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MODIFIED NOOR ITERATIONS FOR INFINITE
FAMILY OF STRICT PSEUDO-CONTRACTION

MAPPINGS

L.-P. YANG∗

Communicated by Mohammad Sal Moslehian

Abstract. We introduce a modified Noor iteration scheme gener-
ated by an infinite family of strict pseudo-contractive mappings and
prove the strong convergence theorems of the scheme in the frame-
work of q−uniformly smooth and strictly convex Banach space. Re-
sults shown here are extensions and refinements of previously known
results.

1. Introduction

Let E be a real Banach space, and K be a nonempty closed con-
vex subset of E. Recall that a mapping f : K → K is said to be
a contraction on K if there exists a constant α ∈ (0, 1) such that
‖f(x) − f(y)‖ ≤ α‖x − y‖, for all x, y ∈ K. We use ΠK to denote
the collection of all contractions on K; that is, ΠK = {f |f : K →
K is a contraction with constant α}. A mapping T : K → K is said to
be nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖, for all x, y ∈ K. In the sequel,
F (T ) = {x ∈ K : Tx = x} denotes the fixed point set of T . For fixed
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x1 ∈ K, one classical way to study nonexpansive mappings is to use the
following Mann iteration process [1]:

xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 1,

where, {αn} is a real sequence in the interval (0, 1). For the approxi-
mation of a fixed point of a nonexpansive mapping, the Mann iteration
process is always applicable and has been studied extensively by several
authors.

Another iteration process found to be successful for the approximation
of a fixed point of a nonexpansive map is the Halpern-type process. Let
K be a nonempty closed convex subset of a Hilbert space and T : K → K
be a nonexpansive mapping. For an arbitrary u ∈ K and any initial value
x0 ∈ K, define a sequence {xn} ⊂ K in an explicit iterative way by

xn+1 = αnu + (1− αn)Txn, n ≥ 0.(1.1)

In 1967, Halpern [2] proved that the sequence {xn} defined by (1.1)
converges strongly to a fixed point of T if {αn} satisfies the following
conditions: (C1) limn→∞ αn = 0; (C2)

∑∞
n=1 αn = ∞, or equivalently,∏∞

n=0(1 − αn) = 0. However, it is unclear whether the conditions (C1)
and (C2) are sufficient. Consequently, several authors have concentrated
to study the convergence of Halpern iteration under a different restric-
tion on the parameter {αn}. For example, Lions [3] proved strong con-
vergence of Halpern iteration {xn} defined by (1.1) to a fixed point of
T in Hilbert space if {αn} ⊂ [0, 1] satisfies the following conditions:

(C1) lim
n→∞

αn = 0; (C2)
∞∑

n=0

αn = ∞; (C3) lim
n→∞

αn − αn−1

α2
n

= 0.

It was observed that both Halpern’s and Lions’ conditions on the real
sequence {αn} excluded the canonical choice αn = 1/(n + 1). This was
rectified in 1992 by Wittmann [4], who proved, still in Hilbert spaces,
the strong convergence of {xn} to a fixed point of T if {αn} satisfies the
conditions (C1), (C2) and the condition, (C4)

∑∞
n=1 |αn+1 − αn| < ∞.

Xu [5] (see also [6]) improved Lions’ result in two respects. First, he
suggested the following control condition (C5) instead of the conditions
(C3) or (C4):

(C5) lim
n→∞

αn − αn−1

αn
= 0 ,or equivalently, lim

n→∞

αn−1

αn
= 1
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so that the canonical choice of αn = 1/(n+1) is made possible. Second,
he proved the strong convergence of Halpern-type process in the frame-
work of real uniformly smooth Banach space. And Xu [6] showed that
condition (C3) and condition (C5) are not comparable.

In 2005, Kim and Xu [7] introduced the following iterative algorithm: x0 = x ∈ K chosen arbitrarily,
yn = βnxn + (1− βn)Txn,
xn+1 = αnu + (1− αn)yn, n ≥ 0,

(1.2)

where T is a nonexpansive mapping of K into itself and u ∈ K is a given
point. They proved that the sequence {xn} defined by (1.2) converges
strongly to a fixed point of T provided that the sequences {αn} and
{βn} satisfy the conditions (C1), (C2), (C4) and

(B1) lim
n→∞

βn = 0; (B2)
∞∑

n=0

βn = ∞; (B3)
∞∑

n=1

|βn+1 − βn| < ∞.

Recently, Yao et al. [8] modified the recursion formula (1.2) to have
strong convergence by using the viscosity approximation method. They
introduced the following iteration scheme: x0 = x ∈ K chosen arbitrarily,

yn = βnxn + (1− βn)Txn,
xn+1 = αnf(xn) + (1− αn)yn, f ∈ ΠK , n ≥ 0.

