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A CHARACTERIZATION OF TRIPLE SEMIGROUP OF
TERNARY FUNCTIONS AND DEMORGAN TRIPLE

SEMIGROUP OF TERNARY FUNCTIONS

J. PASHAZADEH AND YU. M. MOVSISYAN∗

Communicated by Saeid Azam

Abstract. We define algebras of triple semigroup and DeMorgan
triple semigroup and by defining three Mann’s compositions and one
unary operation on the set of 3-place(ternary) functions over some
set, we construct a DeMorgan triple semigroup of 3-place (ternary)
functions and so find an abstract characterization of this algebras.

1. Introduction

Consideration of sets of functions and operations on functions play
important roles in modern algebra and generally in mathematics. For
example, group theory has become so important because of the theory of
transformation groups. Also, the theory of transformation semigroups
is the heart of semigroup theory.
While transformations of a set A are one-place functions, i.e., mappings
of A into A, various parts of mathematics, beginning from calculus, have
to consider multiplace functions, also called functions of many variables.
Any mapping of a subset of An, i.e., of a subset of the nth Cartesian
power of A, into A is called a partial n-place function. The set of all such
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functions is denoted by F (An, A). The set of all full n-place functions
on A, i.e., mappings defined for every (a1, ..., an) ∈ An, is denoted by
T (An, A). Obviously, T (An, A) ⊆ F (An, A). In many papers, n-place
functions are called n-ary operations.
One has to consider various natural operations on sets of n-place func-
tions, and among them the operation of superposition, i.e., of substi-
tuting fixed n-place functions g1, ..., gn into another n-place function f ,
and thus forming a new n-place function h = f [g1, ..., gn] in this way,
is of paramount importance. In the middle of the 1940’s, Menger ob-
served that the superposition of n-place functions had some properties
analogous to the associativity law.

On F (An, A), we can define n binary compositions ⊕1,⊕2, ...,⊕n of
two functions by putting

(f ⊕i g)(a1, ..., an) = f(a1, ..., ai−1, g(a1, ..., an), ai+1, ..., an),

for all f, g ∈ F (An, A) and (a1, ..., an) ∈ An. Since all compositions
⊕1, ...,⊕n are binary associative operations, algebras of the form (Φ,⊕1,
...,⊕n), where Φ ⊆ F (An, A), are called (2, n)-semigroups of n-place
functions (cf. [14] and [16]). If Φ ⊆ T (An, A), then we say that
(Φ,⊕1, ...,⊕n) is a (2, n)-semigroup of full n-place functions (or n-ary
operations).
The study of such compositions of functions was initiated by Mann [8]
for binary operations and continued by others (cf., for examples, [1],
[12], [15] and [17]). Nowadays, such compositions are called Mann’s
compositions or Mann’s superpositions. Mann’s compositions of n-ary
operations are described in [16]. Abstract algebras isomorphic to some
sets of operations closed with respect to these compositions are described
in [14]. The sets of partial functions closed with respect to these com-
positions and some additional operations are characterized in [5]. Also,
the set of partial binary functions closed with respect to these composi-
tions and one quasi-complementation operation is characterised in [12].
In this paper, we fined an abstract characterization of the set of 3-place
functions (here we say ternary functions) closed with respect to Mann’s
compositions and one unary quasi-complementation operation. Results
of this paper can be extended to n-place functions.

Definition 1.1. An algebra (D,+, ., ∗) is called triple semigroup if + ,
. and ∗ are binary associative operations over the set D.
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Let Ω be a set. We denote all ternary functions from Ω3 to Ω by TΩ.
In TΩ, we define the binary operations below:

(A + B)(x, y, z) = A(x, y, B(x, y, z)),
(A ∗B)(x, y, z) = A(x,B(x, y, z), z),
(A ·B)(x, y, z) = A(B(x, y, z), y, z).

All these three operations are also associative (and Mann’s composi-
tions). The algebra (TΩ,+, ., ∗) is called triple semigroup of ternary
functions over the set Ω.

Definition 1.2. A left null element in any triple semigroup (D,+, ., ∗)
is an element N ∈ D such that for all X ∈ D,

N + X = N, N ·X = N and N ∗X = N.

The set of all left null elements of the triple semigroup D is denoted by
n(D).

