LOWER BOUNDS OF COPSON TYPE FOR THE TRANSPOSE OF MATRICES ON WEIGHTED SEQUENCE SPACES

R. LASHKARIPOUR* AND G. TALEBI

Communicated by Michel Waldschmidt

Abstract. Let $A=\left(a_{n, k}\right)_{n, k \geq 0}$ be a non-negative matrix. Denote by $L_{w, p, q}(A)$, the supremum of those L, satisfying the following inequality:

$$
\left(\sum_{n=0}^{\infty} w_{n}\left(\sum_{k=0}^{\infty} a_{n, k} x_{k}\right)^{q}\right)^{\frac{1}{q}} \geq L\left(\sum_{k=0}^{\infty} w_{k} x_{k}^{p}\right)^{\frac{1}{p}}
$$

where, $x \geq 0$ and $x \in l_{p}(w)$ and also $w=\left(w_{n}\right)$ is a decreasing, nonnegative sequence of real numbers. If $p=q$, then we use $L_{w, p}(A)$ inested of $L_{w, p, p}(A)$. Here, we focus on the evaluation of $L_{w, p}\left(A^{t}\right)$ for a lower triangular matrix A, where, $0<p<1$. In particular, we apply our results to summability matrices, weighted mean matrices, Nörlund matrices. Our results also generalize some results in Chen and Wang [C.-P. Chen and K.-Z. Wang, J. Math. Anal. Appl. 341 (2008) 1284-1294.], Foroutannia and Lashkaripour [D. Foroutannia and R. Lashkaripour, Lobachevskii J. Math. 27 (2007) 15-29.], and Lashkaripour and Foroutannia [R. Lashkaripour and D. Foroutannia, J. Sci. Islam. Repub. Iran 18 (2007) 49-56.].

[^0]
1. Introduction

Let $p \in \mathbb{R} \backslash\{0\}$ and let $l_{p}(w)$ denote the space of all real sequences $x=$ $\left\{x_{k}\right\}_{k=0}^{\infty}$ such that $\|x\|_{w, p}:=\left(\sum_{k=0}^{\infty} w_{k} x_{k}^{p}\right)^{1 / p}<\infty$, where, $w=\left(w_{n}\right)_{n=0}^{\infty}$ is a decreasing, non-negative sequence of real numbers with $\sum_{n=0}^{\infty} \frac{w_{n}}{n+1}=$ ∞ with $w_{0}=1$.

We write $x \geq 0$ if $x_{k} \geq 0$, for all k. We also write $x \uparrow$ for the case that $x_{0} \leq x_{1} \leq \cdots \leq x_{n} \leq \cdots$. The symbol $x \downarrow$ is defined in a similar way. For $p, q \in \mathbb{R} \backslash\{0\}$, the lower bound involved here is the number $L_{w, p, q}(A)$, which is defined as the supremum of those L obeying the following inequality:

$$
\left(\sum_{n=0}^{\infty} w_{n}\left(\sum_{k=0}^{\infty} a_{n, k} x_{k}\right)^{q}\right)^{\frac{1}{q}} \geq L\left(\sum_{k=0}^{\infty} w_{k} x_{k}^{p}\right)^{\frac{1}{p}}, \quad\left(x \geq 0, x \in l_{p}(w)\right)
$$

where, $A \geq 0$, that is, $A=\left(a_{n, k}\right)_{n, k \geq 0}$ is a non-negative matrix. We have

$$
L_{w, p, q}(A) \leq\|A\|_{w, p, q}
$$

In [3], the author obtained $L_{w, p}\left(C(1)^{t}\right)=p,(0<p<1)$, where, (. $)^{t}$ denotes the transpose of (.) and $C(1)=\left(a_{n, k}\right)_{n, k \geq 0}$ is the Cesaro matrix defined by

$$
a_{n, k}= \begin{cases}\frac{1}{n+1} & 0 \leq k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

This is an analogue of Copson's result [2, Eq. (1.1)] (see also [4], Theorem 344) for weighted sequence space $l_{p}(w)$ and has been generalized by Foroutannia [3]. He extended it in [3, Theorem 2.7.17 and Theorem 2.7.19] to those summability matrices A, whose rows are increasing or decreasing. Also, he gave upper bounds or lower bounds for $L_{w, p}(A)$, for such A. For the case of Hausdorff matrices, the related result with $0<p<1$ has been established in [3, Theorem 4.3.2], giving a Hardytype formula for $L_{w, p}\left(H_{\mu}^{t}\right)$.