(1.3)

They proved that the sequence {xn} converges strongly to a fixed point
of T , where the sequences {αn} and {βn} satisfy the conditions (C1),
(C2) and (B4): 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Let E∗ denote the dual space of a Banach space E. The generalized
duality mapping Jq : E → 2E∗

is defined by

Jq(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖q, ‖x∗‖ = ‖x‖q−1}, ∀x ∈ E,

where q > 1 is a real number. In particular, J = J2 is said to be
normalized duality mapping and Jq(x) = ‖x‖q−2J2(x) for x 6= 0. If E
is a Hilbert space, then J = I (the identity mapping). It is well-known
that if E is smooth, then Jq is single-valued, which is denoted by jq.

A mapping T is said to be a pseudo-contraction, if there exists some
jq(x− y) ∈ Jq(x− y) such that

〈Tx− Ty, jq(x− y)〉 ≤ ‖x− y‖q, ∀x, y ∈ K.

A mapping T is said to be a λ−strict pseudo-contraction in the ter-
minology of Browder and Petryshyn [9], if there exists a constant λ > 0
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such that

〈Tx− Ty, jq(x− y)〉 ≤ ‖x− y‖q

− λ‖(I − T )x− (I − T )y‖q(1.4)

for every x, y ∈ K and for some jq(x− y) ∈ Jq(x− y).
A mapping T is said to be a strong pseudo-contraction if there exists

k ∈ (0, 1) such that 〈Tx− Ty, jq(x− y)〉 ≤ k‖x− y‖q, ∀x, y ∈ K.
It can be proved that if T is λ−strict pseudo-contraction in the ter-

minology of Browder and Petryshyn, then T is Lipschitz continuous
with the Lipschitz constant L = (1 + λ)/λ. The class of strong pseudo-
contractive mappings is independent of the class of λ−strict pseudo-
contractions.

Iterative methods for nonexpansive mapping have been extensively
studied. Iterative methods for the λ−strict pseudo-contractive mapping,
introduced by Browder and Petryshyn [9] in 1967, are far less developed
than those for nonexpansive mapping; the reason is probably that the
second term appearing in the right-hand side of (1.4) impedes the con-
vergence analysis for iterative algorithms used to find a fixed point of
the strictly pseudo-contractive mapping. On the other hand, λ−strict
pseudo-contractive mapping has more powerful applications than non-
expansive mapping do in solving inverse problems (see, for example,
Scherzer [10]). Therefore, it is more interesting to study the theory of
iterative methods for λ−strict pseudo-contractive mappings.

Zhou and Su [11] proved the relation between the λ−strict pseudo-
contraction and the nonexpansive mappings using the following lemma.

Lemma 1.1. (See [11, Lemma 2.2]) Let K be a nonempty convex subset
of a real q−uniformly smooth Banach space E and T : K → K be a
λ−strict pseudo-contraction. For α ∈ (0, 1), define Tαx = (1 − α)x +
αTx. Then, for α ∈ (0, µ], µ = min{1, ( qλ

Cq
)

1
q−1 }, Tα : K → K is

nonexpansive such that F (Tα) = F (T ).

Here, for any n ∈ N (the set of positive integers), we consider the
mapping Wn to be defined by
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

Un,n+1 = I,
Un,n = γnSnUn,n+1 + (1− γn)I,
Un,n−1 = γn−1Sn−1Un,n + (1− γn−1)I,
...
Un,k = γkSkUn,k+1 + (1− γk)I,
Un,k−1 = γk−1Sk−1Un,k + (1− γk−1)I,
...
Un,2 = γ2S2Un,3 + (1− γ2)I,
Wn = Un,1 = γ1S1Un,2 + (1− γ1)I,

(1.5)

where I is the identity operator on E, and γ1, γ2, . . . are real numbers
such that 0 ≤ γn ≤ 1, for every i ∈ N, Si = tiTi + (1 − ti)I, where Ti

is λi−strict pseudo-contractive mapping of K into itself and ti ∈ (0, µ],
µ ∈ min{1, ( qλ

Cq
)q−1}. Such a mapping Wn is called the W − mapping,

generated by Tn, Tn−1, . . . , T1 and γn, γn−1, . . . , γ1, tn, tn−1, . . ., t1.
It follows from Lemma 1.1 that non-expansivity of each Si ensures the
non-expansivity of Wn.

Cho et al. [12] proposed the following iterative scheme: x0 = x ∈ K chosen arbitrarily,
yn = βnxn + (1− βn)Wnxn,
xn+1 = αnf(xn) + (1− αn)yn, f ∈ ΠK , n ≥ 0.