Now, we intend to find all left null elements of the triple semigroup
(TΩ,+, ., ∗). To this end, we denote by L, the set of all ternary functions
Ca ∈ TΩ, where,

∀x, y, z ∈ Ω, Ca(x, y, z) = a.

It is easy to verify that for all A ∈ TΩ and a, b, c ∈ Ω,

(1.1) Ca + A = Ca ·A = Ca ∗A = Ca,

and

(1.2)

(A + Ca)(x, y, z) = A(x, y, a),

(A ∗ Ca)(x, y, z) = A(x, a, z),

(A · Ca)(x, y.z) = A(a, y, z).

Also,

(1.3)

[(A · Ca) ∗ Cb] + Cc = [(A ∗ Cb) · Ca] + Cc

= [(A · Ca) + Cc] ∗ Cb = [(A + Cc) · Ca] ∗ Cb

= [(A ∗ Cb) + Cc] · Ca = [(A + Cc) ∗ Cb] · Ca

= CA(a,b,c).

From (1.3), we conclude that for all A,B ∈ TΩ, if we have

[(A · Ca) ∗ Cb] + Cc = [(B · Ca) ∗ Cb] + Cc,
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for all a, b, c ∈ Ω, then CA(a,b,c) = CB(a,b,c), and so A(a, b, c) = B(a, b, c),
for all a, b, c and thus A = B.
Moreover for all A,B ∈ TΩ and a ∈ Ω, we have

(1.4)

(A + B) · Ca = (A · Ca) + (B · Ca),
(A ∗B) · Ca = (A · Ca) ∗ (B · Ca),
(A + B) ∗ Ca = (A ∗ Ca) + (B ∗ Ca),
(A ·B) ∗ Ca = (A ∗ Ca) · (B ∗ Ca),
(A ·B) + Ca = (A + Ca) · (B + Ca),
(A ∗B) + Ca = (A + Ca) ∗ (B + Ca).

Lemma 1.3. n(DΩ) = L.

Proof. From (1.1), it follows that L ⊆ n(TΩ). Now, suppose N ∈ n(TΩ).
Let a, b, c, γ ∈ Ω and N(a, b, c) = γ. From (1.3), we get:

N = [(N · Ca) ∗ Cb] + Cc = CN(a,b,c) = Cγ ∈ L.

Hence, n(TΩ) = L. �

2. Characterization of Triple Semigroup of Ternary Functions

Theorem 2.1. In order for the triple semigroup (D,+, ., ∗) to be iso-
morphic to the triple semigroup (TΩ,+, ., ∗), it is necessary and sufficient
that the following conditions hold:

(I) The set n(D) has the same cardinality as the set Ω.
(II) For all A,B ∈ D and N ∈ n(D),

(A+B) ·N = (A ·N)+(B ·N), (A+B)∗N = (A∗N)+(B ∗N),
(A·B)+N = (A+N)·(B+N) , (A∗B)+N = (A+N)∗(B+N),
(A+B)∗N = (A∗N)+(B ∗N) , (A ·B)∗N = (A∗N) · (B ∗N).

(III) For all A,B ∈ D, if we have

[(A ·N1) ∗N2] + N3 = [(B ·N1) ∗N2] + N3

for all N1, N2, N3 ∈ n(D), then A=B.
(IV) If (D′,+, ., ∗)) is a supertriple semigroup of the triple semigroup

(D,+, ., ∗), satisfying conditions (II) and (III), where n(D′) =
n(D), then D = D′.
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Proof. First, note that condition (II) implies that for all A ∈ D and
N1, N2, N3 ∈ n(D),

(2.1)

(A ·N1) + N2 = (A + N2) ·N1,

(A ·N1) ∗N2 = (A ∗N2) ·N1,

(A + N1) ∗N2 = (A ∗N2) + N1,

and also from (2.1), we get:

(2.2)

[(A ·N1) ∗N2] + N3 = [(A ∗N2) ·N1] + N3

= [(A ∗N2) + N3] ·N1 = [(A + N3) ∗N2] ·N1

= [(A + N3) ·N1] ∗N2 = [(A ·N1) + N3] ∗N2 ∈ n(D).

