MULTIPLICATIVE BIJECTIVE MAPS ON STANDARD OPERATOR ALGEBRAS

M. B. ASADI

Communicated by Mohammad Sal Moslehian

Abstract

We provide an elementary proof of the fact that every bijective multiplicative map $\pi: \mathcal{A} \rightarrow \mathcal{B}$ of standard operator algebras on real normed spaces X and Y, is respectively of the form $\pi(A)=T A T^{-1}$ and $A \in \mathcal{A}$, where $T: X \rightarrow Y$ is a bounded invertible linear operator.

Šemrl proved the following theorem for the infinite dimensional real and complex Banach spaces by using projective geometry [6] and automatic continuity [5]. Here, we give an elementary proof of the theorem for any real normed space of dimension at least two. We note that in our proof, we do not use the completeness of X and Y.

Let X and Y be normed spaces. Denote by $B(X)$, the algebra of all bounded linear operators on X. A subalgebra of $B(X)$ which contains $F(X)$ (the ideal of all finite rank operators in $B(X)$) is called a standard operator algebra on X.

Theorem. Let X and Y be real normed spaces, at least two-dimensional, and let \mathcal{A} and \mathcal{B} be standard operator algebras on X and Y, respectively. Assume that $\pi: \mathcal{A} \rightarrow \mathcal{B}$ is a bijective map satisfying

$$
\pi(A B)=\pi(A) \pi(B), \quad \text { for every } A, B \in \mathcal{A} .
$$

Then, $\pi(A)=T A T^{-1}, A \in \mathcal{A}$, where $T: X \rightarrow Y$ is a bounded invertible linear operator. In particular, π is continuous.

Proof. Let $P \in \mathcal{A}$ be a rank one idempotent. Then, $\pi(P)$ is rank one idempotent, as well. It follows that a nonzero idempotent $P \in B(X)$ has rank one if and only if for every nonzero idempotent $Q \in B(X)$, the equality $P Q=Q$ implies $P=Q$.

We fix a unit vector $z \in X$ and a functional $g \in X^{\prime}$ with $g(z)=1$. Then, $\pi(z \otimes g)=u \otimes h$, where $u \in Y$ and $h \in Y^{\prime}$ with $h(u)=1$. We define $T: X \rightarrow Y$ by

$$
T(x)=\pi(x \otimes g) u, \quad x \in X .
$$

For any $A \in \mathcal{A}$, we have

$$
T A x=\pi(A(x \otimes g)) u=\pi(A) \pi(x \otimes g) u=\pi(A) T x .
$$

Therefore,

$$
T A=\pi(A) T . \quad(*)
$$

We observe that $T \neq 0$, by $T(z)=u$, and so the above equality implies that T is a bijective map from X onto Y.

Since $\pi(P)$ is a rank one idempotent, there exists a suitable number $U_{P}(\lambda)$ for any number λ such that

$$
\pi(P) \pi(\lambda P) \pi(P)=U_{P}(\lambda) \pi(P)
$$

Therefore, $\pi(\lambda P)=U_{P}(\lambda) \pi(P)$. It is easy to see that U_{P} does not depend on $\pi(P)$; i.e., $U_{P}=U_{Q}$, for all rank one idempotents P and Q. Hence, we use U instead of U_{P}.

In fact, if R is a rank one idempotent such that $R P \neq 0, R Q \neq 0$, then $U_{R}(\lambda) \pi(R) \pi(P)=\pi((\lambda R) P)=\pi(R(\lambda P))=U_{P}(\lambda) \pi(R) \pi(P)$ and so $U_{R}(\lambda)=U_{P}(\lambda)$.

Clearly, U is a one-to-one multiplicative map on $\mathbb{R}, U(1)=1$ and $U(-1)=-1$, since π is a multiplicative bijective map.
Also, we have $T(\lambda P)=U(\lambda) T P$, for any rank one idempotent P in \mathcal{A}. Therefore, $T(-P)=-T P$ and so $T(-x)=-T(x)$, for any x in X. We show that T is an additive map, and it follows that U is additive.

