n-CYCLICIZER GROUPS

L. MOUSAVI

Communicated by Jamshid Moori

Abstract

The cyclicizer of an element x of a group G is defined as $C y c_{G}(x)=\{y \in G \mid\langle x, y\rangle$ is cyclic $\}$. Here, we introduce an n cyclicizer group and show that there is no finite n-cyclicizer group for $n=2,3$. We prove that for any positive integer $n \neq 2,3$, there exists a finite n-cyclicizer group and determine the structure of finite 4 and 6 -cyclicizer groups. Also, we characterize finite 5,7 and 8 -cyclicizer groups.

1. Introduction

Let G be a group. We know that the centralizer of an element $x \in G$ is defined as follows:

$$
C_{G}(x)=\{y \in G \mid\langle x, y\rangle \text { is abelian }\} .
$$

If, in this definition, we replace the word abelian by the word cyclic, we get a subset of the centralizer of x. This subset is called the cyclicizer of x in G and it is denoted by $\operatorname{Cyc}_{G}(x)[9,10]$. Thus,

$$
C y c_{G}(x)=\{y \in G \mid\langle x, y\rangle \text { is cyclic }\} .
$$

[^0]Also, $C y c(G)$, the cyclicizer of G, is defined as follows:

$$
\begin{aligned}
C y c(G) & =\{y \in G \mid\langle x, y\rangle \text { is cyclic for all } x \in G\} \\
& =\bigcap_{x \in G} C y c_{G}(x)
\end{aligned}
$$

In general, for an element x of a group $G, C y c_{G}(x)$ is not a subgroup of G. For example, in the group $G=\mathbb{Z}_{2} \oplus \mathbb{Z}_{4}$, we have

$$
C y c_{G}((0,2))=\{(0,0),(0,1),(0,2),(0,3),(1,1),(1,3)\}
$$

which is not a subgroup of G.
In [1] and [2], the cyclicizers of a group are studied via a graph which is called the non-cyclic graph of the group.
For any non-cyclic group $G, C y c(G)$ is a subgroup, central, cyclic, normal and contained in all maximal cyclic subgroups of G. It is clear that for a nontrivial element x of $G,\left|C y c_{G}(x)\right| \geq 2$ and $G=\bigcup_{1 \neq x \in G} C y c_{G}(x)$. Also, for any group G and $x \in G$, if $\bar{G}=G / C y c(G)$, then $C y c_{\bar{G}}(x C y c(G))$ $=C y c_{G}(x) / C y c(G)[2]$ and it easily follows that $C y c(\bar{G})=1$ (see also [10]).

For a finite group G, let $\operatorname{Cent}(G)$ denote the set of the centralizers of single elements of G. G is called an n-centralizer group if $|\operatorname{Cent}(G)|=n$. We know that there is no n-centralizer group for $n=2,3$. Let $Z(G)$ denote the center of a group G. Then, $|\operatorname{Cent}(G)|=4$ if and only if $G / Z(G) \cong C_{2} \times C_{2}$ and $|\operatorname{Cent}(G)|=5$ if and only if $G / Z(G) \cong C_{3} \times C_{3}$ or S_{3} [7], where C_{2} is a cyclic group of size two and S_{3} is a symmetric group on three letters .

Moreover, if $|\operatorname{Cent}(G)|=6$, then $G / Z(G)$ is isomorphic to one of the groups $\left(C_{2}\right)^{3},\left(C_{2}\right)^{4}, A_{4}$ or $D_{8}[6]$, where A_{4} is an alternating group on four letters and D_{8} is a dihedral group of size eight.

Also, \mid Cent $(G) \mid=7$ if and only if $G / Z(G)$ is isomorphic to one of the groups $C_{5} \times C_{5}, D_{10}$ or $\left\langle x, y \mid x^{5}=y^{4}=1, y^{-1} x y=x^{3}\right\rangle$ and if \mid Cent $(G) \mid=8$, then $G / Z(G)$ is isomorphic to one of the groups $D_{12},\left(C_{2}\right)^{3}$ or $A_{4}[5]$.