To prove the last part of the above relations, we have for each B ∈ D,

[[(A·N1)∗N2]+N3]+B = [(A·N1)∗N2]+(N3+B) = [(A·N1)∗N2]+N3,

and

[[(A ·N1) ∗N2] + N3] ·B = [[(A ∗N2) + N3] ·N1] ·B ; by (2.2)

= [(A ∗N2) + N3] · (N1 ·B)

= [(A ∗N2) + N3] ·N1

= [(A ·N1) ∗N2] + N3. ; by (2.2)

Also,

[[(A ·N1) ∗N2] + N3] ∗B = [[(A ·N1) + N3] ∗N2] ∗B ; by (2.2)

= [(A ·N1) + N3] ∗ (N2 ∗B)

= [(A ·N1) + N3] ∗N2

= [(A ·N1) ∗N2] + N3. ; by (2.2)

So, all terms of the equalities (2.2) belong to n(D). Now, let us prove the
necessity. Suppose D ≈ TΩ and we must prove the conditions (I)− (IV)
hold in D. It is enough to prove that these conditions hold in TΩ. By
Lemma 1.3, condition (I) holds in TΩ. By (1.4), condition (II) and by
(1.3), condition (III) holds in TΩ.

Let (D′,+,.,∗) be a supertriple semigroup of TΩ, and D′ satisfies con-
ditions (II) and (III) and n(D′) = n(TΩ) = L. We will show TΩ = D′.
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Since D′ satisfies condition (II), so by (2.2) for each X ∈ D′ and
a, b, c ∈ Ω, there is γ ∈ Ω such that

(2.3) [(X · Ca) ∗ Cb] + Cc = Cγ .

In view of (2.3), for each X ∈ D′, we assign an element ϕX ∈ TΩ by:

(2.4) ∀a, b, c, γ ∈ Ω : ϕX(a, b, c) = γ ⇐⇒ [(X · Ca) ∗ Cb] + Cc = Cγ .

Since ϕX ∈ TΩ , by using (1.3) we get from (2.4),

ϕX(a, b, c) = γ =⇒ CϕX(a,b,c) = Cγ

=⇒ [(ϕX · Ca) ∗ Cb] + Cc = Cγ ; by(1.3)

=⇒ [(ϕX · Ca) ∗ Cb] + Cc = [(X · Ca) ∗ Cb] + Cc ; by(2.4)

=⇒ ϕX = X ; by(III)

=⇒ X ∈ TΩ

=⇒ D′ = TΩ.

Conversely, now suppose the triple semigroup (D,+, ., ∗) satisfies condi-
tions (I)− (IV). We must prove D ≈ TΩ. By condition (I), each element
of n(D) can be denoted by Na(a ∈ Ω). Also, by (2.2), we have for all
X ∈ D and a, b, c ∈ Ω, there is γ ∈ Ω such that

[(X ·Na) ∗Nb] + Nc = Nγ .

Then, to each X ∈ D we can assign the following ternary function
ϕX ∈ TΩ :

ϕX(a, b, c) = γ ⇐⇒ [(X ·Na) ∗Nb] + Nc = Nγ .

By condition (III), it follows that ϕ is a one to one mapping from D to
TΩ. We prove this mapping is an isomorphism. For all X, Y ∈ D and
a, b, c, γ ∈ Ω, we have

ϕ(X · Y )(a, b, c) = γ ⇐⇒ [[(X · Y ) ·Na] ∗Nb] + Nc = Nγ

⇐⇒ [[X · (Y ·Na)] ∗Nb] + Nc = Nγ

⇐⇒ [(X ∗Nb) · [(Y ·Na) ∗Nb]] + Nc = Nγ ; by(2.1)

⇐⇒ [(X ∗Nb) + Nc] · [[(Y ·Na) ∗Nb] + Nc = Nγ , ; by(2.1)

but by (2.2), [[(Y ·Na) ∗Nb] + Nc] ∈ n(D), and so there is λ ∈ Ω such
that [[(Y · Na) ∗ Nb] + Nc]=Nλ and then ϕY (a, b, c) = λ. Hence, from
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the above, we get:

⇐⇒ [(X ∗Nb) + Nc] ·Nλ = Nγ

⇐⇒ [(X ·Nλ) ∗Nb] + Nc = Nγ ; by(2.2)

⇐⇒ ϕX(λ, b, c) = γ

⇐⇒ ϕX (ϕY (a, b, c), b, c) = γ

⇐⇒ (ϕX · ϕY ) (a, b, c) = γ.

