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ON THE AVERAGE NUMBER OF SHARP CROSSINGS
OF CERTAIN GAUSSIAN RANDOM POLYNOMIALS

S. REZAKHAH∗ AND S. SHEMEHSAVAR

Communicated by Fraydoun Rezakhanlou

Abstract. Let Qn(x) =
∑n

i=0 Aix
i be a random algebraic poly-

nomial where the coefficients A0, A1, · · · form a sequence of cen-
tered Gaussian random variables. Moreover, assume that the in-
crements ∆j = Aj −Aj−1, j = 0, 1, 2, · · · , are independent, assum-
ing A−1 = 0. The coefficients can be considered as n consecutive
observations of a Brownian motion. We obtain the asymptotic be-
haviour of the expected number of u-sharp crossings, u > 0, of
polynomial Qn(x). We refer to u-sharp crossings as those zero up-
crossings with slope greater than u, or those down-crossings with
slope smaller than −u. We consider the cases where u is unbounded
and increasing with n, say u = o(n5/4), and u = o(n3/2).

1. Preliminaries

The theory of the expected number of real zeros of random algebraic
polynomials was addressed in the fundamental work of Kac [6]. The
works of Logan and Shepp [7, 8], Ibragimov and Maslova [5], Wilkins
[15], and Farahmand [3] and Sambandham [13, 14] are other fundamental
contributions to the subject. For various aspects on random polynomi-
als, see Bharucha-Reid and Sambandham [1], and Farahmand [4]. There

MSC(2010): Primary: 60H42; Secondary: 60G99.

Keywords: Random algebraic polynomial, number of real zeros, sharp crossings, expected

density, Brownian motion.

Received: 12 October 2009, Accepted: 8 November 2009.

∗Corresponding author

c© 2011 Iranian Mathematical Society.

81



82 Rezakhah and Shemehsavar

has been recent interest in cases where the coefficients form certain ran-
dom processes; see Rezakhah and Soltani [11, 12], and Rezakhah and
Shemehsavar [9, 10]. Let

(1.1) Qn(x) =
∑n

i=0 Aix
i, −∞ < x < ∞,

where, A0, A1, · · · , are mean zero Gaussian random variables for which
the increments ∆i = Ai − Ai−1, i = 1, 2, · · · , are independent, and
A−1 = 0. The sequence A0, A1 · · · may be considered as successive Brow-
nian points, i.e., Aj = W (tj), j = 0, 1, · · · , where, t0 < t1 < · · · , and
{W (t), t ≥ 0} is the standard Brownian motion. In this physical inter-
pretation, Var(∆j) is the distance between successive times tj−1 and tj .
Thus, for j = 1, 2, · · · , we have that Aj = ∆0 + ∆1 + · · · + ∆j , where
∆i ∼ N(0, σ2

i ) are independent. Thus, Qn(x) =
∑n

k=0(
∑n

j=k xj)∆k =∑n
k=0 ak(x)∆k, and Q′

n(x) =
∑n

k=0(
∑n

j=k jxj−1)∆k =
∑n

k=0 bk(x)∆k,
where,

(1.2) ak(x) =
∑n

j=k xj , bk(x) =
∑n

j=k jxj−1, k = 0, · · · , n.

We say that Qn(x) has a zero up-crossing at t0 if there exists ε > 0
such that Qn(x) ≤ 0 in (t0 − ε, t0) and Qn(x) > 0 in (t0, t0+ε). Similarly,
Qn(x) is said to have a zero down crossing at t0 if Qn(x) > 0 in (t0 − ε, t0)
and Qn(x) ≤ 0 in (t0, t0 + ε). We study the asymptotic behavior of the
expected number of u-sharp zero crossings, those zero up-crossings with
slope greater than u > 0, or those down-crossings with slope smaller
than −u.