Suppose first that $x_{1}, x_{2} \in X$ are linearly independent. We put $y_{1}=$ $T\left(x_{1}\right), y_{2}=T\left(x_{2}\right)$ and distinguish two cases.
(1) $T^{-1}\left(y_{1}+y_{2}\right)=x_{3}$ is linearly independent of x_{1}, x_{2}.
(2) The contrary to (1) occurs.

In the first case, we can find an operator $A \in \mathcal{A}$ such that

$$
A\left(x_{1}\right)=x_{1}, A\left(x_{2}\right)=x_{2}, A\left(x_{3}\right)=x_{1}+x_{2} .
$$

Then, we have

$$
\begin{aligned}
T\left(x_{1}+x_{2}\right) & =T\left(A\left(x_{3}\right)\right)=\pi(A) T\left(x_{3}\right)=\pi(A)\left(T\left(x_{1}\right)+T\left(x_{2}\right)\right) \\
& =T\left(x_{1}\right)+T\left(x_{2}\right)
\end{aligned}
$$

In the second case, let $x_{3}=\lambda_{1} x_{1}+\lambda_{2} x_{2}$, for some $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $P_{1}=x_{1} \otimes f_{1}, P_{2}=x_{2} \otimes f_{2}$, where $f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)=1$. We find an operator $A \in \mathcal{A}$ such that $A\left(x_{1}\right)=x_{1}, A\left(x_{2}\right)=0$. Then, we have

$$
\begin{aligned}
\pi(A)\left(T\left(x_{1}\right)+T\left(x_{2}\right)\right) & =\pi(A) T\left(x_{3}\right)=T A\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) \\
& =T\left(\lambda_{1} x_{1}\right)=U\left(\lambda_{1}\right) T\left(x_{1}\right)
\end{aligned}
$$

On the other hand, $\pi(A)\left(T\left(x_{1}\right)+T\left(x_{2}\right)\right)=T A\left(x_{1}\right)+T A\left(x_{2}\right)=T\left(x_{1}\right)$. Then, $U\left(\lambda_{1}\right)=1$ and $\lambda_{1}=1$, since U is one-to-one.

In the same way, we obtain $\lambda_{2}=1$; i.e., $T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)$.
Now, for each $0 \neq x \in X$ and $-1 \neq r \in \mathbb{R}$, assume that $y \in X$ be linear by independent of x. Then, $\{x+y, r x-y\}$ is a linear independent set, and therefore,

$$
\begin{aligned}
T(x+r x) & =T(x+y+r x-y)=T(x+y)+T(r x-y) \\
& =T(x)+T(y)+T(r x)-T(y)=T(x)+T(r x)
\end{aligned}
$$

Also, if $r=-1$, then $T(x+r x)=T(x)+T(r x)$, since $T(-x)=-T(x)$. It follows that T and so U are additive. Further more U is multiplicative and $U(1)=1$. Therefore, $U(\lambda) \equiv \lambda$, by the Darboux theorem. Then, T and so π are linear operators. Now, similar to [1], it can be proved that T is bounded.

Remark. It is essential that the normed spaces X and Y be at least two dimensional. For instance, let $X=Y=\mathbb{R}$ and consequently, $\mathcal{A}=\mathcal{B}=$ \mathbb{R}. The map $\pi: \mathcal{A} \rightarrow \mathcal{B}$, related by $\pi(x)=x^{3}$, for $x \in \mathbb{R}$, is a bijective multiplicative map, but π is not a linear (or even additive) map.

References

[1] M. B. Asadi and A. Khosravi, An elementary proof of the characterization of isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 134 (2006) 3255-3256.
[2] P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Functional Analysis 12 (1973) 275-289.
[3] M. Eidelheit, On isomorphisms of rings of linear operators, Studia Math. 9 (1940) 97-105.
[4] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969) 695-698.
[5] P. Šemrl, Isomorphisms of standard operator algebras, Proc. Amer. Math. Soc. 123 (1995) 1851-1855.
[6] P. Šemrl, Applying projective geomety to transformations on rank one idempotents, J. Funct. Anal. 210 (2004) 248-257.
M. B. Asadi

Department of Mathematics, Shahed University, P.O.Box 18151-159, Tehran, Iran
Email: mbasadi@shahed.ac.ir

