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COMMON FIXED POINT THEOREMS OF INTEGRAL
TYPE IN MODULAR SPACES

A. RAZANI∗ AND R. MORADI

Communicated by Fraydoun Rezakhanlou

Abstract. Here, some common fixed point theorems for ρ-compatible
maps of integral type in modular spaces are presented.

1. Introduction

In [3], Jungck defines the notion of compatible self-maps of a metric
space (X, d) as a pair of maps h, T : X → X such that for all sequences
{xn} in X with lim hxn = lim Txn = x ∈ X as n → ∞, we have
limn d(hTxn, Thxn) = 0. He then proves a common fixed point theorem
for pairs of compatible maps and establishes a further generalization in
[4]. The notion of modular space, as a generalization of a metric space,
was introduced by Nakano in 1950 and redefined and generalized by
Musielak and Orlicz in 1959. Fixed point theorems in modular spaces,
generalizing the classical Banach fixed point theorem in metric spaces,
have been studied extensively, for example in [1], [7], [8], [9], [10], [12],
etc. Our purpose is to define the notion of ρ-compatible mappings in
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12 Razani and Moradi

modular spaces and establish some common fixed point theorems in
modular spaces.

The remainder of the paper is structured as follows: In Section 2, we
recall a basic definition and prove a common fixed point theorem for
integral type ρ-compatible maps in modular spaces. In Section 3 and
Section 4, two extensions of Theorem 2.2 are presented.

We begin with a brief recollection of concepts and facts of the theory
of modular spaces from [2], [4], [5], [6], [10] and [11].

Definition 1.1. Let X be an arbitrary vector space over K = (R or C).
a) A functional ρ : X −→ [0,∞] is called modular if:
(i) ρ(x) = 0 iff x = 0.
(ii) ρ(αx) = ρ(x) for α ∈ K with |α| = 1, for all x ∈ X.
(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) if α, β ≥ 0, α + β = 1, for all x, y ∈ X.
If iii) is replaced by:
(iii)’ ρ(αx+βy) ≤ αρ(x)+βρ(y) for α, β ≥ 0, α+β = 1, for all x, y ∈ X,
then the modular ρ is called convex modular.
b) A modular ρ defines a corresponding modular space; i.e., the space
Xρ given by:

Xρ = {x ∈ X |ρ(αx) → 0 as α → 0}.

Remark 1.2. Note that ρ is an increasing function. Suppose 0 < a < b.
Then, property (iii) with y = 0 shows that ρ(ax) = ρ(a

b (bx)) ≤ ρ(bx).

Definition 1.3. Let Xρ be a modular space.
a) A sequence (xn)n∈N in Xρ is said to be:
(i) ρ-convergent to x if ρ(xn − x) → 0 as n →∞.
(ii) ρ-Cauchy if ρ(xn − xm) → 0 as n, m →∞.
b) Xρ is ρ-complete if every ρ-Cauchy sequence is ρ-convergent.
c) A subset B ⊂ Xρ is said to be ρ-closed if for any sequence (xn)n∈N ⊂ B
and xn → x we have x ∈ B.
d) A subset B ⊂ Xρ is called ρ-bounded if δρ(B) = sup ρ(x − y) < ∞
for all x, y ∈ B, where δρ(B) is called the ρ-diameter of B.
e) ρ has the Fatou property if:

ρ(x− y) ≤ lim inf ρ(xn − yn),

whenever xn → x and yn → y as n →∞.
f) ρ is said to satisfy the ∆2-condition if ρ(2xn) → 0, whenever ρ(xn) → 0
as n →∞.
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In the next section, two common fixed point theorems for ρ-compatible
mappings satisfying a contractive condition of integral type in modular
spaces are proved.

2. A common fixed point theorem for contractive condition
maps of integral type

Here, the existence of a common fixed point for ρ-compatible map-
pings satisfying a contractive condition of integral type in modular spaces
is studied. We recall the following definition.