Cramer and Leadbetter [1967, p. 287] have shown that the expected
number of total zeros of any Gaussian nonstationary process, say Qn(x),
is calculated by the following formula,

EN(a, b) =
∫ b

a
dt

∫ ∞

−∞
|y|pt(0, y)dy,

where, pt(z, y) denotes the joint density of Qn(x) and its derivative
Q′

n(x), and

pt(0, y) = [2πγσ(1− µ2)1/2]−1

× exp
{
− γ2m2 + 2µγσm(y −m′ + σ2(y −m′)2

2γ2σ2(1− µ2)

}
,
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in which, m = E(Qn(x)), m′ = E(Q′
n(x)), σ2 = Var(Qn(x)), γ2 =

Var(Q′
n(x)), and µ = Cov(Qn(x), Q′

n(x))/(γσ).
By a similar method as in Farahmand [4], we find that ESu(a, b),

the expected number of u-sharp zero crossings of Qn(x) in any interval
(a, b), satisfies

(1.3) ESu(a, b) =
∫ b
a dt

∫
{y:|y|>u} |y|pt(0, y)dy =

∫ b
a fn(x)dx,

where,

(1.4) fn(x) = 1
πg1,n(x) exp(g2,n(x)),

and

(1.5) g1,n(x) = FA−2, g2,n(x) = −A2u2

2F 2 ,

in which,

A2 = Var(Qn(x)) =
n∑

k=0

a2
k(x)σ2

k, B2 = Var(Q′
n(x)) =

n∑
k=0

b2
k(x)σ2

k,

D=Cov(Qn(x), Q′
n(x))=

n∑
k=0

ak(x)bk(x)σ2
k, and F 2 = A2B2 −D2,

and ak(x) and bk(x) are defined by (1.2).

2. Asymptotic Behaviour of ESu

In this section, we obtain the asymptotic behavior of the expected
number of u-sharp zero crossings of Qn(x) given by (1.1). We prove
the following theorem for the case that the increments ∆1, · · · ,∆n are
independent and have the same distribution. Also, we assume that σ2

k =
1, for k = 1, · · · , n.

Theorem 2.1. Let Qn(x) be the random algebraic polynomial given
by (1.1) for which Aj = ∆1 + ... + ∆j, where, ∆k, k = 1, ..., n, are
independent and ∆j ∼ N(0, σ2

j ). Then, the expected number of u-sharp
zero crossings of Qn(x) satisfies:
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(i) for u = o(n5/4),

ESu(−∞,∞) =
1
π

log(2n + 1) +
1
π

(1.920134502)

+
1

π
√

2n

(
−π + 2 arctan(

1
2
√

2n
)
)

+
C1

nπ

+
u2

n3π

(
19.05803659− 8

3
ln(n3 + 1)

)
+

u4

n6π

(
−34989.96324 +

32
3

ln(n6 + 1)
)

+ o(n−1),

where, C1 = −0.7190843756 for n even and C1 = 1.716159410 for n
odd.
(ii) for u = o(n3/2),

ESu(−∞,∞) =
1
π

log(2n + 1) +
1
π

(1.920134502) + o(1).

Proof. Due to the behavior of Qn(x), the asymptotic behavior is treated
separately on the intervals 1 < x < ∞, −∞ < x < −1, 0 < x < 1
and −1 < x < 0. For 1 < x < ∞, using (1.3), the change of variable
x = 1 + t

n and the equality
(
1 + t

n

)n = et
(
1− t2

n

)
+ O

(
1
n2

)
, we find

that

ESu(1,∞) =
1
n

∫ ∞

0
fn

(
1 +

t

n

)
dt,

where, fn(·) is defined by (1.4). Using (1.5), and by some tedious ma-
nipulations, we have that

g2,n

(
1 +

t

n

)
= o(n−2),

and

(2.1) n−1g1,n

(
1 + t

n

)
=

(
R1(t) + S1(t)

n + O
(

1
n2

))
,

where,

R1(t) =

√
(4t−15)e4 t+(24t + 32)e3 t−e2 t(8t3+12t2+36t+18) + 8ett + 1

2 t (−1− 3 e2 t + 4 et + 2 te2 t)
.