Obviously, the lower bound problems of Copson type for the weighted mean matrices, $\left(A_{W}^{W M}\right)=\left(a_{n, k}\right)_{n, k \geq 0}$, and the Nörlund matrices, $\left(A_{W}^{N M}\right)$ $=\left(b_{n, k}\right)_{n, k \geq 0}$, or more generally for the summability matrices on weighted sequence spaces are still less satisfactory (cf. [1, problem 4.20]), where
the weighted mean matrices and the Nörlund matrices are defined as:

$$
a_{n, k}=\left\{\begin{array}{cl}
\frac{w_{n}^{\prime}}{W_{n}^{\prime}} & 0 \leq k \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

and

$$
b_{n, k}=\left\{\begin{array}{cl}
\frac{w_{n-k}^{\prime}}{W_{n}^{\prime}} & 0 \leq k \leq n \\
0 & \text { otherwise }
\end{array}\right.
$$

Here, $W_{n}^{\prime}=\sum_{k=0}^{n} w_{k}^{\prime}$, and $w^{\prime}=\left(w_{n}^{\prime}\right)$ is a non negative sequence with $w_{0}^{\prime}>0$.

Here we are concerned with the problem of finding $L_{w, p}\left(A^{t}\right)$ and $L_{w, p^{*}}(A)$ (see Theorem 2.3), where, $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1$ and A is a non-negative lower triangular matrix. Our result gives a lower estimate for these two values in terms of the constant M, defined by:

$$
\begin{equation*}
a_{n, k} \leq M a_{n, j}, \quad(0 \leq k \leq j \leq n) \tag{1.1}
\end{equation*}
$$

Here, $M \geq 1$. We shall assume that M is the smallest value appearing in (1.1). If (1.1) is not satisfied, then we set $M=\infty$. As a consequence, we prove that Theorem 2.3 generalizes some works of Lashkaripour and Foroutannia ([3], pp.53-54). Also, we obtain lower estimate and upper estimate for the weighted mean matrix and the Nörlund matrix in some cases.

2. Main Result

The purpose of this section is to establish general lower bounds for $L_{w, p}\left(A^{t}\right)$ and $L_{w, p^{*}}(A)$, where, $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1$ and A is a nonnegative lower triangular matrix. First, we generalize Lemma 5.2 of [2] to the weighted sequence space $l_{p}(w)$.
Lemma 2.1. Suppose that $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1$ and $N \in \mathbb{N}$. Let $C_{N}^{1}=\left(c_{n, k}(N)\right)_{n, k \geq 0}$ be the matrix with entries

$$
c_{n, k}(N)= \begin{cases}\frac{1}{n+N} & 0 \leq k<n+N \\ 0 & k \geq n+N\end{cases}
$$

Then,

$$
L_{w, p}\left(\left(C_{N}^{1}\right)^{t}\right)=L_{w, p^{*}}\left(C_{N}^{1}\right)=p
$$

Moreover, for $r \in \mathbb{N}$ and $r>\max \left\{N-2, \frac{1}{p}\right\}$, there exists a sequence $\left\{x_{N}^{m}\right\}_{m=0}^{\infty}$ such that $x_{N}^{m}=\left(0, \ldots, 0, x_{r-N+1}^{m}, \ldots\right) \geq 0, x_{r-N+1}^{m} \geq x_{r-N+2}^{m} \geq$
$\ldots,\left\|x_{N}^{m}\right\|_{w, p}=1$, for all m, and also

$$
\lim _{m \rightarrow \infty}\left\|x_{N}^{m}\right\|_{w, 1}=0, \lim _{m \rightarrow \infty}\left\|\left(C_{N}^{1}\right)^{t} x_{N}^{m}\right\|_{w, p}=p
$$

Proof. Applying Proposition 2.5 of [6], it suffices to prove the case $L_{w, p}\left(\left(C_{N}^{1}\right)^{t}\right)=p$. For $x \geq 0$, we have

$$
\left\|\left(C_{N}^{1}\right)^{t} x\right\|_{w, p}=\left\|C(1)^{t} x^{\prime}\right\|_{w, p}
$$

where, $x^{\prime}=\left\{x_{k}^{\prime}\right\}_{k=0}^{\infty}$ is defined by

$$
x_{k}^{\prime}= \begin{cases}0 & 0 \leq k<N-1 \tag{2.1}\\ x_{k-N+1} & k \geq N-1\end{cases}
$$