Definition 2.1. Let Xρ be a modular space, where ρ satisfies the ∆2-
condition. Two self-mappings T and h of Xρ are called ρ-compatible if
ρ(Thxn − hTxn) → 0, whenever (xn)n∈N is a sequence in Xρ such that
hxn → z and Txn → z for some point z ∈ Xρ.

Theorem 2.2. Let Xρ be a ρ-complete modular space, where ρ satisfies
the ∆2-condition. Suppose c, k, l ∈ R+, c > l and T , h : Xρ → Xρ are
two ρ-compatible mappings such that T (Xρ) ⊆ h(Xρ) and∫ ρ(c(Tx−Ty))

0
ϕ(t)dt ≤ k

∫ ρ(l(hx−hy))

0
ϕ(t)dt,(2.1)

for some k ∈ (0, 1), where ϕ : R+ → R+ is a Lebesgue integrable mapping
which is summable, nonnegative and for all ε > 0,∫ ε

0
ϕ(t)dt > 0.(2.2)

If one of h or T is continuous, then there exists a unique common fixed
point of h and T .

Proof. Let α ∈ R+ be the conjugate of c
l ; i.e., l

c + 1
α = 1. Let x be an

arbitrary point of Xρ and generate inductively the sequence (Txn)n∈N as
follows: Txn = hxn+1 for each n and T (Xρ) ⊆ h(Xρ). For each integer
n ≥ 1, inequality (2.1) shows that∫ ρ(c(Txn+1−Txn))

0 ϕ(t)dt ≤ k
∫ ρ(l(hxn+1−hxn))
0 ϕ(t)dt

≤ k
∫ ρ(c(Txn−Txn−1))
0 ϕ(t)dt

≤ k2
∫ ρ(l(hxn−hxn−1))
0 ϕ(t)dt.
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By induction,∫ ρ(c(Txn+1−Txn))

0
ϕ(t)dt ≤ kn

∫ ρ(l(Tx−x))

0
ϕ(t)dt.(2.3)

Taking the limit as n →∞ yields:

lim
n

∫ ρ(c(Txn+1−Txn))

0
ϕ(t)dt ≤ 0.

Thus, inequality (2.2) implies that

lim
n

ρ(c(Txn+1 − Txn)) → 0.(2.4)

We now show that (Txn)n∈N is ρ-Cauchy. If not, then, there exists an
ε > 0 and two sequences of integers {n(s)}, {m(s)}, with n(s) > m(s) ≥
s, such that

ds = ρ(l(Txn(s) − Txm(s))) ≥ ε for s = 1, 2, · · · .(2.5)

We can assume that

ρ(l(Txn(s)−1 − Txm(s))) < ε.(2.6)

In order to show this, suppose n(s) is the smallest number exceeding
m(s) for which (2.5) holds and∑

s

= {n ∈ N|∃m(s) ∈ N; ρ (l(Txn − Txm(s))) ≥ ε and n > m(s) ≥ s}.

Obviously,
∑

s 6= φ and since
∑

s ⊂ N, then by well ordering principle,
the minimum element of

∑
s is denoted by n(s), and clearly (2.6) holds.

Now, ∫ ρ(c(Txm(s)−Txn(s)))
0 ϕ(t)dt ≤ k

∫ ρ(l(hxm(s)−hxn(s)))
0 ϕ(t)dt

= k
∫ ρ(l(Txm(s)−1−Txn(s)−1))
0 ϕ(t)dt.

Moreover,

ρ(l(Txm(s)−1 − Txn(s)−1)) = ρ(l(Txm(s)−1 − Txm(s)+
Txm(s) − Txn(s)−1))

= ρ(α l
α(Txm(s)−1 − Txm(s))+

lc
c (Txm(s) − Txn(s)−1))

≤ ρ(αl(Txm(s)−1 − Txm(s)))+
ρ(c(Txm(s) − Txn(s)−1)).