Also, S1(t) = S11(t)/S12(t), in which,
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S11(t) = −0.25
(
(4t2 − 6t− 27)e6t + (156− 84t + 116t2 − 24t3)e5t

+ (8t4 + 8t3 − 32t2 + 42t− 153)e2t + (28− 4t− 4t2)et

+ (16t5−72t4 + 96t3 − 212t2+220t− 331)e4t

+ (328−168t + 128t2−104t3)e3t − 1),

and

S12(t) =
(
2 e2 tt− 1 + 4 et − 3 e2 t)2

×(1− 8t3e2t−12e2tt2 + 8ett−18e2t−36e2tt−15e4t + 32e3t + 24e3tt + 4te4t)1/2.

One can easily verify that as limt→0 R1(t) = 0, and as t →∞,

R1(t) =
1

2t3/2
+ O(t−2), S1(t) = − 1

8t1/2
+ O(t−3/2).

As (2.1) can not be integrated term by term, we use the equality

(2.2) I[t>1]

8n
√

t
= I[t>1]

8n
√

t+t
√

t
+ O

(
1

n2

)
,

where,

I[t>1] =
{

1 if t ≥ 1
0 if t < 1 .

This is by the fact that
[

I[t>1]

8n
√

t
− I[t>1]

8n
√

t+t
√

t

]
n2 →

√
t/64, as n → ∞, which is

constant for fixed t.
Thus, by (2.2), we have that

1
n

fn

(
1 +

t

n

)
= −

I[t>1]

π(8n
√

t + t
√

t)
+

R1(t)
π

+
1
π

(
S1(t)

n
+

I[t>1]

8n
√

t

)
+ O

(
1
n2

)
.

One should note that the term O(n−2) in the above equation is the result of
some added term of the same order which comes from equations (2.1) and (2.2),
which has a complicated structure. On the other hand, as the total number of
real zeros of the polynomial Qn(x) on (1,∞) is less than or equal to n, so the
left hand side of the above equation is integrable and finite. Also, the integral
of the other terms on the right hand side is also finite and integrable, and so
the integral of the term O(n−2) is finite. Thus, this expression is term by term
integrable, and provides that

ESu(1,∞) =
1
n

∫ ∞

0

fn

(
1 +

t

n

)
dt =

1
2π
√

2n

(
−π + 2 arctan(

1
2
√

2n
)
)

+
1
π

∫ ∞

0

R1(t)dt +
1

πn

∫ ∞

0

(
S1(t) +

I[t>1]

8
√

t

)
dt + O

(
1
n2

)
,
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where,
∫∞
0

R1(t)dt = 0.7348742023 , and
∫∞
0

(
S1(t) + I[t>1](8

√
t)−1

)
dt =

−0.2496371198. For−∞ < x < −1, using x = −1− t
n , we have ESu(−∞,−1) =

1
n

∫∞
0

fn

(
−1− t

n

)
dt, where, fn(·) is defined by (1.4), and by (1.5),

(2.3) n−1g1,n

(
−1− t

n

)
=

(
R2(t) + S2(t)

n + O
(

1
n2

))
,

where,

R2(t) = 1/2

√
−2 e2 t + e4 t + 1− 12 e2 tt2 − 8 t3e2 t + 4 te4 t − 4 te2 t

t2 (e2 t − 1 + 2 te2 t)2
,

for n even, S2(t) = S21(t)+S22(t)
4S23(t)

, and for n odd, S2(t) = S21(t)−S22(t)
4S23(t)

, in which,

S21(t) = 1 +
(
−8 t4 + 30 t− 8 t3 + 48 t2 − 3

)
e2 t

+
(
3− 12t + 52t2 + 96t3 + 40t4 − 16 t5

)
e4 t−

(
18t + 4t2 + 1

)
e6 t,

S22(t) =
(
8 t + 32 t3 + 40 t2

)
e3 t +

(
−8 t2 − 12 t

)
e5 t + 4 ett,

S23(t) =
(
e4 t(4t + 1)− 2e2t(1 + 2t + 6t2 + 4t3) + 1

)1/2 (
e2 t(2t + 1)− 1

)2
.