This implies that $L_{w, p}\left(\left(C_{N}^{1}\right)^{t}\right) \geq L_{w, p}\left(C(1)^{t}\right)=p$. For the rest of the proof, it suffices to prove the existence of $\left\{x_{N}^{m}\right\}_{m=0}^{\infty}$, for $r \in \mathbb{N}$, with $r>\max \left\{N-2, \frac{1}{p}\right\}$. Choose a sequence, say $\left\{\rho_{m}\right\}_{m=0}^{\infty}$, such that $\rho_{0} \leq r$ and $\rho_{m} \downarrow \frac{1}{p}$. Define $x_{N}^{m}=\left\{x_{k}^{m}\right\}_{k=0}^{\infty}$ by
where,

$$
\phi(t)=\left(\sum_{k=r-N+1}^{\infty} w_{k}\left\{\binom{k+N-1-t}{k+N-1-r} /\binom{k+N-1}{r}\right\}^{p}\right)^{\frac{1}{p}}
$$

We have $x_{N}^{m}=\left(0, \ldots, 0, x_{r-N+1}^{m}, \ldots\right) \geq 0, x_{k}^{m} \downarrow$, for all $k \geq r-N+1$, and $\left\|x_{N}^{m}\right\|_{w, p}=1$, for all m. Applying ([7, Vol.I $]$, p.77, Eq. (1.15)), we have

$$
\binom{k+N-1-\rho_{m}}{k+N-1-r} /\binom{k+N-1}{r} \sim \frac{\Gamma(r+1)}{\Gamma\left(r-\rho_{m}+1\right)}(k+N-1-r)^{-\rho_{m}}, \quad \text { as } k \rightarrow \infty
$$

Since $\rho_{m} \downarrow, \frac{1}{p}$ and $\frac{1}{p}>1$, it follows from the monotone convergence theorem that $\lim _{m \rightarrow \infty} \phi\left(\rho_{m}\right)=\infty$. Moreover, there exists a constant C such that
$\limsup _{m \rightarrow \infty} \sum_{k=r-N+1}^{\infty} w_{k}\left\{\binom{k+N-1-\rho_{m}}{k+N-1-r} /\binom{k+N-1}{r}\right\} \leq C \sum_{n=1}^{\infty} w_{n} n^{-1 / p}<\infty$.

So, $\lim _{m \rightarrow \infty}\left\|x_{m}^{N}\right\|_{w, 1}=0$. We know that $C(1)$ is the same as the Hausdorff matrix H_{μ} with $d \mu(\theta)=d \theta$. By modifying the argument given in ([3], pp. 80-81), we can prove that

$$
\left\|\left(C_{N}^{1}\right)^{t} x_{N}^{m}\right\|_{w, p}=\left\|C(1)^{t}\left(x_{N}^{m}\right)^{\prime}\right\|_{w, p} \rightarrow p, \quad \text { as } \quad m \rightarrow \infty
$$

where, $\left(x_{N}^{m}\right)^{\prime}$ is obtained from x_{N}^{m} by means of (2-1). This completes the proof of the lemma

In the following lemma, we extend Lemma 2.1 from matrix C_{N}^{1} to general matrix C_{N}^{l}, with $l \in \mathbb{N}$.

Lemma 2.2. Suppose that $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1$ and $l, N \in \mathbb{N}$. Let $C_{N}^{l}=\left(c_{n, k}^{l}\right)_{n, k \geq 0}$ be the matrix with

$$
c_{n, k}^{l}=\left\{\begin{array}{lc}
\frac{1}{n+N} & 0 \leq k<n+N-l+1 \\
0 & k \geq n+N-l+1
\end{array}\right.
$$

Then,

$$
L_{w, p}\left(\left(C_{N}^{l}\right)^{t}\right)=L_{w, p^{*}}\left(C_{N}^{l}\right) \leq p
$$

Moreover, the following two assertions hold:
(i) For $l \leq N$ and $x \geq 0$ with $x \downarrow$, we have

$$
\begin{equation*}
\left\|\left(C_{N}^{l}\right)^{t} x\right\|_{w, p}^{p} \leq\left\|C(1)^{t} x^{\prime}\right\|_{w, p}^{p} \leq\left\|\left(C_{N}^{l}\right)^{t} x\right\|_{w, p}^{p}+\frac{l^{p}(l+1)}{N^{p}}\|x\|_{w, p}^{p} \tag{2.2}
\end{equation*}
$$

where, $x^{\prime}=\left\{x_{k}^{\prime}\right\}_{k=0}^{\infty}$ is defined by (2.1).
(ii) There exists a sequence $\left\{x_{N}\right\}_{N=0}^{\infty}$ such that $x_{N} \geq 0, x_{N} \downarrow$, $\left\|x_{N}\right\|_{w, p}=1$, and also

$$
\lim _{N \rightarrow \infty}\left\|x_{N}\right\|_{w, 1}=0, \lim _{N \rightarrow \infty}\left\|\left(C_{N}^{l}\right)^{t} x_{N}\right\|_{w, p}=p
$$