Using the ∆2-condition and (2.4), then,

lim
s→∞

ρ(αl(Txm(s)−1 − Txm(s))) = 0.
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Therefore,

lim
s

∫ ρ(l(Txm(s)−1−Txn(s)−1))

0
ϕ(t)dt ≤

∫ ε

0
ϕ(t)dt.(2.7)

Also, by the inequality (2.5),∫ ε

0
ϕ(t)dt ≤

∫ ρ(c(Txm(s)−Txn(s)))

0
ϕ(t)dt.(2.8)

From inequalities (2.2), (2.4), (2.7) and (2.8), it follows that∫ ε
0 ϕ(t)dt ≤

∫ ρ(c(Txm(s)−Txn(s)))
0 ϕ(t)dt

≤ k
∫ ρ(c(Txm(s)−1−Txn(s)−1))

0 ϕ(t)dt
≤ k

∫ ε
0 ϕ(t)dt,

(2.9)

which is a contradiction. Therefore, by ∆2-condition, (Txn)n∈N is ρ-
Cauchy. Since Xρ is ρ-complete, then there exists a z ∈ Xρ such that
ρ(c(Txn − z)) → 0 as n → ∞. If T is continuous, then T 2xn → Tz
and Thxn → Tz. Since ρ(hTxn − Thxn) → 0, then by ρ-compatibility,
hTxn → Tz.
We now prove that z is a fixed point of T . We have,

∫ ρ(c(T 2xn−Txn))

0
ϕ(t)dt ≤ k

∫ ρ(l(hTxn−hxn))

0
ϕ(t)dt.

(2.10)

Taking the limit as n →∞ yields:∫ ρ(c(Tz−z)

0
ϕ(t)dt ≤ k

∫ ρ(l(Tz−z)

0
ϕ(t)dt,

which implies that ∫ ρ(c(Tz−z))

0
ϕ(t)dt ≤ 0.

Using inequality (2.2), ρ(c(Tz − z)) = 0 or Tz = z.
Moreover, T (Xρ) ⊆ h(Xρ), and thus there exists a point z1 such that
z = Tz = hz1. The inequality,∫ ρ(c(T 2xn−Tz1))

0
ϕ(t)dt ≤ k

∫ ρ(l(hTxn−hz1))

0
ϕ(t)dt,

as n →∞, yields:∫ ρ(c(Tz−Tz1))

0
ϕ(t)dt ≤ k

∫ ρ(l(Tz−hz1))

0
ϕ(t)dt,
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and thus, ∫ ρ(c(z−Tz1))
0 ϕ(t)dt ≤ k

∫ ρ(l(z−hz1))
0 ϕ(t)dt

≤ k
∫ ρ(l(z−z))
0 ϕ(t)dt,

resulting in z = Tz1 = hz1 and also hz = hTz1 = Thz1 = Tz = z (see
[5]). In addition, if one considers h to be continuous (instead of T ), then
by a similar argument (as above), one can prove hz = Tz = z.
Finally, suppose that z and w are two arbitrary common fixed points of
T and h. Then, we have,

∫ ρ(c(z−w))
0 ϕ(t)dt =

∫ ρ(c(Tz−Tw))
0 ϕ(t)dt

≤ k
∫ ρ(l(hz−hw))
0 ϕ(t)dt

≤ k
∫ ρ(c(z−w))
0 ϕ(t)dt,

Which implies that ρ(c(z − w)) = 0, and hence z = w. �

Remark 2.3. If c = l or c = l = 1, then Theorem 2.2 is not valid.

The following theorem is another version of Theorem 2.2 when l = c,
by adding the restrictions that T , h : B → B, where B is a ρ-closed and
ρ-bounded subset of Xρ.