(1.6)

Under the conditions (C1), (C2) and (B4), they also proved the strong
convergence of the sequence {xn}, defined by (1.6), and extended the
results of [8].

Recently, Yao et al. [13] considered the following iterative algorithm:{
x0 = x ∈ K chosen arbitrarily,
xn+1 = αnf(xn) + βnxn + (1− αn − βn)Wnxn,

(1.7)

where f ∈ ΠK , {αn} is a sequence in (0, 1), {βn} is a sequence in [0, 1)
and αn+βn < 1, for all n ∈ N . They proved that the iterative algorithm
(1.7) converges strongly to a common fixed points of an infinite countable
family of nonexpansive mappings {Ti}∞i=1.

Shimoji and Takahashi [14] first introduced an iterative algorithm
given by an infinite family of nonexpansive mappings. Furthermore, they
considered the feasibility problem of finding a solution of infinite convex
inequalities and the problem of finding a common fixed point of infinite
nonexpansive mappings. Bauschke and Borwein [15] pointed out that
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the well-known convex feasibility problem reduced to finding a point
in the intersection of the fixed point sets of a family of nonexpansive
mappings. The problem of finding an optimal point that minimizes
a given cost function over the common set of fixed points of a family
of nonexpansive mappings is of wide interdisciplinary interest having
practical importance (see [16]). A simple algorithmic solution to the
problem of minimizing a quadratic function over the common set of
fixed points of a family of nonexpansive mappings is of extreme value in
many applications including set theoretic signal estimation (see [16,17]).

Noor [18] first introduced a three-step iterative sequence and stud-
ied the approximate solutions of variational inclusion in Hilbert spaces.
Glowinski and Le Tallec [19] applied a three-step iterative sequence for
finding the approximate solution of the elastoviscoplasticity problem,
eigenvalue problem and liquid crystal theory. In [19], they showed that
the three-step iterative schemes performed better than the Ishikawa type
and Mann type iterative methods. Haubruge et al. [20] studied the con-
vergence analysis of the three-step iterations to obtain new splitting
type algorithms for solving variational inequalities, separable convex
programming and minimization of a sum of convex functions. They
proved that three-step iterations lead to highly parallelized algorithms
under certain conditions. Thus, three-step iteration process and multi-
step iteration process have been investigated extensively by some authors
(see [21–24] and the references therein).

Motivated and inspired by these facts, as the viscosity approximation
method, we consider a new modified Noor iteration scheme for an infinite
family of λi−strict pseudo-contractive mappings {Ti}∞i=1:

x0 = x ∈ K,
zn = αnf(xn) + βnxn + (1− αn − βn)Wnxn,
yn = (1− bn)zn + bnWnzn,
xn+1 = (1− cn)yn + cnWnyn, ∀n ≥ 0,

(1.8)

where {αn}, {bn}, {βn}, {cn}, {αn + βn} ⊂ (0, 1), f ∈ ΠK , and Wn is
a mapping defined by (1.5). If bn = cn = 0, for all n ≥ 0, then (1.8)
reduces to (1.7). By using viscosity approximation methods, our purpose
here is to study some sufficient and necessary conditions of the three-step
iterative algorithm (1.8) for finding approximate common fixed points
of an infinite countable family of λi−strict pseudo-contractive mappings
{Ti}∞i=1. The results presented here extend and improve some recent
results.
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2. Preliminaries

Let E be a Banach space with dimension E ≥ 2 and E∗ be its dual.
The modulus of convexity of E is the function δE : (0, 2] → [0, 1], defined
by

δE(ε) = inf
{

1− 1
2
‖x + y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0, for all
ε ∈ (0, 2]. A Banach space E is said to be strictly convex if

‖x‖ = ‖y‖ = 1, x 6= y implies
‖x + y‖

2
< 1.

Let S(E) = {x ∈ E : ‖x‖ = 1}. The space E is said to be Gâteaux
differentiable (and E is said to be smooth) if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists, for all x, y ∈ S(E). For any x, y ∈ E(x 6= 0), we denote this limit
by (x, y). The norm is said to be uniformly Gâteaux differentiable if for
y ∈ S(E), the limit is attained uniformly for x ∈ S(E). The norm ‖·‖ of
E is said to be Fréchet differentiable if for all x ∈ S(E), the limit (x, y)
exists uniformly, for all y ∈ S(E). It is known that E is smooth if and
only if each normalized duality mapping J is single-valued.

Let ρE : [0,∞) → [0,∞) be the modulus of smoothness of E defined
by

ρE(t) = sup
{

1
2
(‖x + y‖+ ‖x− y‖)− 1 : x ∈ S(E), ‖y‖ ≤ t

}
.

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0, as t → 0.