Proof. For $x \geq 0,\left\|\left(C_{N}^{l}\right)^{t} x\right\|_{w, p}^{p} \leq\left\|\left(C_{N}^{1}\right) x\right\|_{w, p}^{p}$. Applying Lemma 2.1, we have

$$
L_{w, p}\left(\left(C_{N}^{l}\right)^{t}\right) \leq L_{w, p^{*}}\left(\left(C_{N}^{1}\right)^{t}\right)=p
$$

The left side in (2.2) follows from the observation,

$$
\left.\left\|\left(C_{N}^{l}\right)^{t} x\right\|_{w, p}^{p} \leq \|\left(C_{N}^{1}\right)^{t}\right) x\left\|_{w, p}^{p}=\right\| C(1)^{t} x^{\prime} \|_{w, p}^{p} \quad(x \geq 0)
$$

Hence, to prove (i) it is suffices to show the right side of (2-2). Assume that $l \leq N, x \geq 0$ and $x \downarrow$. Applying definition of x_{k}^{\prime}, we get

$$
\begin{aligned}
\left\|C(1)^{t} x^{\prime}\right\|_{w, p}^{p} & =\sum_{k=0}^{N-1} w_{k}\left(\sum_{n=N-1}^{\infty} \frac{x_{n}^{\prime}}{n+1}\right)^{p}+\sum_{k=N}^{\infty} w_{k}\left(\sum_{n=k}^{\infty} \frac{x_{n}^{\prime}}{n+1}\right)^{p} \\
& \leq \sum_{k=0}^{N} w_{k}\left(\sum_{n=0}^{\infty} \frac{x_{n}}{n+N}\right)^{p}+\sum_{k=N+1}^{\infty} w_{k}\left(\sum_{n=k-N+1}^{\infty} \frac{x_{n}}{n+N}\right)^{p} \\
& =\Sigma_{1}+\Sigma_{2} .
\end{aligned}
$$

We know that $a^{p}+b^{p} \geq(a+b)^{p}$, for all $a, b \geq 0$. Hence,

$$
\begin{align*}
\Sigma_{1} \leq \sum_{k=0}^{N-l} w_{k}\left(\sum_{n=0}^{\infty} c_{n, k}^{l} x_{n}\right)^{p} & +\sum_{k=N-l+1}^{N} w_{k}\left\{\left(\sum_{n=0}^{k-N+l-1} \frac{x_{n}}{n+N}\right)^{p}\right. \tag{2.4}\\
& \left.+\left(\sum_{n=k-N+l}^{\infty} c_{n, k}^{l} x_{n}\right)^{p}\right\} .
\end{align*}
$$

The monotonicity of x_{n} implies that $\sum_{n=0}^{k-N+l-1} \frac{x_{n}}{n+N} \leq(l / N) x_{0}$, for all $N-l<k \leq N$. Inserting this into (2.4), yields:

$$
\begin{equation*}
\Sigma_{1} \leq \sum_{k=0}^{N-l} w_{k}\left(\sum_{n=0}^{\infty} c_{n, k}^{l} x_{n}\right)^{p}+\frac{l^{p+1} x_{0}^{p}}{N^{p}}+\sum_{k=N-l+1}^{N} w_{k}\left(\sum_{n=0}^{\infty} c_{n, k}^{l} x_{n}\right)^{p} . \tag{2.5}
\end{equation*}
$$

In the same way as in (2.4), one can show

$$
\begin{aligned}
\Sigma_{2} & \leq \sum_{k=N+1}^{\infty} w_{k}\left\{\left(\sum_{n=k-N+1}^{k-N+l-1} \frac{x_{n}}{n+N}\right)^{p}+\left(\sum_{n=k-N+l}^{\infty} c_{n, k}^{l} x_{n}\right)^{p}\right\} \\
& \leq \frac{l^{p}}{N^{p}} \sum_{k=N+1}^{\infty} w_{k} x_{k-N+1}^{p}+\sum_{k=N+1}^{\infty} w_{k}\left(\sum_{n=0}^{\infty} c_{n, k}^{l} x_{n}\right)^{p} .
\end{aligned}
$$

Putting (2.3), (2.5) and (2.6) together, yields:

$$
\left\|C(1)^{t} x^{\prime}\right\|_{w, p}^{p} \leq\left\|\left(C_{N}^{l}\right)^{t} x\right\|_{w, p}^{p}+\frac{l^{p}(l+1)}{N^{p}}\|x\|_{w, p}^{p} .
$$