Similarly, we can define an n-cyclicizer group, where n is a positive integer.

Definition 1.1. For a positive integer n, we say that G is an n-cyclicizer group if $\left|\left\{\operatorname{Cyc}_{G}(x) \mid x \in G\right\}\right|=n$ and in this case, we write $C y c l(G)=n$.

It is obvious that G is a 1-cyclicizer group if and only if G is cyclic. Here, we show that there is no finite n-cyclicizer group for $n=2,3$ and prove that for any positive integer $n \neq 2,3$, there exists a finite group
G such that $\operatorname{Cycl}(G)=n$. We also study finite n-cyclicizer groups for $n=4,5,6,7$ and 8 .

2. n-Cyclicizer Groups for $n=4,5,6,7$ and 8

The following theorem is proved in [2].
Theorem 2.1. Let G be a finite non-cyclic group. Then, $|G / C y c(G)| \leq \max \left\{(s-1)^{2}(s-3)!,(s-2)^{3}(s-3)!\right\}$, where s is the number of maximal cyclic subgroups of G.

It is clear that if G has n maximal cyclic subgroups, then $\operatorname{Cycl}(G) \geq n$.
Lemma 2.2. Let G be a finite non-cyclic group such that $\operatorname{Cycl}(G)=n$. Then, G has at most $n-1$ maximal cyclic subgroups.

Proof. Assume that $\langle x\rangle$ is a maximal cyclic subgroup of G. Then, $C y c_{G}(x)=\langle x\rangle$. Let $\operatorname{Cycl}(G)=n$, and $\left\langle x_{1}\right\rangle,\left\langle x_{2}\right\rangle, \ldots,\left\langle x_{r}\right\rangle$ be distinct maximal cyclic subgroups of G. Since for any $i, 1 \leq i \leq r$, $C y c_{G}\left(x_{i}\right)=\left\langle x_{i}\right\rangle$, then $r \leq n$. It is clear that $r \neq n$, since $C y c_{G}(1)=G$. This completes the proof.

Lemma 2.3. Let G be a finite group. Then, $\operatorname{Cycl}(\bar{G})=n$ if and only if $\operatorname{Cycl}(G)=n$.

Proof. Let $\operatorname{Cycl}(\bar{G})=n$ and $C=\operatorname{Cyc}(G)$. The key point of our proof is that Cyc $_{G}(x) \rightarrow$ Cyc $_{\bar{G}}(\bar{x})$ is a one-to-one correspondence between the set of cyclicizers of G and those of \bar{G} (induced by the natural homomorphism $G \rightarrow \bar{G}=G / C)$. For an element x of $G, \bar{X}=C y c_{G}(x) / C$ and $\bar{x}=x C$. We know that $C y c_{\bar{G}}(\bar{x})=\bar{X}$. Assume that $\bar{X}_{1}, \bar{X}_{2}, \ldots, \bar{X}_{n}$ be distinct cyclicizers of $\overline{x_{1}}=C, \overline{x_{2}}, \ldots, \overline{x_{n}}$, respectively. It is clear that $\operatorname{Cycl}(G) \geq n$. Without loss of generality, we can assume that $X_{1}, X_{2}, \ldots, X_{n}$ are distinct cyclicizers of $x_{1}, x_{2}, \ldots, x_{n}$, respectively. Suppose that $Y=C y c_{G}(g)$ is different from X_{i}, for any $i, 1 \leq i \leq n$. Then, $\bar{Y}=\bar{X}_{i}$, for some $i, 1 \leq i \leq n$. Thus, $C y c_{G}(g) C=C y c_{G}\left(x_{i}\right) C$. Therefore, for any $h_{i} \in C y c_{G}(g)$, there exist c_{i} and $z_{i} \in C$ such that $h_{i} c_{i}=k_{i} z_{i}$, where $k_{i} \in \operatorname{Cyc} c_{G}\left(x_{i}\right)$, and so $h_{i}=k_{i} c_{t}$, for some $c_{t} \in C$. Since $k_{i} \in \operatorname{Cyc}_{G}\left(x_{i}\right)$, it is not hard to see that $\left\langle h_{i}, x_{i}\right\rangle$ is a cyclic group. Hence, $\operatorname{Cyc}_{G}(g) \subseteq C y c_{G}\left(x_{i}\right)$. Similarly, $C y c_{G}\left(x_{i}\right) \subseteq C y c_{G}(g)$. Thus,
$C y c_{G}(g)=C y c_{G}\left(x_{i}\right)$. This contradiction indicates $C y c l(G)=n$. The converse is clear.