A Banach space E is said to be q−unifromly smooth if there exists a
fixed constant c > 0 such that ρE(t) ≤ ctq. It is well-known that E
is uniformly smooth if and only if the norm of E is uniformly Fréchet
differentiable. a typical example of both uniformly convex and uniformly
smooth Banach space is Lp (p > 1).

Let K be a nonempty subset of a Banach space E. For x ∈ K, the
inward set of x, IK(x), is defined by IK(x) := {x+λ(u−x) : u ∈ K, λ ≥
1}. A mapping T : K → E is said to be weakly inward if Tx ∈ cl[IK(x)],
for all x ∈ K, where cl[IK(x)] denotes the closure of the inward set. It
is obvious that every self-map is trivially weakly inward.
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Let C and D be nonempty subsets of a Banach space E such that C
is nonempty closed convex and D ⊂ C. Then a mapping P : C → D is
said to be retraction if Px = x, for all x ∈ C. A retraction P : C → D
is said to be sunny [25] if P (Px + t(x − Px)) = Px, for all x ∈ C and
t ≥ 0, with Px + t(x− Px) ∈ C.

Suppose that {xn} is a sequence in E. In the sequel, xn → x (respec-
tively, xn ⇀ x) will denote strong (respectively, weak) convergence of
the sequence {xn} to x.

Concerning Wn, the following two lemmas play crucial roles in proving
our main results.

Lemma 2.1. (see [14]) Let K be a nonempty closed convex subset of a
strictly convex Banach space E. Let T1, T2, . . . be nonexpansive mappings
of K into itself such that

⋂∞
n=1 F (Tn) is nonempty and γ1, γ2, . . . are real

numbers such that 0 < γn ≤ b < 1, for any n ≥ 1. Then, for any x ∈ K
and k ∈ N , limn→∞ Un,kx exists.

Using Lemma 2.1, we can define the mapping W of K into itself as
follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈ K.

Such a mapping W is said to be the W -mapping generated by T1, T2, . . .
and γ1, γ2, . . ., t1, t2, . . ., tn. Throughout this paper, we will assume
that 0 < γn ≤ b < 1, for all n ≥ N, ti ∈ (0, µ) and µ = min{1, ( qλ

Cq
)

1
q−1 },

where λ = inf λi > 0, ∀i ∈ N.

Lemma 2.2. (see [14]) Let K be a nonempty closed convex subset of a
strictly convex Banach space E. Let S1, S2, . . . be nonexpansive mappings
of K into itself such that

⋂∞
n=1 F (Sn) is nonempty and γ1, γ2, . . . are

real numbers such that 0 < γn ≤ b < 1, for any n ≥ 1. Then, F (W ) =⋂∞
n=1 F (Sn).

It follows from Lemma 1.1 and Lemma 2.2 that F (W ) =
⋂∞

n=1 F (Sn)=⋂∞
n=1 F (Tn).
We also need the following lemmas for the proof of our main results.

Lemma 2.3. Let E be a real Banach space and J : E → 2E∗
be the

normalized duality mapping. Then, for any x, y ∈ E, the following
inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, j(x + y) ∈ J(x + y).



Noor iterations for strict pseudo-contraction mappings 51

Lemma 2.4. (see [6, Lemma 2.5]) Let {an} be a sequence of nonnegative
real numbers satisfying the following relation:

an+1 ≤ (1− λn)an + λnσn + µn, n ≥ 0,

where, (i) {λn} ⊂ [0, 1],
∑∞

n=1 λn = ∞; (ii) lim supn→∞ σn ≤ 0; and
(iii) µn ≥ 0,

∑∞
n=1 µn < ∞. Then, {an} converges to zero, as n →∞.

Lemma 2.5. (see [26]) Let {xn}, {yn} be two bounded sequences in a
Banach space E and βn ∈ [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn

< 1. Suppose xn+1 = βnyn + (1 − βn)xn, for all integers n ≥ 0, and
lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) ≤ 0. Then, limn→∞‖xn−yn‖ =
0.

Lemma 2.6. (see [27]) Let E be a uniformly smooth Banach space and
K be a closed convex subset of E. Let T : K → K be a nonexpansive
mapping with F (T ) 6= ∅ and f ∈ ΠK . Then, the sequence {xt}, defined
by

xt = tf(xt) + (1− t)Txt,

converges strongly to a point in F (T ). If we define a mapping P : ΠK →
F (T ) by

P (f) := lim
t→0

xt, ∀f ∈ ΠK ,

then P (f) solves the following variational inequality:

〈(I − f)P (f), J(P (f)− p)〉 ≤ 0, ∀f ∈ ΠK , p ∈ F (T ).