This completes the proof of (i).
(ii). Let $x_{0}=x_{1}=\ldots=x_{\left[\frac{1}{p}\right]+1}=e_{0}$, where, $e_{0}=(1,0,0, \ldots)$. For each $N>\frac{1}{p}+1$, it follows from the case $r=N-1$ of Lemma 2.1
that there exist x_{N} with the properties: $x_{N} \geq 0, x_{N} \downarrow,\left\|x_{N}\right\|_{w, p}=$ $1,\left\|x_{N}\right\|_{w, 1} \leq \frac{1}{N}$ and

$$
p-\frac{1}{N} \leq\left\|\left(C_{N}^{l}\right)^{t} x_{N}\right\|_{w, p} \leq p+\frac{1}{N} .
$$

Obviously,

$$
\lim _{N \rightarrow \infty}\left\|x_{N}\right\|_{w, 1}=0, \lim _{N \rightarrow \infty}\left\|\left(C_{N}^{l}\right)^{t} x_{N}\right\|_{w, p}=p .
$$

Applying (2.2), we get

$$
\begin{aligned}
\left\|\left(C_{N}^{l}\right)^{t} x_{N}\right\|_{w, p}^{p} & \leq\left\|C(1)^{t} x_{N}^{\prime}\right\|_{w, p}^{p}=\left\|\left(C_{N}^{1}\right)^{t} x_{N}\right\|_{w, p}^{p} \\
& \leq\left\|\left(C_{N}^{l}\right)^{t} x_{N}\right\|_{w, p}^{p}+\frac{l^{p}(l+1)}{N^{p}} \cdot \quad(N \geq l)
\end{aligned}
$$

Making $N \rightarrow \infty$, it follows that

$$
\lim _{N \rightarrow \infty}\left\|\left(C_{N}^{l}\right)^{t} x_{N}\right\|_{w, p}=\lim _{N \rightarrow \infty}\left\|\left(C_{N}^{1}\right)^{t} x_{N}\right\|_{w, p}^{p}=p
$$

This completes the proof.

Note that, in general, $L_{w, p}\left(\left(C_{N}^{l}\right)^{t}\right) \neq p$. In fact, we have $L_{w, p}\left(\left(C_{N}^{N}\right)^{t}\right)$ $\leq \frac{1}{N}<p$, if $N>\frac{1}{p}$. One can see this by considering the definition of C_{N}^{N}.

Theorem 2.3. Let $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1$ and $A=\left(a_{n, k}\right)_{n, k \geq 0}$ be a lower triangular matrix with $A \geq 0$. Then,

$$
\begin{equation*}
p M^{p-1}\left(\inf _{n \geq 0}^{n} \sum_{k=0}^{n} a_{n, k}\right) \leq L_{w, p}\left(A^{t}\right) . \tag{2.7}
\end{equation*}
$$

Also, the same inequality holds, if $L_{w, p}\left(A^{t}\right)$ is replaced by $L_{w, p^{*}}(A)$. Here, M is defined by (1.1).

Proof. Applying Proposition 4.3.6 of [3], we have $L_{w, p}\left(A^{t}\right)=L_{w, p^{*}}(A)$, and so it suffices to prove (2.7). Let $x \geq 0$ with $\|x\|_{w, p}=1$. Since
$p-1<0$, from Lemma 2.7.18 of [3] with (1.1) and Fubini's theorem, it follows that:

$$
\begin{align*}
& \left\|A^{t} x\right\|_{w, p}^{p}=\sum_{k=0}^{\infty} w_{k}\left(\sum_{n=k}^{\infty} a_{n, k} x_{n}\right)^{p} \\
& \quad \geq p\left\{\sum_{k=0}^{\infty} w_{k} \sum_{j=k}^{\infty} a_{j, k} x_{j}\left(\sum_{n=j}^{\infty} a_{n, k} x_{n}\right)^{p-1}\right\} \\
& \quad \geq p M^{p-1} \sum_{k=0}^{\infty} w_{k} \sum_{j=k}^{\infty} a_{j, k} x_{j}\left(\sum_{n=j}^{\infty} a_{n, j} x_{n}\right)^{p-1} \tag{2.8}\\
& \quad \geq p M^{p-1} \sum_{j=0}^{\infty} w_{j} x_{j}\left(\sum_{n=j}^{\infty} a_{n, j} x_{n}\right)^{p-1}\left(\sum_{k=0}^{j} a_{j, k}\right) \\
& \quad \geq p M^{p-1}\left(\inf _{j \geq 0} \sum_{k=0}^{j} a_{j, k}\right)\left\{\sum_{j=0}^{\infty} w_{j} x_{j}\left(\sum_{n=j}^{\infty} a_{n, j} x_{n}\right)^{p-1}\right\}
\end{align*}
$$