Theorem 2.4. Let Xρ be a ρ-complete modular space, where ρ sat-
isfies the ∆2-condition and B is a ρ-closed and ρ-bounded subset of
Xρ. Suppose T , h : B → B are two ρ-compatible mappings such that
T (Xρ) ⊆ h(Xρ) and

∫ ρ(c(Tx−Ty))

0
ϕ(t)dt ≤ k

∫ ρ(c(hx−hy))

0
ϕ(t)dt,

for all x, y ∈ B, where c, k ∈ R+ with k ∈ (0, 1), and ϕ : R+ −→ R+ is
a Lebesgue integrable mapping which is summable, nonnegative and∫ ε

0
ϕ(t)dt > 0, for all ε > 0.

If one of h or T is continuous, then there exists a unique common fixed
point of h and T .
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Proof. Let x ∈ B, m, n ∈ N. Then,∫ ρ(c(Txn+m−Txm))
0 ϕ(t)dt ≤

∫ ρ(c(hxn+m−hxm))
0 ϕ(t)dt

≤ k
∫ ρ(c(Txn+m−1−Txm−1))
0 ϕ(t)dt

≤ k2
∫ ρ(c(Txn+m−2−Txm−2))
0 ϕ(t)dt

· · · · · ·
≤ km

∫ ρ(c(Txn−x))
0 ϕ(t)dt

≤ km
∫ δρ(B)
0 ϕ(t)dt.

Since B is ρ-bounded, then,

lim
n,m→∞

∫ ρ(c(Txm+n−Txm))

0
ϕ(t)dt ≤ 0,

which implies that limn,m→∞ ρ(c(Txn+m − Txm)) = 0. Therefore, by
∆2-condition, (Txn)n∈N is ρ-Cauchy. Since Xρ is ρ-complete and B is ρ-
closed, there exists a z ∈ B such that limn→∞ ρ(c(Txn− z)) = 0. If T is
continuous, then T 2xn → Tz and Thxn → Tz. Since ρ(hTxn−Thxn) →
0, then by ρ-compatibility, hTxn → Tz.
We now prove that z is a fixed point of T . We have,

∫ ρ(c(T 2xn−Txn))

0
ϕ(t)dt ≤ k

∫ ρ(c(hTxn−hxn))

0
ϕ(t)dt.

(2.11)

Taking the limit as n →∞ yields:∫ ρ(c(Tz−z)

0
ϕ(t)dt ≤ k

∫ ρ(c(Tz−z)

0
ϕ(t)dt,

which implies that ∫ ρ(c(Tz−z))

0
ϕ(t)dt ≤ 0.

Using inequality (2.2), ρ(c(Tz − z)) = 0 or Tz = z.
Since T (Xρ) ⊆ h(Xρ), then there exists a point z1 such that z = Tz =
hz1, and ∫ ρ(c(T 2xn−Tz1))

0
ϕ(t)dt ≤ k

∫ ρ(c(hTxn−hz1))

0
ϕ(t)dt,

as n →∞ yields:∫ ρ(c(z−Tz1))

0
ϕ(t)dt ≤ k

∫ ρ(c(z−z))

0
ϕ(t)dt,
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resulting in z = Tz1 = hz1 and also hz = hTz1 = Thz1 = Tz = z (see
[5]). In addition, if one considers h to be continuous (instead of T ), then
by a similar argument (as above), one can prove hz = Tz = z.
Finally, suppose that z and w are two arbitrary common fixed points of
T and h. Then, ∫ ρ(c(z−w))

0 ϕ(t)dt =
∫ ρ(c(Tz−Tw))
0 ϕ(t)dt

≤ k
∫ ρ(c(z−w))
0 ϕ(t)dt,

which implies that ρ(c(z − w)) = 0, and hence z = w. �
In the next section, the existence of a common fixed point for a quasi-

contraction map of integral type in modular spaces is presented.

3. A common fixed point theorem for quasi-contraction maps
of integral type

The purpose of this section is to study Theorem 2.2 for quasi-contraction
maps of integral type. We present the following Definition.

