Bulletin of the Iranian Mathematical Society Vol. 37 No. 1 (2011), pp 93-100.

ON IMAGES OF CONTINUOUS FUNCTIONS FROM A COMPACT MANIFOLD TO EUCLIDEAN SPACE

R. MIRZAIE

Communicated by Jost-Hinrich Eschenburg

ABSTRACT. We show that typical elements of the set of continuous functions from a compact differentiable manifold M to \mathbb{R}^n are nowhere differentiable. Then, we study the box dimensions of typical elements in the set of images of M in \mathbb{R}^n .

1. Introduction

We recall that a subset Y of a metric space (X, d) is called a comeagre subset, if Y contains an intersection of a countable number of open dense subsets. Each element of a comeagre subset is called a *typical element*. By Baire's category theorem, if X is a complete metric space, then each comeagre subset of X is dense in X.

Let M be a differentiable compact submanifold of \mathbb{R}^n and

 $C(M, \mathbb{R}^n) = \{ f : M \to \mathbb{R}^n, f \text{ is continuous} \}.$

We denote by |a - b|, the usual distance of points a, b in \mathbb{R}^n . $C(M, \mathbb{R}^n)$ (endowed with the max-metric d, defined by $d(f,g) = \max_{x \in M} |f(x) - g(x)|$), is a complete metric space. If I = [0, 1], then a well known theorem due to Banach states that "Typical elements of $C(I, \mathbb{R})$ are nowhere differentiable." Banach's theorem is a classic theorem, and there are similar results in more general cases. Here, we generalize Banach's theorem

Keywords: Fractal, homeomorphism, manifold.

MSC(2010): Primary: 54B20; Secondary: 54E50, 54E52, 54F45, 57N40.

Received: 28 October 2009, Accepted: 11 November 2009.

^{© 2011} Iranian Mathematical Society.

⁹³

to $C(M, \mathbb{R}^n)$.

In the second part of the paper, we consider the set $K_n = \{A \subset \mathbb{R}^n : A \text{ is compact}\}$. K_n endowed with the Hausdorff metric is a complete metric space. It is interesting to characterize fractal elements in K_n or a given subset of K_n . For this purpose, we must study the Box or the Hausdorff dimension of sets. There are many interesting results concerning the Box or the Hausdorff dimension of typical elements in K_n or some subspaces of K_n (see [2], [4], [6]). We show here that typical elements of the following subspace of K_n ,

$$Im(M) = \{ f(M) : f \in C(M, \mathbb{R}^n) \},\$$

have integer box dimensions. We will use the max-metric on $C(M, \mathbb{R}^n)$ and on Im(M) (Max-metric on Im(M) is defined by d(f(M), g(M)) = d(f, g)). But it is not hard to show that our conclusions on Im(M) are also valid for the Hausdorff metric.

2. Results

The following notations will be used in the proofs:

(1) $D(M, \mathbb{R}^n) = \{f \in C(M, \mathbb{R}^n) : f \text{ is differentiable}\}.$ (2) $ND(M, \mathbb{R}^n) = \{f \in C(M, \mathbb{R}^n) : f \text{ is nowhere differentiable}\}.$ (3) $I^m = I \times I \times ... \times I$ (*m* times).

Remark 2.1. By Banach's theorem, ND(I, R) is a comeagre subset of C(I, R).

Remark 2.2. If Y is a comeagre subset of a topological space X, and if $Y \subset Z \subset X$, then Z is also comeagre in X.

Lemma 2.3. $ND(I^m, R)$ is a comeagre subset of $C(I^m, R)$.

Proof. By Banach's theorem, the lemma is true for m = 1. We suppose that $m \ge 2$. Let $ND_1(I^m, R) = \{f \in C(I^m, R) : \frac{\partial f}{\partial x_1} \text{ nowhere exist}\}$. We show that $ND_1(I^m, R)$ is a comeagre subset of $C(I^m, R)$. Let Q

On images of continuous functions

be the rational numbers and $J = I \cap Q$. For each $f \in C(I^m, R)$, and $t = (t_1, \dots t_{m-1}) \in J^{m-1}$, define the map $f_t : I \to R$ by

$$f_t(x) = f(x, t_1, ..., t_{m-1}).$$

 J^{m-1} is countable, and so we can denote it by $J^{m-1} = \{a_1, a_2, ...\}$. For each $a_i \in J^{m-1}$, put $(C(I, R))_{a_i} = C(I, R)$ and consider the following set, with the product topology (see [5] for definition and details about the product topology),

$$C(I,R)_{a_1} \times C(I,R)_{a_2} \times \cdots$$

Now, define the map $\phi : C(I^m, R) \to C(I, R)_{a_1} \times C(I, R)_{a_2} \times \cdots$ by $\phi(f) = (f_{a_1}, f_{a_2}, \ldots)$. ϕ is one to one and a continuous function. If we put $ND(I, R)_{a_i} = ND(I, R)$, then we have

$$\phi(ND_1(I^m, R)) \subset ND(I, R)_{a_1} \times ND(I, R)_{a_2} \times \cdots$$