Also,

(2.4) g2,n

(
−1− t

n

)
=

(
u2

n3

)
G2,1(t) + o

(
1
n

)
,

where,

G2,1(t) =
16

(
2 e2 tt + e2 t − 1

)
t3

2 e2 t − e4 t + 12 e2 tt2 − 1 + 8 e2 tt3 − 4 e4 tt + 4 e2 tt
.

It can be seen that as t →∞,

R2(t) =
1

2t3/2
+ O(t−2), S2(t) =

−1
8t1/2

+ O(t−3/2), G2,1(t) = o(e−t).

Now, by using the equality (2.2), we have that

1
n

fn(−1− t

n
) = −

I[t>1]

π(8n
√

t + t
√

t)
+

1
π

(
R2(t) +

1
n

(S2(t) +
I[t>1]

8
√

t
)

+
u2

n3
R2(t)G2,1(t) +

u4

2n6
R2(t)G2

2,1(t)
)

+ o
(
n−1

)
.

Thus,

ESu(−∞,−1) =
1

n

∫ ∞

0

fn(−1− t

n
) =

1

2π
√

2n

(
−π + 2arctan(

1

2
√

2n
)

)
+

1

π

∫ ∞

0

R2(t)dt +
1

nπ

∫ ∞

0

(
S2(t) +

I[t>1]

8
√

t

)
dt

+
u2

n3π

∫ ∞

0

R2(t)G2,1(t)dt +
u4

n6π

∫ ∞

0

1

2
R2(t)G

2
2,1(t)dt + o

(
n−1) ,
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where,
∫∞
0

R2(t)dt = 1.095640061 , and∫ ∞

0

R2(t)G2,1(t)dt = −2.418589510,

∫ ∞

0

1
2
R2(t)G2

2,1(t)dt = 7.057233216,

and for n odd,
∫∞
0

(
S2(t) + I[t>1](8

√
t)−1

)
dt = −0.0322863105, and for n

even,
∫∞
0

(
S2(t) + I[t>1](8

√
t)−1

)
dt = −0.4677136959. For 0 < x < 1, let

x = 1 − t
n+t . Then, ESu(0, 1) =

∫∞
0

(
n

(n+t)2

)
fn

(
1− t

n+t

)
dt, where, fn(·)

is defined by (1.4), and by (1.5),

(2.5) g2,n

(
1− t

n+t

)
= o(n−2),

and

n

(n + t)2
g1,n

(
1− t

n + t

)
=

(
1− 2t

n
+ O

(
1

n2

)) (
R3(t) +

S3(t)

n
+ O

(
1

n2

))
(2.6) =

(
R3(t) +

S3(t)− 2tR3(t)

n

)
+ O

(
1

n2

)
,

where, we observe that R3(t) ≡ R1(−t) and S3(t) = S31(t)/S32(t), in which,

S31(t) =

(
−7t2 − 69

2
t− 63

4

)
e−6t +

(
6t3 + 35t− 55t2 + 39

)
e−5t

+

(
49t− 4t5 + 22t4 + 91t2 − 63

4
− 12t3

)
e−4t

− (6t3 + 30 + 44t2 + 66t)e−3t +
(
−9− t− t2

)
e−t + 3/4

+

(
35

2
t + 2t4 − 6t3 + 16t2 +

123

4

)
e−2t,

and, S32(t) ≡ S12(−t). Now, as t → ∞ , R3(t) = 1
2t + O(t−1/2e−t/2), and

S3(t) = 3
4 + O(t2e−t). Since the relation (2.6) is not term by term integrable,

we use the equality

(2.7) I[t>1]

2t − I[t>1]

4n+2t = I[t>1]