Definition 3.1. Two self-mappings T , h : Xρ −→ Xρ of a modular
space Xρ are (c, l, q)-generalized contraction of integral type, if there
exists 0 < q < 1 and c, l ∈ R+ with c > l, such that

∫ ρ(c(Tx−Ty))

0
ϕ(t)dt ≤ q

∫ m(x,y)

0
ϕ(t)dt, for all x, y ∈ Xρ,

(3.1)

where, m(x, y) = max{ρ(l(hx−hy)), ρ(l(hx−Tx)), ρ(l(hy−Ty)), [ρ(l(hx−
Ty)) + ρ(l(hy − Tx))]/2}, and ϕ : R+ −→ R+ is a Lebesgue integrable
mapping which is summable, nonnegative and∫ ε

0
ϕ(t)dt > 0, for all ε > 0.

We now present the main theorem of this section.

Theorem 3.2. Let Xρ be a ρ-complete modular space, where ρ satisfies
the ∆2-condition. Suppose T and h are (c, l, q)-generalized contraction
of integral type selfmaps of Xρ and T (Xρ) ⊆ h(Xρ). If one of h or T is
continuous, then there exists a unique common fixed point of h and T .

Proof. Choose c > 2l and let α ∈ R+ be the conjugate of c
l ; i.e.,

l
c + 1

α = 1. Then, c > 2l implies that αl < c.
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Let x be an arbitrary point of Xρ and generate inductively the sequence
(Txn)n∈N as follows: Txn = hxn+1 and T (Xρ) ⊆ h(Xρ). Thus, we have,∫ ρ(c(Txn+1−Txn))

0 ϕ(t)dt ≤ q
∫ m(xn+1,xn)
0 ϕ(t)dt,

where,

m(xn+1, xn) = max{ρ(l(hxn+1 − hxn)), ρ(l(Txn − hxn)),
ρ(l(hxn+1 − Txn+1)),

[ρ(l(hxn+1 − Txn)) + ρ(l(hxn − Txn+1))]/2}.
Then,

m(xn+1, xn) = max{ρ(l(hxn+1 − hxn)), ρ(l(Txn − Txn+1)),
[0 + ρ(l(hxn − Txn+1))]/2}.

Moreover, by αl < c,

ρ(l(hxn − Txn+1)) = ρ(l(Txn−1 − Txn+1)
= ρ(α l

α(Txn+1 − Txn) + lc
c (Txn − Txn−1))

≤ ρ(αl(Txn+1 − Txn)) + ρ(c(Txn − Txn−1))
≤ ρ(c(Txn+1 − Txn)) + ρ(c(Txn − Txn−1)).

Then,
m(xn+1, xn) ≤ ρ(c(Txn − Txn−1)),

and ∫ ρ(c(Txn+1−Txn))

0
ϕ(t)dt ≤ q

∫ ρ(c(Txn−Txn−1))

0
ϕ(t)dt.

Continuing this process, we have,∫ ρ(c(Txn+1−Txn))

0
ϕ(t)dt ≤ qn

∫ ρ(c(Tx−x))

0
ϕ(t)dt.

Taking the limit as n →∞ results in limn ρ(c(Txn − Txn+1)) = 0.
Now, suppose l < c′ < 2l. Since ρ is an increasing function, then
one may write ρ(c′(Txn − Txn+1)) ≤ ρ(c(Txn − Txn+1)), whenever
c′ < 2l ≤ c. Taking the limit from both sides of this inequality shows
that limn ρ(c′(Txn − Txn+1)) = 0, for l < c′ < 2l. Thus, we have
limn ρ(c(Txn − Txn+1)) = 0 for any c > l.
We now show that (Txn)n∈N is ρ-Cauchy. If not, then using the same
argument as in the proof of Theorem 2.2 there exists an ε > 0 and two
subsequences {m(s)} and {n(s)} and n(s) > m(s) ≥ s such that