By Banach's theorem, ND(I, R) is a comeagre subset of C(I, R). So, there is a countable collection $\{U_k : k \in N\}$ of open and dense subsets of C(I, R) such that

$$\bigcap_{k \in N} U_k \subset ND(I, R).$$

For each $l \in N$ and $a_i \in J^{m-1}$, put $(U_1 \cap ... \cap U_l)_{a_i} = (U_1 \cap ... \cap U_l)$ and let

$$W_l = (U_1 \cap \ldots \cap U_l)_{a_1} \times (U_1 \cap \ldots \cap U_l)_{a_2} \times \ldots \times (U_1 \cap \ldots \cap U_l)_{a_l}$$
$$\times C(I, R)_{a_{l+1}} \times C(I, R)_{a_{l+2}} \times \cdots$$

 W_l is open and dense in $C(I, R)_{a_1} \times C(I, R)_{a_2} \times \dots$ and we have

$$\bigcap_{l \in N} W_l \subset ND(I, R)_{a_1} \times ND(I, R)_{a_2} \times \cdots$$

 J^{m-1} is dense in I^{m-1} . Thus, $\frac{\partial f}{\partial x_1}(x,t)$ does not exist, for all $t \in I^{m-1}$, if and only if it does not exist for all $t \in J^{m-1}$. Thus, we can show that

(2.1)
$$\bigcap_{l \in N} \phi^{-1}(W_l) \subset ND_1(I^m, R).$$

Now, we show that for each $l \in N$, $\phi^{-1}(W_l)$ is a dense subset of $C(I^m, R)$. Consider a function $f \in C(I^m, R)$ and let $\epsilon > 0$. Since $U_1 \cap U_2 \cap ... \cap U_l$ is dense in C(I, R), for each $i \in \{1, 2, ..., l\}$ there is a $g_i \in U_1 \cap U_2 \cap ... \cap U_l$ such that

$$d(f_{a_i}, g_i) < \frac{\epsilon}{l}.$$

Mirzaie

Let $\theta_i: I^{m-1} \to I$ be a continuous function such that

$$\theta_i(a_i) = 1$$
 and $\theta_i(a_j) = 0$ for each $j \in \{1, 2, ..., l\} - \{i\}$.

Now, define a map $h: I^m \to R$ by

$$h(x,t) = f(x,t) + \sum_{i=1}^{t} \theta_i(t)(g_i(x) - f_{a_i}(x)), \quad (x,t) \in I \times I^{m-1}.$$

We have

$$|h(x,t) - f(x,t)| \le \sum_{i=1}^{l} |\theta_i(t)| |g_i(x) - f_{a_i}(x)| < \sum_{i=1}^{l} \frac{\epsilon}{l} = \epsilon.$$

Thus, $d(h, f) < \epsilon$. If $\phi(h) = (h_{a_1}, ..., h_{a_l}, h_{a_{l+1}}, ...)$, then

$$h_{a_1} = g_1, h_{a_2} = g_2, ..., h_{a_l} = g_l \Rightarrow \phi(h) \in W_l \Rightarrow h \in \phi^{-1}(W_l).$$

Therefore, $\phi^{-1}(W_l)$ is dense in $C(I^m, R)$. Since $\phi^{-1}(W_l)$ is open in $C(I^m, R)$, then we get by (2.1) that $ND_1(I^m, R)$ is comeagre in $C(I^m, R)$. Since $ND_1(I^m, R) \subset ND(I^m, R)$, we get the result by Remark 2.2. \Box

Lemma 2.4. ND(M, R) is comeagre in C(M, R).