3. Main Results

Theorem 3.1. Let K be a closed convex subset of a real q−uniformly
smooth and strictly convex Banach space E. Let Ti be a λi−strict
pseudo-contractive mapping from K into itself, for i ∈ N. Assume that
F =

⋂∞
i=1 F (Ti) 6= ∅ and f ∈ ΠK . Suppose that the sequences {αn},

{βn}, {bn}, {cn} and {αn + βn} in (0, 1) satisfy the following condi-
tions:
(1)

∑∞
n=1 αn = ∞, limn→∞ αn = 0;

(2) limn→∞ bn = 0, limn→∞ cn = 0;
(3) lim supn→∞ βn < 1.
Then, the modified Noor iterative scheme defined by (1.8) converges
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strongly to P (f) ∈ F , where P (f) is the unique solution of the following
variational inequality:

〈(I − f)P (f), J(P (f)− p)〉 ≤ 0, ∀f ∈ ΠK , p ∈ F.

Proof. We proceed with the following steps.
Step 1. We should prove that ‖xn−p‖ ≤ max{‖x0−p‖, (1/(1−α))‖f(p)−
p‖}, for all n ≥ 0 and all p ∈ F . So, {yn}, {zn}, {f(xn)}, {Wnxn},
{Wnyn} and {Wnzn} are bounded. Indeed, take a point p ∈ F . It
follows from (1.8) that

‖zn − p‖ = ‖αn(f(xn)− p) + βn(xn − p)
+ (1− αn − βn)(Wnxn − p)‖

≤ αn‖f(xn)− p‖+ βn‖xn − p‖
+ (1− αn − βn)‖Wnxn − p‖

≤ αn(‖f(xn)− f(p)‖+ ‖f(p)− p‖) + βn‖xn − p‖
+ (1− αn − βn)‖xn − p‖

≤ (1− αn)‖xn − p‖+ αnα‖xn − p‖+ αn‖f(p)− p‖
= (1− (1− α)αn)‖xn − p‖+ αn‖f(p)− p‖

≤ max{‖xn − p‖, 1
1− α

‖f(p)− p‖},(3.1)

‖yn − p‖ = ‖(1− bn)(zn − p) + bn(Wnzn − p)‖
≤ (1− bn)‖zn − p‖+ bn‖Wnzn − p‖
≤ (1− bn)‖zn − p‖+ bn‖zn − p‖ = ‖zn − p‖.(3.2)

It follows from (1.8), (3.1) and (3.2) that

‖xn+1 − p‖ = ‖(1− cn)(yn − p) + cn(Wnyn − p)‖
≤ (1− cn)‖yn − p‖+ cn‖yn − p‖ = ‖yn − p‖

≤ ‖zn − p‖ ≤ max{‖xn − p‖, 1
1− α

‖f(p)− p‖}.(3.3)

Using mathematical induction, we obtain:

‖xn − p‖ ≤ max{‖x0 − p‖, 1
1− α

‖f(p)− p‖},(3.4)

for all n ≥ 0. Hence, {xn} is bounded, and so are {yn}, {zn}, {f(xn)},
{Wnxn}, {Wnyn} and {Wnzn}.
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Step 2. We prove:

lim
n→∞

‖xn+1 − xn‖ = 0.(3.5)

Indeed, putting ln = xn+1−ρnxn

1−ρn
, we have

xn+1 = ρnxn + (1− ρn)ln, ∀n ≥ 0.(3.6)

It follows from (1.5) and (1.8) that

zn = αnf(xn) + βnxn + (1− αn − βn)Wnxn

= αnf(xn) + βnxn + (1− αn − βn)[γ1S1Un,2xn + (1− γ1)xn]
= αnf(xn) + [1− (1− γ1)αn − (1− βn)γ1]xn

+ (1− αn − βn)γ1S1Un,2xn

= αnf(xn) + ρnxn + (1− αn − ρn)S1Un,2xn,(3.7)

where ρn = 1 − (1 − γ1)αn − (1 − βn)γ1. It follows from conditions (1)
and (3) that 0 < lim infn→∞ ρn ≤ lim supn→∞ ρn < 1. It follows from
(3.6), (3.7) and (1.8) that

ln+1 − ln =
(1− cn+1)yn+1 + cn+1Wn+1yn+1 − ρn+1xn+1

1− ρn+1

− (1− cn)yn + cnWnyn − ρnxn

1− ρn

=
cn+1(Wn+1yn+1 − yn+1) + yn+1 − ρn+1xn+1

1− ρn+1

− cn(Wnyn − yn) + yn − ρnxn

1− ρn

=
cn+1

1− ρn+1
(Wn+1yn+1 − yn+1)−

cn

1− ρn
(Wnyn − yn)

+
bn+1

1− ρn+1
(Wn+1zn+1 − zn+1)−

bn

1− ρn
(Wnzn − zn)