Since a, b and c were arbitrary, we conclude that ϕX · ϕY = ϕ(X · Y ).
Similarly, we can see

ϕ(X + Y ) = ϕX + ϕY and ϕ(X ∗ Y ) = ϕX ∗ ϕY.

Now, we show that ϕ is onto. Since D ≈ ϕ(D) ⊆ TΩ, by replacing in the
triple semigroup TΩ each element of the form ϕX by its preimage X , we
get a triple semigroup (D′,+, ., ∗), which is isomorphic to TΩ and such
that D is a subtriple semigroup of D′. It is clear that n(D′) ⊆ n(D).
Now, suppose Nγ ∈ n(D). Then, for all a, b, c ∈ Ω, we have

[(Nγ ·Na) ∗Nb] + Nc = Nγ =⇒ ϕNγ(a, b, c) = γ

=⇒ ϕNγ(a, b, c) = Cγ(a, b, c).

Thus, ϕNγ = Cγ ∈ n(TΩ) ≈ n(D′) and Nγ ∈ n(D′). Thus, n(D) =
n(D)′). Since TΩ satisfies conditions (II) and (III), D′ satisfies them
too, and from (IV) we have TΩ ≈ D′ = D. Then, ϕ is an isomorphism.
So, we have D ≈ TΩ �

Definition 2.2. An ideal of any triple semigroup (T,+, ., ∗) is a non-
empty subset L ⊆ T such that for all X ∈ T and A ∈ L, all of the
elements below are in L:

A ·X , X ·A , A + X , X + A , A ∗X , X ∗A.

Definition 2.3. An equivalence relation E on the triple semigroup (T,+
, ., ∗) is called a congruence of algebra T, if for all X ∈ T and (A,B) ∈ E
all of the ordered pairs below are in E:

(A ∗X, B ∗X), (X ∗A,X ∗B), (A + X, B + X),
(X + A,X + B), (A ·X, B ·X), (X ·A,X ·B).
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An equivalence relation E on the algebra T is called trivial, if (A,B) ∈
E implies A = B.

In triple semigroup (TΩ,+, ., ∗), we denote the projection functions
by I1 , I2 and I3:

I1(x, y, z) = x , I2(x, y, z) = y , I3(x, y, z) = z.

For each A ∈ TΩ, we have the followings:

(2.5)
I1 ·A = A · I1 = A,I2 ∗A = A ∗ I2 = A,I3 + A = A + I3 = A,

I1 + A = I1 ∗A = I1,I2 ·A = I2 + A = I2,I3 ∗A = I3 ·A = I3.

Theorem 2.4. The triple semigroup (TΩ,+, ., ∗) has no ideals distinct
from TΩ.

Proof. Let D be an ideal of TΩ and suppose that A be an arbitrary ele-
ment of TΩ and B ∈ D. We have

B ∈ D =⇒ I1 + B ∈ D
=⇒ A = A · I1 = A · (I1 + B) ∈ D
=⇒ A ∈ D
=⇒ D = TΩ.

�

Theorem 2.5. The algebra (TΩ,+, ., ∗) has no non-trivial congruences.

Proof. Let E be a congruence of TΩ distinct from equality. Then, there
exist A,B ∈ TΩ and a, b, c, γ, δ ∈ Ω such that A(a, b, c) = γ, B(a, b, c) =
δ, γ 6= δ and (A,B) ∈ E. By (3), we have

[(A · Ca) ∗ Cb] + Cc = Cγ and [(B · Ca) ∗ Cb] + Cc = Cδ.

Hence, (Cγ , Cδ) ∈ E. Now, let X be an element of TΩ. Our claim
is that (X, I2) ∈ E. To this end, first assume that Ω is a finite set:
Ω = {x1, x2, ..., xn}. Since γ, δ ∈ Ω , so n ≥ 2. Let a, b ∈ Ω and a 6= b.
Denote by Xa and Da, the following ternary functions over Ω:

Xa(x, y, z) =
{

X(x, y, z) if x = a
y if x 6= a

Da(x, y, z) =
{

a if x = a and y = δ
b if x 6= a or y 6= δ.
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By using (1.2), for all λ ∈ Ω, we get:
[Xa · (Da ∗ Cλ)](x, y, z) = Xa((Da ∗ Cλ)(x, y, z), y, z) = Xa(Da(x, λ, z), y, z).

