operatorname{Ann}_{S}\left(2^{M[x]}\right) ; A \rightarrow A S$ is bijective.

Theorem 2.20. Let M_{R} be an (α, δ)-compatible module and $S=R[x ; \alpha, \delta]$. If M_{R} is (α, δ)-Armendariz, then M_{R} is Baer (resp. p.p.) if and only if $M[x]_{S}$ is Baer (resp. p.p.).

Proof. It follows from Lemma 2.18 and Proposition 2.19.

According to Krempa [18], an endomorphism α of a ring R is called rigid if $a \alpha(a)=0$ implies $a=0$, for $a \in R$. A ring R is said to be α-rigid if there exists a rigid endomorphism α of R.

Corollary 2.21. [12, Theorem 14] Let R be an α-rigid ring. Then, R is Baer (resp. p.p.) if and only if $R[x ; \alpha, \delta]$ is Baer (resp. p.p.).

Proof. Since α-rigid rings are reduced and (α, δ)-compatible, the proof follows from Lemma 2.18 and Theorem 2.20.

Corollary 2.22. [4, Theorem B] Let R be a reduced ring. Then, R is Baer (resp. p.p.) if and only if $R[x]$ is Baer (resp. p.p.).

Acknowledgments

The author thanks the referee for his/her helpful suggestions. This research was supported by Shahrood University of Technology.

References

[1] D.D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998) 2265-2272.
[2] S. Annin, Associated primes over skew polynomials rings, Comm. Algebra 30 (2002) 2511-2528.
[3] S. Annin, Associated primes over Ore extension rings, J. Algebra Appl. 3 (2004) 193-205.
[4] E.P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974) 470-473.
[5] G.F. Birkenmeier, J.Y. Kim and J.K. Park, On quasi-Baer rings, Contemp. Math. 259 (2000) 67-92.
[6] G.F. Birkenmeier, J.Y. Kim and J.K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2001) 639-660.
[7] G.F. Birkenmeier, J.Y. Kim and J.K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001) 25-42.
[8] J.W. Brewer, Power Series over Commutative Rings, Marcel Dekker, Inc., New York, 1981.
[9] W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967) 417-423.
[10] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005) 207-224.
[11] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002) 45-52.
[12] C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000) 215-226.
[13] C.Y. Hong, N.K. Kim and T.K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003) 103-122.
[14] C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002) 751-761.
[15] I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York, Amsterdam, 1968.
[16] N.K. Kim, K.H. Lee and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006) 2205-2218.
[17] N.K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000) 477-488.
[18] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996) 289-300.
[19] T.Y. Lam, An Introduction to Division Rings, Graduate Texts in Mathematics, in preparation.
[20] T.K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004) 2287-2299.
[21] T.K. Lee and Y. Zhou, Reduced Modules in: Rings, Modules, Algebras, and Abelian Groups, Lecture Notes in Pure and Appl. Math. 236, Dekker, New York, (2004), pp. 365-377.
[22] M.B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997) 14-17.
[23] S.T. Rizvi and C. Roman, Baer and quasi-Baer modules, Comm. Algebra 32 (2004) 103-123.
[24] S.T. Rizvi and C. Roman, On direct sums of Baer modules, J. Algebra 321 (2009) 682-696.
[25] H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18 (1975/76) 117-134.
[26] L. Zhongkui and Z. Renyu, A generalization of p.p.-rings and p.q.-Baer rings, Glasg. Math. J. 48 (2006) 217-229.

Ebrahim Hashemi

Department of Mathematics, Shahrood University of Technology, P. O. Box 3163619995161, Shahrood, Iran
Email: eb_hashemi@yahoo.com and eb_hashemi@shahroodut.ac.ir

[^0]: MSC(2010): Primary: 16D80; Secondary: 16S36.
 Keywords: (α, δ)-compatible modules, Reduced modules, Baer modules, quasi-Baer module, α-rigid rings, skew polynomial ring.
 Received: 6 March 2008, Accepted: 15 October 2009.
 (C) 2011 Iranian Mathematical Society.