+
αn+1

1− ρn+1
(f(xn+1)− S1Un+1,2xn+1)

− αn

1− ρn
(f(xn)− S1Un,2xn) + (S1Un+1,2xn+1

− S1Un+1,2xn) + (S1Un+1,2xn − S1Un,2xn).
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We have

‖ln+1 − ln‖ ≤ cn+1

1− ρn+1
‖Wn+1yn+1 − yn+1‖+

cn

1− ρn
‖Wnyn − yn‖

+
bn+1

1− ρn+1
‖Wn+1zn+1 − zn+1‖+

bn

1− ρn
‖Wnzn − zn‖

+
αn+1

1− ρn+1
‖f(xn+1)− S1Un+1,2xn+1‖

+
αn

1− ρn
‖f(xn)− S1Un,2xn‖

+ ‖xn+1 − xn‖+ ‖S1Un+1,2xn − S1Un,2xn‖.(3.8)

Since Si and Un, i are nonexpansive, from (1.5), we obtain:

‖S1Un+1, 2xn − S1Un, 2xn‖ ≤ ‖Un+1, 2xn − Un, 2xn‖
= ‖γ2S2Un+1, 3xn − γ2S2Un, 3xn‖
≤ γ2‖Un+1, 3xn − Un, 3xn‖
= γ2‖γ3S3Un+1, 4xn − γ3S3Un, 4xn‖
≤ γ2γ3‖Un+1, 4xn − Un, 4xn‖
≤ · · ·
≤ γ2γ3 · · · γn‖Un+1, n+1xn − Un, n+1xn‖

≤ M

n∏
i=2

γi,(3.9)

where M ≥ 0 is a constant such that ‖Un+1, n+1xn − Un, n+1xn‖ ≤ M ,
for all n ≥ 0. Substituting (3.9) into (3.8), we have

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤ cn+1

1− ρn+1
‖Wn+1yn+1 − yn+1‖

+
cn

1− ρn
‖Wnyn − yn‖

+
bn+1

1− ρn+1
‖Wn+1zn+1 − zn+1‖

+
bn

1− ρn
‖Wnzn − zn‖

+
αn+1

1− ρn+1
‖f(xn+1)− S1Un+1, 2xn+1‖

+
αn

1− ρn
‖f(xn)− S1Un, 2xn‖+ M

n∏
i=2

γi.



Noor iterations for strict pseudo-contraction mappings 55

From the conditions (1), (2), (3) and 0 < γn ≤ b < 1, we get

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

It follows from Lemma 2.5 that limn→∞‖ln−xn‖ = 0. Notice that using
(3.6), we obtain:

xn+1 − xn = (1− ρn)(ln − xn).

Thus, we get limn→∞‖xn+1 − xn‖ = 0.
Step 3. We will show limn→∞‖Wzn − zn‖ = 0. Observing that xn+1 −
yn = cn(Wnyn − yn), yn − zn = bn(Wnzn − zn) and condition (2), we
have

lim
n→∞

‖xn+1 − yn‖ = 0, lim
n→∞

‖yn − zn‖ = 0.(3.10)

On the other hand, we have

‖yn − xn‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − xn‖.
This, together with (3.5) and (3.10), imply:

lim
n→∞

‖yn − xn‖ = 0.(3.11)

It follows from (1.8) that

‖xn −Wnxn‖ ≤ ‖xn − yn‖+ ‖yn − zn‖+ ‖zn −Wnxn‖
≤ ‖xn − yn‖+ ‖yn − zn‖+ βn‖xn −Wnxn‖
+ αn‖f(xn)−Wnxn‖.

This implies:

(1− βn)‖xn −Wnxn‖ ≤ ‖xn − yn‖+ ‖yn − zn‖+ αn‖f(xn)−Wnxn‖.
From condition (2), (3), (3.10) and (3.11), we have

lim
n→∞

‖xn −Wnxn‖ = 0.(3.12)

It follows from (1.8) that zn − xn = (1− βn)(Wnxn − xn) + αn(f(xn)−
Wnxn). Therefore, we have

‖zn − xn‖ ≤ (1− βn)‖Wnxn − xn‖+ αn‖f(xn)−Wnxn‖
≤ ‖Wnxn − xn‖+ αn(‖f(xn)‖+ ‖Wnxn‖).

This, together with (3.12) and limn→∞ αn = 0, imply limn→∞‖zn −
xn‖ = 0. Noticing that

‖zn −Wnzn‖ ≤ ‖zn − xn‖+ ‖xn −Wnxn‖+ ‖Wnxn −Wnzn‖
≤ 2‖zn − xn‖+ ‖xn −Wnxn‖,
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we have limn→∞‖zn −Wnzn‖ = 0. On the other hand, we have

‖Wzn − zn‖ ≤ ‖Wzn −Wnzn‖+ ‖Wnzn − zn‖.(3.13)

From [28, Remark 2.2], we have

‖Wzn −Wnzn‖ → 0 (n →∞).