Hence,

[Xa · (Da ∗ Cγ)](x, y, z) = Xa((Da(x, γ, z), y, z)
= Xa(b, y, z) = y = I2(x, y, z),

and so, Xa · (Da ∗ Cγ) = I2. Also,

Xa · (Da ∗ Cδ)(x, y, z) = Xa(Da(x, δ, z), y, z)

=
{

Xa(b, y, z) if x 6= a
Xa(x, y, z) if x = a

=
{

y if x 6= a
Xa(x, y, z) if x = a

=
{

Xa(x, y, z) if x 6= a
Xa(x, y, z) if x = a

= Xa(x, y, z).

Hence, Xa · (Da ∗ Cδ) = Xa , and thus we get:

(Cγ , Cδ) ∈ E =⇒ (Xa · (Da ∗ Cγ), Xa · (Da ∗ Cδ)) ∈ E
=⇒ (I2, Xa) ∈ E.

It is easy to verify that X = Xx1 ∗ Xx2 ∗ ... ∗ Xxn . Also, by (2.5),
I2 = I2 ∗ I2 ∗ ... ∗ I2. Since (Xxi , I2) ∈ E, for i = 1, 2, ..., n, we get
(X, I2) ∈ E.
Now, consider that the set Ω is infinite. Then, the sets Ω and Ω3 have
the same power and there is a one to one mapping F from Ω3 onto
Ω. Hence, for each y ∈ Ω, there exist elements r, s, t ∈ Ω such that
F (r, s, t) = y. So, the function K : Ω3 → Ω can be defined as follows:

K(x, y, z) = K(x, F (r, s, t), z) =
{

X(r, s, t) if x = δ
s if x 6= δ.

We have
[(K · Cγ) ∗ F ](x, y, z) = K · Cγ(x, F (x, y, z), z)

= K(γ, F (x, y, z), z) = y = I2(x, y, z),

and

[(K · Cδ) ∗ F ](x, y, z) = K · Cδ(x, F (x, y, z), z) = X(x, y, z).
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Then, (K · Cγ) ∗ F = I2 and (K · Cδ) ∗ F = X, and since (Cδ, Cγ) ∈ E,
we have (X, I2) ∈ E. Thus, in both cases for Ω it was proved that if
X ∈ TΩ, then (X, I2) ∈ E. Now, let X, Y ∈ TΩ. We have

(I2, Y ) ∈ E, (X, I2) ∈ E =⇒ (X ∗ I2, X ∗ Y ) ∈ E, (X ∗ Y, I2 ∗ Y ) ∈ E

=⇒ (X, X ∗ Y ) ∈ E, (X ∗ Y, Y ) ∈ E

=⇒ (X, Y ) ∈ E.

Hence, E is trivial. �

3. Characterization of DeMorgan Triple Semigroup of
Ternary Functions

Definition 3.1. A DeMorgan triple semigroup is an algebra (D,+, ., ∗,−,
0, 1, e) such that (D,+, ., ∗) is a triple semigroup and the quasi- comple-
mentation operation − ;D → D and constants 0, 1, e satisfy the follow-
ings, for all x, y ∈ D,

(1) x + 0 = 0 + x = x
(2) x · 1 = 1 · x = x
(3) x ∗ e = e ∗ x = x
(4) ¯̄x = x
(5) x + y = x̄ · ȳ
(6) x · y = x̄ + ȳ
(7) x ∗ y = x̄ ∗ ȳ .

It is easy to see that

1̄ = 0 , 0̄ = 1 and ē = e.

Let Ω be a set. For each ternary function A ∈ TΩ, we define the quasi-
complementation operation − as follows:

Ā(x, y, z) = A(z, y, x).

For projection functions I1, I2, I3 in TΩ, we have

Ī1(x, y, z) = I1(z, y, x) = z = I3(x, y, z)

Ī2(x, y, z) = I2(z, y, x) = y = I2(x, y, z)
Ī3(x, y, z) = I3(z, y, x) = x = I1(x, y, z).

Hence,
Ī1 = I3 , Ī3 = I1 and Ī2 = I2,
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and for all A ∈ TΩ in (2.5) we had

I1 ·A = A · I1 = A, I2 ∗A = A ∗ I2 = A, I3 + A = A + I3 = A.