2t − I[t>1]

4n + O
(

1
n2

)
,

which is valid by a similar reason as stated for the equality (2.2). Thus, by the
relations (1.4), (2.5), (2.6) and (2.7) we have that

n

(n + t)2
fn(1− t

n + t
) =

1
π

(
R3(t)−

I[t>1]

2t

)
+

1
π

(
I[t>1]

2t
−

I[t>1]

4n + 2t

)
+

1
nπ

(
S3(t)− 2tR3(t) +

I[t>1]

4

)
+ O

(
1
n2

)
.
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Using these calculations, one can easily verify that

ESu(0, 1) =
∫ ∞

0

n

(n + t)2
fn(1− t

n + t
)dt

=
1
π

∫ ∞

0

(
R3(t)−

I[t>1]

2t

)
dt +

1
2π

(log(4n + 2)− log(2))

(2.8) +
1

nπ

∫ ∞

0

(
S3(t)− 2tR3(t) +

I[t>1]

4

)
dt + O

(
1
n2

)
,

where, ∫ ∞

0

(
R3(t)−

I[t>1]

2t

)
dt = −0.2897712456∫ ∞

0

(
S3(t)− 2tR3(t) +

I[t>1]

4

)
dt = 0.498174649.

This is valid by a similar reason as stated for ESu(1,∞).
For −1 < x < 0, let x = −1 + t

n+t . Then,

ESu(−1, 0) =
∫ ∞

0

(
n

(n + t)2

)
fn

(
−1 +

t

n + t

)
dt.

Using (1.4) and (1.5) we have that

(2.9)
(

n
(n+t)2

)
g1,n(t) =

(
n2

(n+t)2

) (
R4(t) + S4(t)

n + O
(

1
n2

))
,

in which, R4(t) ≡ R2(−t). Here, for n even, S4(t) = S41(t)+S42(t)
4S43(t)

and for n

odd, S4(t) = S41(t)−S42(t)
4S43(t)

, where,

S41(t) = 8
(
−9/4 t + 6 t2 − 3 t3 − 9

8
+ t4

)
e−2 t

+8
(

15 t4 − 3/2 t− 22 t3 +
9
8

+ 19/2 t2 − 2 t5
)

e−4 t

+8
(

15
4

t− 7/2 t2 − 3/8
)

e−6 t + 3,

S42(t) ≡ S22(−t), and S43(t) ≡ S23(−t). Finally, we have

(2.10) g2,n

(
−1 + t

n+t

)
=

(
u2

n3

)
G2,1(t) + o(n−1),

where,

G2,1(t) = −
16

(
−e−2 t + 1 + 2 e−2 tt

)
t3

(−4 e−4 tt + e−4 t − 12 e−2 tt2 + 4 e−2 tt + 1 + 8 e−2 tt3 − 2 e−2 t)
.
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As t →∞, we have

R4(t) =
1
2t

+ O(t1/2e−t), S4(t) =
3
4

+ O(te−t), G2,1(t) = −16t3 + O(t4e−2t).

Therefore,

n2

(n + t)2
fn(−1 +

t

n + t
) =

1

π

(
1− 2t

n
+ O(

1

n2
)

) (
R4(t) +

S4(t)

n
+ O(

1

n2
)

)
×

(
1 +

u2

n3
G2,1(t) +

u4

2n6
G2

2,1(t) + o(n−1)

)
=

1

π

{
R4(t) +

S4(t)− 2tR4(t)

n
+

u2

n3
R4(t)G2,1(t)

+
u4

2n6
R4(t)G

2
2,1(t)

}
+ o(n−1).

Since this is not term by term integrable, following this we use (2.7) and the
following equalities:

8u2t2

n3
=

8u2t2

n3 + exp(t3)
+ o(n−2) ,

64u4t5

n6
=

64u4t5

n6 + exp(t6)
+ o(n−2).