Lemma 2.4. Let $n \geq 2$ be an integer, and
$Q_{4 n}=\left\langle x, y \mid x^{2 n}=1, x^{n}=y^{2}, y^{-1} x y=x^{-1}\right\rangle$. Then, $\operatorname{Cycl}\left(Q_{4 n}\right)=n+2$.

Proof. The set of all members of $Q_{4 n}$ is $\left\{1, x^{j}, x^{i} y, y \mid 1 \leq j, i \leq 2 n-1\right\}$.
It is straightforward to check that
(i) for any $i, 0 \leq i \leq n-1, C y c_{Q_{4 n}}\left(x^{i} y\right)=\left\{1, y^{2}, x^{i} y, x^{n+i} y\right\}$;
(ii) $C y c_{Q_{4 n}}(x)=\langle x\rangle$;
and
(iii) for any $i, 0 \leq i \leq n-1, C y c_{Q_{4 n}}\left(x^{i} y\right)=C y c_{Q_{4 n}}\left(x^{n+i} y\right)$.

Therefore, $\operatorname{Cycl}\left(Q_{4 n}\right)=n+2$.

Corollary 2.5. Let $n>1$ be an integer. Then, $\operatorname{Cycl}\left(D_{2 n}\right)=n+2$.

Proof. It is well known that $Z\left(Q_{4 n}\right)=\left\langle y^{2}\right\rangle$, and we can see that $Z\left(Q_{4 n}\right)=$ $C y c\left(Q_{4 n}\right)$ and $Q_{4 n} / Z\left(Q_{4 n}\right)=Q_{4 n} / C y c\left(Q_{4 n}\right) \cong D_{2 n}$, and so the proof follows from Lemma 2.3.

Corollary 2.6. Let $n>3$ be an integer. Then, there exists a group G with $\operatorname{Cycl}(G)=n$.

Theorem 2.7. There is no finite n-cyclicizer group for $n=2,3$.

Proof. First, note that there is no cyclic n-cyclicizer group for $n=2,3$. Assume G is a finite group such that $\operatorname{Cycl}(G)=2$. Now since the only proper cyclicizer of G is cyclic and G is covered by its all proper cyclicizers, it follows that G is cyclic, which is a contradiction.

Now, suppose for a contradiction that $\operatorname{Cycl}(G)=3$. Assume that $G=C y c_{G}(x) \cup C y c_{G}(y)$, where $C y c_{G}(x)$ and $C y c_{G}(y)$ are two distinct cyclicizers of G. By Lemma 2.2, G has at most two maximal cyclic subgroups. If G has exactly two maximal cyclic subgroups, then, without loss of generality, $G=\langle x\rangle \cup\langle y\rangle$, which is a contradiction. Thus, G has only one maximal cyclic subgroup. This means that G is a cyclic group. This contradiction completes the proof.

Remark 2.8. Let p be a prime number and $m \in \mathbb{N}$. Then, $\frac{p^{m}-1}{p-1}$ is the number of subgroups of order p in $\left(C_{p}\right)^{m}$.

Theorem 2.9. Let p be a prime number and let G be a finite group such that $G / C y c(G) \cong C_{p} \times C_{p}$. Then, $\operatorname{Cycl}(G)=p+2$.