Applying Hölder's inequality, we deduce that

$$
\begin{aligned}
\sum_{j=0}^{\infty} w_{j} x_{j}\left(\sum_{n=j}^{\infty} a_{n, j} x_{n}\right)^{p-1} & =\sum_{j=0}^{\infty} w_{j}^{\frac{1}{p}} x_{j}\left(w_{j}^{\frac{1}{p^{*}(p-1)}} \sum_{n=j}^{\infty} a_{n, j} x_{n}\right)^{p-1} \\
& \geq\left(\sum_{j=0}^{\infty} w_{j} x_{j}^{p}\right)^{\frac{1}{p}}\left(\sum_{k=0}^{\infty}\left(w_{k}^{\frac{1}{p}} \sum_{j=k}^{\infty} a_{j, k} x_{j}\right)^{p}\right)^{\frac{1}{p^{*}}} \\
& =\|x\|_{w, p}\left\|A^{t} x\right\|_{w, p}^{p-1}
\end{aligned}
$$

Inserting this estimate into the corresponding term in (2.8), gives

$$
\left\|A^{t} x\right\|_{w, p} \geq p M^{p-1}\left(\inf _{j \geq 0}^{j} \sum_{k=0}^{j} a_{j, k}\right)\|x\|_{w, p}
$$

This leads us to the lower estimate in (2.7).

Theorem 2.3 has some applications. For example, consider the weighted mean matrix, say $\left(A_{W}^{W M}\right)$, associated with the sequence $W^{\prime}=\left(w_{n}^{\prime}\right)_{n=0}^{\infty}$, where, $l=0,1,2, \cdots, w_{0}^{\prime}=w_{1}^{\prime}=\cdots=w_{l}^{\prime}=1$ and $w_{n}^{\prime}=\frac{1}{2}$, for $n>l$. Applying inequality (2.7) for $M=2$, we have

$$
L_{w, p}\left(\left(A_{W}^{W M}{ }^{W}\right)^{t}\right) \geq p 2^{p-1}
$$

Next, consider the Nörlund matrix $\left(A_{W}^{N M}\right)$, where, $w^{\prime}=\left(w_{n}^{\prime}\right)_{n=0}^{\infty}$ is a non-negative sequence with $w_{0}^{\prime}>0$ and $W_{n}^{\prime}=\sum_{k=0}^{n} w_{k}^{\prime}$. If $w_{n}^{\prime} \downarrow$, then
$M=1$. Applying (2.7), we deduce that

$$
L_{w, p}\left(\left(A_{W}^{N W}\right)^{t}\right) \geq p
$$

In general, for the summability matrix A (see [1]), with increasing rows $M=1$, we observe that (2.7) has the following form:

$$
\begin{equation*}
p \leq L_{w, p}\left(A^{t}\right)=L_{w, p^{*}}(A) \tag{2.9}
\end{equation*}
$$

Inequality (2.9) is an analogue of ([4], Theorem 4.2), obtained by a different way.

Theorem 2.4. Let $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1$, $w_{0}^{\prime}>0$ and $w_{n}^{\prime} \geq 0$, for all $n \geq 1$ and also $\lim _{n \rightarrow \infty} W_{n}^{\prime}=\infty$. Then, the following assertions are true:
(i) $L_{w, p}\left(\left(A_{W}^{N M}\right)^{t}\right)=L_{w, p^{*}}\left(A_{W}^{N M}\right) \leq p\left(\lim _{l \rightarrow \infty} K(l)\right)$,
where, $\quad K(l):=\sup _{n \geq 0, N \geq l, l \leq k \leq n+N} \frac{(n+N+1) w_{k}^{\prime}}{W_{n+N}^{\prime}}$.
(ii) $L_{w, p}\left(\left(A_{W}^{W M}\right)^{t}\right)=L_{w, p^{*}}\left(A_{W}^{W M}\right) \leq p\left(\lim _{l \rightarrow \infty} k(l)\right)$,
where, $\quad k(l):=\sup _{n \geq 0, l \leq k \leq n} \frac{(n+1) w_{k}^{\prime}}{W_{n}^{\prime}}$.
Obviously, $k(l) \leq K(l)$, for all $l \geq 1$. Since $k(l) \downarrow$ and $K(l) \downarrow$, then the limits in (i) and $(i i)$ can be replaced by $\inf _{l \in \mathbb{N}}$. We have

$$
K(l) \leq\left(\sup _{n \geq l} w_{n}^{\prime}\right) /\left(\inf _{n \geq l} \frac{W_{n}^{\prime}}{n+1}\right)
$$