Thus, we have that

ESu(−1, 0) =
∫ ∞

0

n2

(n + t)2
fn(−1 +

t

n + t
)

=
1
2π

(log(2n + 1)) +
1
π

{∫ ∞

0

(R4(t)−
I[t>1]

2t
)dt(2))dt

+
1
n

∫ ∞

0

(S4(t)− 2tR4(t) +
I[t>1]

4
)dt

+
u2

n3

∫ ∞

0

(R4(t)G2,1(t) + 8t2)dt− u2

∫ ∞

0

8t2

n3 + exp(t3)
dt

+
u4

n6

∫ ∞

0

(
1
2
R4(t)G2

2,1(t)− 64t5)dt + u4

∫ ∞

0

64t5

n6 + exp(t6)
dt

}
+ o(n−1),

where, ∫ ∞

0

(R4(t)−
I[t>1]

2t
)dt = 0.3793914851,

∫ ∞

0

(R4(t)G2,1(t) + 8t2)dt = 21.47662610,∫ ∞

0

(
1
2
R4(t)G2

2,1(t)− 64t5)dt = −34997.02047,
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and we have for n even,
∫∞
0

(S4(t)− 2tR4(t) + I[t>1]

4 )dt = −0.4999081999, and
for n odd,

∫∞
0

(S4(t)− 2tR4(t) + I[t>1]

4 )dt = 1.499908200. Also, we have that∫ ∞

0

8t2

n3 + exp(t3)
dt =

8 log(n3 + 1)
3n3

,

∫ ∞

0

64t5

n6 + exp(t6)
dt =

32 log(n6 + 1)
3n6

.

So, we arrive at the first assertion of the theorem.

Now, for the proof of the second part of the theorem, that is, for the case k =
o(n3/2), we study the asymptotic behavior of ESu(a, b) for different intervals
(−∞,−1), (−1, 0), (0, 1) and (1,∞) separately.

For 1 < x < ∞, using the change of variable x = 1 + t
n , and by (1.4), (1.5),

and (2.1), we find that

1
n

∫ ∞

0

fn(1 +
t

n
)dt =

1
π

∫ ∞

0

R1(t)dt + o(1),

where,
∫∞
0

R1(t)dt = 0.734874192 .
For −∞ < x < −1, using the change of variable x = −1 − t

n , and by the
fact that u2/n3 = o(1), as n →∞, we have that

exp{u2G2,1(−1− t/n)/n3} = 1 + o(1).

Therefore, the relations (2.4) implies that exp{g2(−1− t/n)} = 1+o(1). Thus,
by the relations (1.4), (1.5), (2.3), (2.4), we have that

1
n

∫ ∞

0

fn(−1− t

n
)dt =

1
π

∫ ∞

0

R2(t)dt + o(1),

where,
∫∞
0

R2(t)dt = 1.095640061.
For 0 < x < 1, using the change of variable x = 1 − t

n+t , and relations
(1.4),(1.5),(2.5),(2.6), and by using the equality (2.7), we have that∫ ∞

0

n

(n + t)2
fn(−1− t

n + t
)dt =

1
π

∫ ∞

0

(R3(t)−
I[t > 1]

2t
)dt

+
1
2π

log (2n + 1) + o(1),

where,
∫∞
0

(R3(t)− I[t>1]
2t )dt = −0.28977126.

For −1 < x < 0, using the change of variable x = −1 + t
n+t , (2.9), and by the

same reasoning as above, the case −∞ < x < −1, we have that exp{g2(−1 +
t

n+t )} = 1 + o(1) . Thus, by using the relations (2.9),(2.10), and by using the
equality (2.7), we have that∫ ∞

0

n

(n + t)2
fn(−1 +

t

n + t
)dt =

1
π

∫ ∞

0

(R4(t)−
I[t > 1]

2t
)dt

+
1
2π

log (2n + 1) + o(1),
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where,
∫∞
0

(R4(t) − I[t>1]
2t )dt = 0.3793914850. This complete the proof of the

theorem. �
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