Proof. Let $m = \dim M$ and for each point $p \in M$, consider a chart (U, ϕ) around p such that $I^m \subset \phi(U)$. Since M is compact, then there is a finite collection of this kind of charts, say $(U_1, \phi_1), ..., (U_l, \phi_l)$, such that $M \subset \phi_1^{-1}(I^m) \cup ... \cup \phi_l^{-1}(I^m)$. Put $W_i = \phi_i^{-1}(I^m), 1 \leq i \leq l$, and for each $f \in C(I^m, R)$, denote by f_i the restriction of f on W_i , and consider the following function:

$$\psi_i: C(M, R) \to C(W_i, R), \quad \psi_i(f) = f_i.$$

Since $\phi(W_i) = I^m$, then we get from Lemma 2.3 that $ND(W_i, R)$ is a comeagre subset of $C(W_i, R)$. So, there is a countable collection $\{V_k^i : k \in N\}$ of open and dense subsets of $C(W_i, R)$ such that

$$\bigcap_{k} V_k^i \subset ND(W_i, R).$$

We show that for each $i, k \in N$, $\psi_i^{-1}(V_k^i)$ is a dense subset of C(M, R). Suppose $f \in C(M, R)$ and let $\epsilon > 0$. Since V_k^i is dense in $C(W_i, R)$, then there is a function $g \in V_k^i$ such that

(2.2)
$$d(f_i,g) < \frac{\epsilon}{2}.$$

On images of continuous functions

Let $\hat{g}: M \to R$ be a continuous extension of g on M. Since f and \hat{g} are continuous, then by (2.2), there is an open subset B of M such that $W_i \subset B$ and

(2.3)
$$x \in B \Rightarrow d(f(x), \hat{g}(x)) < \epsilon.$$

Now, let $\theta: M \to [0,1]$ be a continuous function such that

$$\theta(x) = 1 \text{ for } x \in W_i \text{ and } \theta(x) = 0, \text{ for } x \in M - B.$$

Consider the continuous function $h: M \to R$, defined by

(2.4)
$$h(x) = f(x) + \theta(x)(\hat{g}(x) - f(x)).$$

If $x \in W_i$, then h(x) = g(x), and so $\psi_i(h) = g$. Thus, $h \in \psi_i^{-1}(V_k^i)$. Also, we have

$$|f(x) - h(x)| = |\theta(x)|\hat{g}(x) - f(x)| < \epsilon.$$

So, $\psi_i^{-1}(V_k^i)$ is dense in C(M, R). It is easy to show that

$$\bigcap_{k\in N}\bigcap_{1\leq i\leq l}\psi_i^{-1}(V_k^i)\subset ND(M,R).$$

Therefore, ND(M, R) is comeagre in C(M, R).

Theorem 2.5. Typical elements of $C(M, \mathbb{R}^n)$ are nowhere differentiable.

Proof. For each $f \in C(M, \mathbb{R}^n)$, we have $f = (f_1, ..., f_n)$ such that $f_i \in C(M, \mathbb{R})$. Consider the map $\psi : C(M, \mathbb{R}^n) \to C(M, \mathbb{R}) \times ... \times C(M, \mathbb{R})$ (*n* times), and $\psi(f) = (f_1, ..., f_n)$. ψ is a homeomorphism and

(2.5)
$$\psi^{-1}[ND(M,R) \times ... \times ND(M,R)] \subset ND(M,R^n).$$

Since by Lemma 2.4, ND(M, R) is comeagre in C(M, R), then ND(M, R) $\times \cdots \times ND(M, R)$ is comeagre in $C(M, R) \times \ldots \times C(M, R)$. Thus, $\psi^{-1}[ND(M, R) \times \ldots \times ND(M, R)]$ must be comeagre in $C(M, R^n)$. Now, we get the result by (2.5) and Remark 2.2.

3. Box Dimension

Let C be a bounded subset of \mathbb{R}^n . We denote by $\dim(C)$, the topological dimension of C. For each number $\epsilon > 0$, put

$$A_{\epsilon}(C) = \sup\{card\{Z\} : Z \subset C \text{ and for each } x, y \in Z, |x-y| > \epsilon\}.$$

Mirzaie

The upper and lower box dimensions of C are defined by:

$$\overline{\dim}_B(C) = \limsup_{\epsilon \to 0} \frac{\log A_{\epsilon}(C)}{-\log \epsilon},$$
$$\underline{\dim}_B(C) = \liminf_{\epsilon \to 0} \frac{\log A_{\epsilon}(C)}{-\log \epsilon}.$$

If $\overline{dim}_B(C) = \underline{dim}_B(C)$, then $dim_B(C) = lim_{\epsilon \to 0} \frac{log A_{\epsilon}(C)}{-log \epsilon}$ is the box dimension of C.