ρ(c(Txm(s) − Txn(s))) ≥ ε,

and we can assume,

ρ(c(Txm(s) − Txn(s)−1)) < ε.
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Then, ∫ ρ(c(Txm(s)−Txn(s)))

0
ϕ(t)dt ≤ q

∫ m(xm(s),xn(s))

0
ϕ(t)dt,

where,

m(xm(s), xn(s)) = max{ρ(l(hxm(s) − hxn(s))), ρ(l(Txn(s) − hxn(s))),
ρ(l(Txm(s) − hxm(s))),

[ρ(l(Txn(s) − hxm(s))) + ρ(l(hxn(s) − Txm(s)))]/2}.

Note that

ρ(l(Txm(s)−1 − Txn(s)−1)) = ρ(l(Txm(s)−1 − Txm(s)+
Txm(s) − Txn(s)−1))

≤ ρ(α l
α(Txm(s)−1 − Txm(s))+

lc
c (Txm(s) − Txn(s)−1))

≤ ρ(αl(Txm(s)−1 − Txm(s)))+
ρ(c(Txm(s) − Txn(s)−1)).

Using ∆2-condition, as s → ∞, we get ρ(αl(Txm(s)−1 − Txm(s))) → 0
and ρ(l(Txn(s)−1 − Txn(s))) → 0. Therefore, as s −→∞,∫ m(xm(s),xn(s))

0
ϕ(t)dt ≤

∫ ε

0
ϕ(t)dt.

On the other hand, as s →∞,∫ ε

0
ϕ(t)dt ≤

∫ ρ(c(Txm(s)−Txn(s)))

0
ϕ(t)dt.

Therefore, ∫ ε
0 ϕ(t)dt ≤

∫ ρ(c(Txm(s)−Txn(s)))

0 ϕ(t)dt

≤ q
∫ m(xm(s),xn(s))
0 ϕ(t)dt

≤ q
∫ ε
0 ϕ(t)dt,

which is a contradiction. Therefore, by ∆2-condition, (Txn)n∈N is ρ-
Cauchy. Since Xρ is ρ-complete, then there exists a z ∈ Xρ such that
ρ(c(Txn − z)) → 0 as n →∞.
We now prove that z is a fixed point of T . If T is continuous, then
T 2xn → Tz and Thxn → Tz. Since ρ(hTxn − Thxn) → 0, then by
ρ-compatibility, hTxn → Tz. Note that∫ ρ(c(Txn−T 2xn))

0
ϕ(t)dt ≤ q

∫ m(xn,Txn)

0
ϕ(t)dt,
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where,

m(xn, Txn) = max{ρ(l(hxn − hTxn)), ρ(l(hxn − Txn)),
ρ(l(hTxn − TTxn)), [ρ(l(hxn−TTxn))+ρ(l(Txn−hTxn))

2 ]}.
Taking the limit as n −→∞, then,∫ ρ(c(z−Tz))

0
ϕ(t)dt ≤ q

∫ ρ(c(z−Tz))

0
ϕ(t)dt,

and so Tz = z. Since T (Xρ) ⊆ h(Xρ), then there exists a point z1 such
that z = Tz = hz1. We have,∫ ρ(c(T 2xn−Tz1))

0
ϕ(t)dt ≤ q

∫ m(Txn,z1)

0
ϕ(t)dt,

and
m(Txn, z1) = max{ρ(l(hTxn − z)), ρ(l(hTxn − T 2xn)), ρ(l(z − Tz1)),

[ρ(l(hTxn−Tz1))+ρ(l(z−T 2xn))
2 ]}.