Proof. Let x_{N} and x_{N}^{\prime} be defined as in Lemma 2.2. Since $a^{p}+b^{p} \geq$ $(a+b)^{p}$, for all $a, b \geq 0$, we deduce that

$$
\begin{equation*}
\left\|\left(A_{W}^{N M}\right)^{t} x_{N}^{\prime}\right\|_{w, p}^{p} \leq\left\|\left(A_{1}^{l}\right)^{t} x_{N}^{\prime}\right\|_{w, p}^{p}+\left\|\left(A_{2}^{l}\right)^{t} x_{N}^{\prime}\right\|_{w, p}^{p}(N \geq 0) \tag{2.10}
\end{equation*}
$$

where, $A_{2}^{l}=A_{W}^{N M}-A_{1}^{l}$ and $A_{1}^{l}=\left(a_{n, k}\right)_{n, k \geq 0}$ is the matrix obtained from $A_{W}^{N W}$ by replacing the (n, k) th entry of $A_{W}^{N W}$ with 0 , for all n, k, with $n-l<k \leq n$. Consider $N \geq l+1$. Obviously, $a_{n+N-1, k} \leq K(l) / n+N$, for $0 \leq k<n+N-l$, and $a_{n+N-1, k}=0$, for $k \geq n+N-l$. This implies
that

$$
\begin{equation*}
\left\|\left(A_{1}^{l}\right)^{t} x_{N}^{\prime}\right\|_{w, p}^{p} \leq K(l)^{p}\left\|\left(C_{N}^{l}\right)^{t} x_{N}\right\|_{w, p}^{p} \tag{2.11}
\end{equation*}
$$

On the other hand, it follows from the definition of A_{2}^{l} that

$$
\begin{equation*}
\left\|\left(A_{2}^{l}\right)^{t} x_{N}^{\prime}\right\|_{w, p}^{p} \leq l\left(\frac{\max \left\{w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{l-1}^{\prime}\right\}}{W_{N-1}^{\prime}}\right)^{p}\left\|x_{N}\right\|_{w, p}^{p} \tag{2.12}
\end{equation*}
$$

Putting (2.10) and (2.11) together with (2.12), yields:

$$
\begin{aligned}
\left\|\left(A_{W}^{N M}\right)^{t} x_{N}^{\prime}\right\|_{w, p}^{p} & \leq(K(l))^{p}\left\|\left(C_{N}^{l}\right)^{t} x_{N}\right\|_{w, p}^{p} \\
& +l\left(\frac{\max \left\{w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{l-1}^{\prime}\right\}}{W_{N-1}^{\prime}}\right)^{p}\left\|x_{N}\right\|_{w, p}^{p}
\end{aligned}
$$

We have $\left\|x_{N}\right\|_{w, p}=1$ and $W_{N}^{\prime} \rightarrow \infty$, as $N \rightarrow \infty$, and applying Lemma $2.2(i i)$, we get $L_{w, p}\left(\left(A_{W}^{N M}\right)^{t}\right) \leq p K(l)$. Hence,

$$
L_{w, p}\left(\left(A_{W}^{N M}\right)^{t}\right) \leq p\left(\inf _{l \in \mathbb{N}} K(l)\right)=p \lim _{l \rightarrow \infty} K(l)
$$

This proves (i).
Now, consider (ii). Let $\left\{x_{N}^{m}\right\}_{m=0}^{\infty}$ be the corresponding sequence given in Lemma 2.2. Similar to $A_{W}^{N M}$, write $A_{W}^{W M}=A_{1}^{l}+A_{2}^{l}$, where, A_{1}^{l} is the matrix obtained from $A_{W}^{W M}$ by replacing the (n, k) th entry of $A_{W}^{W M}$ with 0 , for all $n \geq 0$ and $0 \leq k<l$. As seen above, one can easily derive:

$$
\begin{aligned}
\left\|\left(A_{W}^{W M}\right)^{t}\left(x_{N}^{m}\right)^{\prime}\right\|_{w, p}^{p} & \leq\left\|\left(A_{1}^{l}\right)^{t}\left(x_{N}^{m}\right)^{\prime}\right\|_{w, p}^{p}+\left\|\left(A_{2}^{l}\right)^{t}\left(x_{N}^{m}\right)^{\prime}\right\|_{w, p}^{p} \\
& \leq(k(l))^{p}\left\|\left(C_{N}^{1}\right) x_{N}^{m}\right\|_{w, p}^{p} \\
& +l\left(\frac{\max \left\{w_{0}^{\prime}, w_{1}^{\prime}, \ldots, w_{l-1}^{\prime}\right\}}{W_{N-1}^{\prime}}\right)^{p}\left\|x_{N}^{m}\right\|_{w, p}^{p}
\end{aligned}
$$

which gives $\left.L_{w, p}\left(A_{W}^{W}\right)^{t}\right) \leq p k(l)$, for all $l \in \mathbb{N}$. Therefore,

$$
L_{w, p}\left(\left(A_{W}^{W M}\right)^{t}\right) \leq p\left(\inf _{l \in \mathbb{N}} k(l)\right)=p \lim _{l \rightarrow \infty} k(l)
$$