This together with (3.13) imply:

lim
n→∞

‖Wzn − zn‖ = 0.(3.14)

Step 4. We show that lim supn→∞〈P (f)− f(P (f)), J(P (f)− zn)〉 ≤ 0,
where P (f) = limt→0+ xt, with xt being the fixed point of the contrac-
tion,

x 7→ tf(x) + (1− t)Wx.

Then, we can write

xt − znj = t(f(xt)− znj ) + (1− t)(Wxt − znj ).(3.15)

Suppose that a subsequence {znj} ⊂ {zn} is such that

lim sup
n→∞

〈P (f)− f(P (f)), J(P (f)− zn)〉

= lim
j→∞

〈P (f)− f(P (f)), J(P (f)− znj )〉(3.16)

and znj ⇀ p, for some p ∈ E. It follows from (3.14) that limj→∞‖znj −
Wznj‖ = 0. Putting

fj(t) = (1− t)2‖znj −Wznj‖(2‖xt − znj‖
+ ‖znj −Wznj‖) → 0 (j →∞),(3.17)

it follows from (3.15), Lemma 2.3 and Step 3 that

‖xt − znj‖2 ≤ (1− t)2‖Wxt − znj‖2 + 2t〈f(xt)− znj , J(xt − znj )〉
≤ (1− t)2(‖Wxt −Wznj‖+ ‖Wznj − znj‖)2

+ 2t〈f(xt)− xt, J(xt − znj )〉
+ 2t〈xt − znj , J(xt − znj )〉
= (1− t)2‖xt − znj‖2 + fj(t) + 2t〈f(xt)− xt, J(xt − znj )〉
+ 2t‖xt − znj‖2.(3.18)

The last inequality implies:

〈xt − f(xt), J(xt − znj )〉 ≤
t

2
‖xt − znj‖2 +

1
2t

fj(t).
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Letting j →∞ and noting (3.17) yield:

lim sup
j→∞

〈xt − f(xt), J(xt − znj )〉 ≤
t

2
M1,(3.19)

where M1 > 0 is a constant such that M1 ≥ ‖xt − znj‖2, for all n ≥ 0
and t ∈ (0, 1). Taking t → 0 in (3.19) and noticing the fact that the two
limits are interchangeable due to the fact that J is uniformly continuous
on bounded subsets of E from the strong topology of E to the weak∗

topology of E∗, we have

lim sup
j→∞

〈P (f)− f(P (f)), J(P (f)− znj )〉 ≤ 0.(3.20)

Indeed, letting t → 0, from (3.19) we have

lim sup
t→0

lim sup
j→∞

〈xt − f(xt), J(xt − znj )〉 ≤ 0.(3.21)

Thus, for arbitrary ε > 0, there exists a positive number δ1 such that
for any t ∈ (0, δ1), we have

lim sup
j→∞

〈xt − f(xt), J(xt − znj )〉 ≤
ε

2
.(3.22)

Since xt → P (f), as t → 0, the set {xt−znj} is bounded and the duality
mapping J is norm-to-norm uniformly continuous on bounded subset of
E, then there exists δ2 > 0 such that, for any t ∈ (0, δ2),

|〈P (f)− f(P (f)), J(P (f)− znj )〉 − 〈xt − f(xt), J(xt − znj )〉|
= |〈P (f)− f(P (f)), J(P (f)− znj )− J(xt − znj )〉

+〈P (f)− f(P (f))− (xt − f(xt)), J(xt − znj )〉|
≤ |〈P (f)− f(P (f)), J(P (f)− znj )− J(xt − znj )〉|

+‖P (f)− f(P (f))− (xt − f(xt))‖‖xt − znj‖ < ε/2.

Choose δ = min{δ1, δ2}. Then, for all t ∈ (0, δ) and j ∈ N , we have

〈P (f)− f(P (f)), J(P (f)− znj )〉 < 〈xt − f(xt), J(xt − znj )〉+
ε

2
,

which implies:

lim sup
j→∞

〈P (f)− f(P (f)), J(P (f)− znj )〉

≤ lim sup
j→∞

〈xt − f(xt), J(xt − znj )〉+
ε

2
.

This together with (3.22) imply:

lim sup
j→∞

〈P (f)− f(P (f)), J(P (f)− znj )〉 ≤ ε.
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Since ε is arbitrary, we have lim supj→∞〈P (f) − f(P (f)), J(P (f) −
znj )〉 ≤ 0.
Step 5. We claim that limn→∞‖xn −P (f)‖ = 0. Indeed, it follows from
(3.3) and (1.8) that

‖xn+1 − P (f)‖ ≤ ‖zn − P (f)‖ = ‖(1− αn − βn)(Wnxn − P (f))
+ βn(xn − P (f)) + αn(f(xn)− P (f))‖.