Remark 3.1. Let M be a differentiable submanifold of \mathbb{R}^n and $\dim(M) = m$. Then,

(1) $\dim_B(M) = \dim(M) = m.$ (2) If $g: M \to \mathbb{R}^n$ is a differentiable map and $M_g = g(M)$, then $\dim_B(M_g) = \dim(M_g) \in \{0, 1, ..., m\}.$

If $g: M \to \mathbb{R}^n$ is nowhere differentiable, then M_g may be a fractal subset of \mathbb{R}^n . Thus, we might expect that for typical M_g , $\overline{\dim}_B(M_g) > \dim M_g$. But, the following theorem shows that typical elements of Im(M) have integer box dimensions. Therefore, the set of images of M, which have fractal behaviors, is a meagre subset of Im(M).

Remark 3.2. Since $D(M, \mathbb{R}^n)$ is an algebra in $C(M, \mathbb{R}^n)$, then by the Stone-Weierstrass theorem, it is dense in $C(M, \mathbb{R}^n)$ (see [7], Chapter γ).

Theorem 3.3. If M is a compact differentiable submanifold of \mathbb{R}^n , then typical elements of the set of images of M under continuous maps have integer box dimensions.

Proof. For each $g \in C(M, \mathbb{R}^n)$ put

$$M_q = g(M) \subset \mathbb{R}^n.$$

Consider a real number $\epsilon > 0$. If $f, g \in C(M, \mathbb{R}^n)$, $x, y \in M$, and $d(g, f) < \frac{\epsilon}{3}$, then

$$\begin{array}{lll} d(g(x),g(y)) &\leq & d(g(x),f(x)) + d(f(x),f(y)) + d(f(y),g(y)) \\ &\leq & \frac{2\epsilon}{3} + d(f(x),f(y)). \end{array}$$

On images of continuous functions

Thus,

$$A_{\epsilon}(M_g) \le A_{\frac{\epsilon}{3}}(M_f).$$

In a similar way, we can show that

$$A_{\frac{1}{3}\epsilon}(M_f) \le A_{\frac{1}{9}\epsilon}(M_g).$$

So, if $0 < \epsilon < 1$, then

$$\frac{log A_{\epsilon}(M_g)}{-log \epsilon} \leq \frac{log A_{\frac{1}{3}\epsilon}(M_f)}{-log \frac{\epsilon}{3} - log 3} \leq \frac{log A_{\frac{1}{9}\epsilon}(M_g)}{-log \frac{\epsilon}{9} - log 9}$$

If g is differentiable, then by Remark 3.1, we have

$$\dim_B(M_g) = \dim M_g.$$

Therefore,

$$lim_{\epsilon \to 0} \frac{log A_{\epsilon}(M_g)}{-log \epsilon} = lim_{\epsilon \to 0} \frac{log A_{\frac{\epsilon}{9}}(M_g)}{-log \frac{\epsilon}{9} - log 9} = dim M_g.$$

Thus, for each $K \in N$, there is an open set $U_{K,g}$ in $C(M, \mathbb{R}^n)$ containing M_g such that for each $f \in U_{K,g}$,

$$dim M_g - \frac{1}{K} \le \frac{\log A_{\frac{1}{3}\epsilon} M_f}{-\log \frac{\epsilon}{3} - \log 3} \le dim M_g + \frac{1}{K}.$$

Put

$$W_K = \bigcup_{g \in D(M,R^n)} U_{K,g}.$$

Since $D(M, \mathbb{R}^n)$ is dense in $C(M, \mathbb{R}^n)$, then W_K is an open and dense subset of $C(M, \mathbb{R}^n)$. Now, put

$$W = \bigcap_{K \in N} W_K.$$

W is comeagre in $C(\underline{M}, \mathbb{R}^n)$. If $f \in W$, then there is a differentiable function g such that $\overline{dim}_B M_f = dim M_g$. So, $\overline{dim}_B M_f \in \{0, 1, 2, ..., m\}$.

Acknowledgments

The author is thankful to the referee for the useful comments and suggestions.

References

- S. Banach, Uberdie Baire'sche kategorie gewisser funktionenmengen, Studia Math. 3 (1931) 147-179.
- [2] W. L. Bloch, Fractal boundaries are not typical, *Topology Appl.* 154 (2007) 533-539.
- [3] K. Falconer, Fractal Geometry, Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.
- [4] P. Gruber, Dimension and structure of typical compact sets, continua and curves, Monatsh. Math. 108 (1989) 149-164.
- [5] J. R. Munkres, *Topology: A First Course*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
- [6] A. Ostaszewski, Families of compact sets and their universals, Mathematica 21 (1974) 116-127.
- [7] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill Book Co., New York, 1976.

R. Mirzaie

Department of Mathematics, Imam Khomeini International University, Qazvin, Iran Email: R_mirzaioe@yahoo.com