This completes the proof of the (ii).
Applying (2.9) for the summability matrix A, with increasing rows, we have

$$
p \leq L_{w, p}\left(A^{t}\right)=L_{w, p^{*}}(A)
$$

Also, applying Theorem 2.4(i), we deduce the following corollaries.
Corollary 2.5. Let $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1, w_{n}^{\prime} \downarrow \alpha$ and $\alpha>0$. Then,

$$
L_{w, p}\left(\left(A_{W}^{N M}\right)^{t}\right)=L_{w, p^{*}}\left(\left(A_{W}^{N M}\right)\right)=p .
$$

Remark 2.6. The case $\alpha=0$ in Corollary 2.5 is false. In general, a counterexample is the Nörlund matrix $\left(A_{W}^{N M}\right)$, where, $w_{0}^{\prime}=1, w_{n}^{\prime} \downarrow 0$, $\inf _{k \geq 0} \frac{w_{0}^{\prime}}{w_{0}^{\prime}+\ldots+w_{k}^{\prime}}>p$. For this matrix, $\alpha=0$, but

$$
\begin{aligned}
L_{w, p}\left(\left(A_{W}^{N M}\right)^{t}\right) & \geq \inf _{\|x\|_{w, p}=1, x \geq 0}\left(\sum_{n=0}^{\infty} w_{n}\left(a_{n, n} x_{n}\right)^{p}\right)^{1 / p} \\
& \geq \inf _{k \geq 0} \frac{w_{0}^{\prime}}{w_{0}^{\prime}+\ldots+w_{k}^{\prime}} \\
& >p .
\end{aligned}
$$

In ([5], Theorem 4.1), the upper bound of $L_{w, p}\left(A^{t}\right)$ is established for those summability matrices A, whose rows are decreasing, where, such matrices, $L_{w, p}\left(A^{t}\right) \leq p$. For this of type matrix, applying (2.7), we have

$$
p M^{p-1} \leq L_{w, p}\left(A^{t}\right) \leq p .
$$

Also, we have the following results for particular cases of such matrices.
Corollary 2.7. Let $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1, w_{n}^{\prime} \downarrow \alpha$ and $\alpha \geq 0$. Then,

$$
p\left(\frac{w_{0}^{\prime}}{\alpha}\right)^{p-1} \leq L_{w, p}\left(\left(A_{W}^{W M}\right)^{t}\right)=L_{w, p^{*}}\left(A_{W}^{W M}\right) \leq p .
$$

Corollary 2.8. Let $0<p<1, \frac{1}{p}+\frac{1}{p^{*}}=1$, $w_{n}^{\prime} \uparrow \alpha$ and $w_{0}^{\prime}>0$. Then,

$$
p\left(\frac{\alpha}{w_{0}^{\prime}}\right)^{p-1} \leq L_{w, p}\left(\left(A_{W}^{N M}\right)^{t}\right)=L_{w, p^{*}}\left(A_{W}^{N M}\right) \leq p .
$$

References

[1] G. Bennett, Inequalities complimentary to Hardy, Quart. J. Math. Oxford Ser. (2) 49 (1998) 395-432.
[2] C.-P. Chen and K.-Z. Wang, Lower bounds of Copson type for the transposes of lower triangular matrices, J. Math. Anal. Appl. 341 (2008) 1284-1294.
[3] D. Foroutannia, Upper bound and lower bound for matrix operators on weighted sequence space, Ph.D. Thesis, University of Sistan and Baluchestan, Zahedan, 2007.
[4] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2d edition, Cambridge University Press, Cambridge, 1952.
[5] D. Foroutannia and R. Lashkaripour, Lower bounds for summability matrices on weighted sequence spaces, Lobachevskii J. Math. 27 (2007) 15-29.
[6] R. Lashkaripour and D. Foroutannia, Lower bounds for matrices on weighted sequence spaces, J. Sci. Islam. Repub. Iran 18 (2007) 49-56.
[7] A. Zygmund, Trigonometric Series, Vol. I and II, Third edition, Cambridge University Press, Cambridge, 2002.

R. Lashkaripour and G. Talebi

Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
Email: lashkari@hamoon.usb.ac.ir
Email: gh11talebi@gmail.com

[^0]: MSC(2010): Primary: 46A45; Secondary: 26D15.
 Keywords: Lower bound, upper bound, lower triangular matrix, summability matrix, Nörlund matrix.
 Received: 7 October 2009, Accepted: 29 November 2009.
 *Corresponding author
 (c) 2011 Iranian Mathematical Society.