For all A,B ∈ TΩ and x, y, z ∈ Ω, we have

A + B(x, y, z) = (A + B)(z, y, x) = A(z, y,B(z, y, x))

Ā · B̄(x, y, z) = Ā(B̄(x, y, z), y, z) = Ā(B(z, y, x), y, z)
= A(z, y,B(z, y, x)).

So, we have A + B = Ā · B̄. Similarly we can see

A ·B = Ā + B̄ and A ∗B = Ā ∗ B̄.

From our discussion given above, the following theorem is concluded.

Theorem 3.2. The algebra (TΩ,+, ., ∗,−, I3, I1, I2) is a DeMorgan triple
semigroup.

For all a ∈ Ω, we have

(3.1) C̄a(x, y, z) = Ca(z, y, x) = a = Ca(x, y, z) =⇒ C̄a = Ca.

In the next theorem, we present a characterization of the DeMorgan
triple semigroup (TΩ,+, ., ∗,−, I3, I1, I2).

Theorem 3.3. The DeMorgan triple semigroup (D,+, ., ∗,−, 0, 1, e) is
isomorphic to the DeMorgan triple semigroup (TΩ,+, ., ∗,−, I3, I1, I2), if
and only if the following conditions hold:

(I) The set n(D) has the same cardinality as the set Ω.
(II) For all A,B ∈ D and N ∈ n(D),

(A+B) ·N = (A ·N)+(B ·N), (A+B)∗N = (A∗N)+(B ∗N),
(A ·B)+N = (A+N) ·(B+N), (A∗B)+N = (A+N)∗(B+N),
(A+B)∗N = (A∗N)+(B ∗N), (A ·B)∗N = (A∗N) · (B ∗N).

(III) For all A,B ∈ D, if we have

[(A ·N1) ∗N2] + N3 = [(B ·N1) ∗N2] + N3,

for all N1, N2, N3 ∈ n(D), then A = B.
(IV) If (D′,+, ., ∗)) is a supertriple semigroup of the triple semigroup

(D,+, ., ∗) satisfying conditions (II) and (III), where n(D′) =
n(D), then D = D′.

(V) For each N ∈ n(D), N̄ = N .
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Proof. The proof is similar to the proof of Theorem 2.1. For the neces-
sary part, we assume D ≈ TΩ and prove that D satisfies the conditions
(I)− (V). To do this, it is enough to prove that these conditions hold
in TΩ. As we saw in the proof of Theorem 2.1, the conditions (I)− (IV)
hold in TΩ and by (3.1), the condition (V) holds in TΩ.

For the sufficient part, we assume the conditions (I)− (V) hold in D
and it must be proved D ≈ TΩ. By condition (I), each element of n(D)
can be denoted by the form Na, where a ∈ Ω. Also, by (2.2), for all
X ∈ D and a, b, c ∈ Ω, there is γ ∈ Ω such that

[(X ·Na) ∗Nb] + Nc = Nγ .

Hence, to each X ∈ D, we can assign a ternary function ϕX ∈ TΩ by

ϕX(a, b, c) = γ ⇐⇒ [(X ·Na) ∗Nb] + Nc = Nγ .

As we saw in the proof of Theorem 2.1, the mapping ϕ : D → TΩ is
one to one and onto. Also, for all X, Y ∈ D,

ϕ(X ·Y ) = ϕX ·ϕY, ϕ(X+Y ) = ϕX+ϕY and ϕ(X∗Y ) = ϕX∗ϕY.

Moreover, we have

ϕX̄(a, b, c) = γ ⇐⇒ [(X̄ ·Na) ∗Nb] + Nc = Nγ

⇐⇒ [(X̄ ·Na) ∗Nb] + Nc = N̄γ

⇐⇒ [(X + N̄a) ∗ N̄b] · N̄c = N̄γ

⇐⇒ [(X + Na) ∗Nb] ·Nc = Nγ ; by (V)

⇐⇒ [(X ·Nc) ∗Nb] + Na = Nγ ; by(2.2)

⇐⇒ ϕX(c, b, a) = γ

⇐⇒ ϕX(a, b, c) = γ = ϕ(X̄)(a, b, c)

⇐⇒ ϕX̄ = ϕX.

Hence, the mapping ϕ : D → TΩ is an isomorphism.
�
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