Thus, it follows from Lemma 2.3 and (3.1) that

‖xn+1 − P (f)‖2 ≤ ‖zn − P (f)‖2

≤ ‖(1− αn − βn)(Wnxn − P (f)) + βn(xn − P (f))‖2

+ 2αn〈f(xn)− P (f), J(zn − P (f))〉
≤ ((1− αn − βn)‖Wnxn − P (f)‖+ βn‖xn − P (f)‖)2

+ 2αn〈f(xn)− f(P (f)), J(zn − P (f))〉
+ 2αn〈f(P (f))− P (f), J(zn − P (f))〉
≤ (1− αn)2‖xn − P (f)‖2

+ 2ααn‖xn − P (f)‖‖zn − P (f)‖
+ 2αn〈f(P (f))− P (f), J(zn − P (f))〉
≤ (1− αn)2‖xn − P (f)‖2 + 2ααn‖xn − P (f)‖2

+ 2αn〈f(P (f))− P (f), J(zn − P (f))〉.
Therefore, we obtain:

‖xn+1 − P (f)‖2 ≤ (1− 2(1− α)αn + α2
n)‖xn − P (f)‖2

+ 2αn〈f(P (f))− P (f), J(zn − P (f))〉
≤ (1− 2(1− α)αn‖xn − P (f)‖2

+ α2
nM2

2 + 2αn〈f(P (f))− P (f), J(zn − P (f))〉,(3.23)

where M2 = supn≥0‖xn − P (f)‖. Set

λn = 2(1− α)αn,
σn = αn

2(1−α)M
2
2 + 1

1−α〈f(P (f))− P (f), J(zn − P (f))〉.

It follows from condition (1) and Step 4 that λn → 0,
∑∞

n=1 λn = ∞,
and lim supn→∞ σn ≤ 0. Then, (3.23) reduces to

‖xn+1 − P (f)‖2 ≤ (1− λn)‖xn − P (f)‖2 + αnσn.

From Lemma 2.4 with µn = 0, we see that limn→∞‖xn − P (f)‖ = 0.
This completes the proof. �
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Remark 3.2. If {Ti}∞i=1 is composed of nonexpansive mappings, then
the Si = tiTi + (1 − ti)I are also nonexpansive mappings. Therefore,
q−uniformly smoothness cprresponding to E in Theorem 3.1 can be ex-
tended to uniformly smooth. If we take bn = cn = 0 in Theorem 3.1,
then Theorem 3.1 becomes Theorem 2.1 of Cho et al. [12] and Theorem
3.1 of Yao [13].

Remark 3.3. Theorem 3.1 partially improves main results of [11] from
a finite family of λi−strict pseudo-contractions to an infinite family of
λi−strict pseudo-contractions.

If f(x) = u ∈ K, for all x ∈ K, in Theorem 3.1, then we have the
following result.

Theorem 3.4. Let K be a closed convex subset of a real q−uniformly
smooth and strictly convex Banach space E. Let Ti be a λi−strict
pseudo-contractive mapping from K into itself, for i ∈ N. Assume that
F =

⋂∞
i=1 F (Ti) 6= ∅. Suppose that the sequences {αn}, {βn}, {bn}, {cn}

and {αn + βn} in (0, 1) satisfy the following conditions:
(1)

∑∞
n=1 αn = ∞, limn→∞ αn = 0;

(2) limn→∞ bn = 0, limn→∞ cn = 0;
(3) lim supn→∞ βn < 1.
Let {xn} be the three-step iterative scheme defined by

x0 = x ∈ K,
zn = αnu + βnxn + (1− αn − βn)Wnxn,
yn = (1− bn)zn + bnWnzn,
xn+1 = (1− cn)yn + cnWnyn, ∀n ≥ 0,

(3.24)

where {αn}, {bn}, {βn}, {cn}, {αn +βn} ⊂ (0, 1), and Wn is a mapping
defined by (1.5). Then, {xn} converges strongly to z ∈ F , where z =
PF (u), and PF : K → F is the unique sunny nonexpansive retraction
from K onto F .

Remark 3.5. Theorem 3.4 mainly improves Theorem 2.3 of Zhou [29]
from a single λ−strict pseudo-contractive mapping to an infinite family
of λi−strict pseudo-contractive mappings and from one-step iteration
scheme to three-step iteration scheme if K is a closed convex subset of
a 2−uniformly smooth and strictly convex Banach space E.
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