Proof. Let $C y c l\left(C_{p} \times C_{p}\right)=r$. By Remark 2.8, $C_{p} \times C_{p}$ has $p+1$ maximal cyclic subgroups, and so $r \leq p+1$. Let $\left\langle x_{1}\right\rangle,\left\langle x_{2}\right\rangle, \ldots,\left\langle x_{p+1}\right\rangle$ be maximal cyclic subgroups of $H=C_{p} \times C_{p}$. If $Y=C y c_{H}(y) \neq H$ is different from $\left\langle x_{i}\right\rangle$, for any $i, 1 \leq i \leq p+1$, then there exists j, $1 \leq j \leq p+1$, such that $y \in\left\langle x_{j}\right\rangle$. Therefore, $\left\langle x_{j}\right\rangle=\langle y\rangle \subseteq Y$. Let g be an arbitrary element in Y. Then, for some integer $k, 1 \leq k \leq p+1$, $\langle g, y\rangle=\left\langle x_{k}\right\rangle$. Thus, $y \in\left\langle x_{j}\right\rangle \cap\left\langle x_{k}\right\rangle$. If $j \neq k$, then $y=1$, and so $Y=H$. This is a contradiction. Therefore, $j=k$. This implies that $Y=\left\langle x_{j}\right\rangle$. Now, Lemma 2.3 completes the proof.

Corollary 2.10. Let p be a prime number. Then, $C y c\left(C_{p} \times C_{p}\right)=1$.

Proof. By Lemma 2.9, we have that $C_{p} \times C_{p}$ has $p+1$ proper cyclicizers. Let $C y c_{C_{p} \times C_{p}}(x)=\langle x\rangle$ and $C y c_{C_{p} \times C_{p}}(y)=\langle y\rangle$ be two distinct proper cyclicizers of $C_{p} \times C_{p}$. If $\langle x\rangle \cap\langle y\rangle \neq 1$, then $|\langle x\rangle \cap\langle y\rangle|=|\langle x\rangle|=p$. Since $\langle x\rangle \cap\langle y\rangle \leq\langle x\rangle$, then $\langle x\rangle \cap\langle y\rangle=\langle x\rangle$. Therefore, $\langle x\rangle=\langle y\rangle$. This contradiction shows that $\langle x\rangle \cap\langle y\rangle=1$ and the proof is complete.
Lemma 2.11. Let G be a finite p-group, for some prime number p. Then, $C y c(G) \neq 1$ if and only if G is either a cyclic group or a generalized quaternion group. In this case, $\operatorname{Cyc}(G)=Z(G)$.

Proof. It follows from Proposition 2.2 of [2].
Lemma 2.12. Let G and H be finite groups such that $(|G|,|H|)=1$.
Then, $C y c(G \times H)=C y c(G) \times C y c(H)$.

Proof. Let $(a, b) \in C y c(G \times H)$. Then, for any $(g, h) \in G \times H$, there exists $(x, y) \in G \times H$ such that $\langle(g, h),(a, b)\rangle=\langle(x, y)\rangle$. Therefore, $\langle(g, a)\rangle \leq\langle x\rangle$. So $a \in C y c(G)$. Similarly, $b \in C y c(H)$. Thus, $C y c(G \times$ $H) \subseteq C y c(G) \times C y c(H)$.

Now, let $(a, b) \in C y c(G) \times C y c(H)$. Then, for any $g \in G,\langle g, a\rangle$ is
a cyclic group. Also, for any $h \in H,\langle b, h\rangle$ is a cyclic group. Since $\langle(g, h),(a, b)\rangle \leq\langle g, a\rangle \times\langle h, b\rangle$ and $(|H|,|G|)=1$, then $(a, b) \in C y c(G \times$ $H)$. Thus, $C y c(G) \times C y c(H) \subseteq C y c(G \times H)$.