Taking the limit as n −→∞, we have,∫ ρ(c(z−Tz1))

0
ϕ(t)dt ≤ q

∫ ρ(c(z−Tz1))

0
ϕ(t)dt,

resulting in z = Tz1 = hz1 and also hz = hTz1 = Thz1 = Tz = z (see
[5]).
Moreover, if h is continuous instead of T , by a similar proof as above,
hz = Tz = z. Now, for uniqueness, let z and w be two arbitrary fixed
points of T and h. Then,

m(z, w) = max{ρ(l(z − w)), 0, 0, [ρ(l(z−w))+ρ(l(w−z))
2 ]}

= ρ(l(z − w)).

Therefore, ∫ ρ(c(z−w))

0
ϕ(t)dt ≤ q

∫ ρ(l(z−w))

0
ϕ(t)dt,

which implies that z = w. �

4. Generalizations

Here, we extend the results of the last section. We need a general
contractive inequality of integral type. Let R+ be a set of nonnegative
real numbers and consider,
(?) φ : R+ −→ R+ as a nondecreasing and right continuous function
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such that φ(t) < t for any t > 0.
We now recall the following lemma (see [11]).

Lemma 4.1. Let t > 0. φ(t) < t if only if limk φk(t) = 0, where φk

denotes the k-times repeated composition of φ with itself.

Therefore, we can now study a new version of Theorem 2.2.

Theorem 4.2. Let Xρ be a ρ-complete modular space, where ρ satisfies
the ∆2-condition. Suppose c, l ∈ R+, c > l and T , h : Xρ → Xρ are two
ρ-compatible mappings such that T (Xρ) ⊆ h(Xρ) and∫ ρ(c(Tx−Ty))

0
ϕ(t)dt ≤ φ(

∫ ρ(l(hx−hy))

0
ϕ(t)dt),

where φ is a function satisfying the property (?) and ϕ : R+ → R+ is
a Lebesgue integrable mapping which is summable, nonnegative and, for
all ε > 0, ∫ ε

0
ϕ(t)dt > 0.

If one of h or T is continuous, then there exists a unique common fixed
point of h and T .

Proof. Let α ∈ R+ be the conjugate of c
l ; i.e., l

c + 1
α = 1. Let x be an

arbitrary point of Xρ and generate inductively the sequence (Txn)n∈N
as follows: Txn = hxn+1 and T (Xρ) ⊆ h(Xρ). For each integer n ≥ 1,∫ ρ(c(Txn+1−Txn))

0 ϕ(t)dt ≤ φ(
∫ ρ(l(hxn+1−hxn))
0 ϕ(t)dt)

≤ φ(
∫ ρ(c(Txn−Txn−1))
0 ϕ(t)dt)

≤ φ2(
∫ ρ(l(hxn−hxn−1))
0 ϕ(t)dt).

By induction,∫ ρ(c(Txn+1−Txn))

0
ϕ(t)dt ≤ φn(

∫ ρ(l(Tx−x))

0
ϕ(t)dt).

Taking the limit as n →∞, we obtain yields by Lemma 4.1,

lim
n

∫ ρ(c(Txn+1−Txn))

0
ϕ(t)dt ≤ 0.

Using the same method as in the proof of Theorem 2.2, T and h have a
unique common fixed point. �

A new version of Theorem 3.2 follows next.
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Theorem 4.3. Let Xρ be a ρ-complete modular space, where ρ satisfies
the ∆2-condition. Suppose c, l ∈ R+, c > l and T, h : Xρ → Xρ such
that T (Xρ) ⊆ h(Xρ) and∫ ρ(c(Tx−Ty))

0
ϕ(t)dt ≤ φ(

∫ ρ(m(x,y))

0
ϕ(t)dt),

where m(x, y) = max{ρ(l(hx−hy)), ρ(l(hx−Tx)), ρ(l(hy−Ty)), [ρ(l(hx−
Ty))+ρ(l(hy−Tx))]/2} and φ is a function satisfying the property (?).
If one of h or T is continuous, then there exists a unique common fixed
point of h and T .

Proof. See the proof of Theorem 3.2. �
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