Lemma 2.13. (i) Let p be a prime number and n be an integer such that $(n, p)=1$. If $G=C_{p n} \times C_{p}$, then $G / C y c(G) \cong C_{p} \times C_{p}$.
(ii) Let n be an odd positive integer. If $G=C_{n} \times Q_{8}$, then $G / C y c(G) \cong$ $C_{2} \times C_{2}$.

Proof. (i) Let $H=C_{p} \times C_{p}$ and $K=C_{n}$. Since $(|H|,|K|)=1$, then $|C y c(G)|=n$. Thus, $|G / C y c(G)|=p^{2}$. If $G / C y c(G)$ is a cyclic group, then G is also a cyclic group, which is a contradiction. Thus, $G / C y c(G) \cong C_{p} \times C_{p}$.
(ii) Any Sylow subgroup of G is either a cyclic group or a generalized quaternion group, and so by Lemma 2.11, $\operatorname{Cyc}(G)=Z(G)$. We have $|G / C y c(G)|=|G / Z(G)|=4$ and $G / C y c(G)$ is not a cyclic group, since G is not a cyclic group. Therefore, $G / C y c(G) \cong C_{2} \times C_{2}$.

Lemma 2.14. Let p be a prime number and let G be a finite group such that $G / C y c(G) \cong C_{p} \times C_{p}$. Then, G is not a cyclic group and
(i) if $p=2$, then G is isomorphic to either $C_{2 n} \times C_{2}$ or $C_{n} \times Q_{8}$, where n is an odd positive integer;
and
(ii) if $p \neq 2$, then $G \cong C_{p n} \times C_{p}$, where n is an integer such that $(p, n)=1$.

Proof. If G is a cyclic group, then $|G / C y c(G)|=1$, which is a contradiction. If $G / C y c(G) \cong C_{p} \times C_{p}$, then $G / C y c(G)$ is an abelian group. Since $G / Z(G) \cong \frac{G / C y c(G)}{Z(G) / C y c(G)}$, then G is a nilpotent group. Thus, $G=S y l_{2} \times S y l_{3} \times \cdots \times S y l_{p} \times \cdots$.
Since $|G / C y c(G)|=p^{2}$, then $C y c(G)$ contains $C=\widehat{S y l}_{p}\left(\widehat{S y l}_{p}\right.$ is the product of all Sylow subgroups of G, except $\left.S y l_{p}\right)$. So, C is a cyclic group of size n such that $(p, n)=1$. Thus, $|C y c(G)|=p^{m} \times n$.

If $C y c(G) \cap S y l_{p}=\langle 1\rangle$, then $\left|S y l_{p}\right|=|G / C y c(G)|=p^{2}$. If $S y l_{p}$ is a cyclic group, then G is a cyclic group, which is a contradiction. Thus, $S y l_{p} \cong C_{p} \times C_{p}$. So $G \cong C_{p n} \times C_{p}$.

If $C y c(G) \cap S y l_{p} \neq\langle 1\rangle$, since $C y c(G) \cap S y l_{p} \leq C y c\left(S y l_{p}\right)$, then $S y l_{p}$
is a p-group whose cyclicizer is nontrivial. Thus, $S y l_{p}$ is a generalized quaternion group.

If $p \neq 2$, then G is not a generalized quaternion group.
If $p=2$, then $\left|C y c\left(S y l_{p}\right)\right|=2$. Since $1 \neq\left|C y c(G) \cap S y l_{2}\right| \leq$ $\left|C y c\left(S y l_{2}\right)\right|=2$, then $\left|S y l_{2}\right|=8$. Thus, $G \cong C_{n} \times Q_{8}$, and the proof is complete.

Lemma 2.15. Let G be a finite group. Then, $\operatorname{Cycl}(G)=4$ if and only if $G / C y c(G) \cong C_{2} \times C_{2}$.

Proof. Suppose that $G / \operatorname{Cyc}(G) \cong C_{2} \times C_{2}$. Since $\operatorname{Cycl}\left(C_{2} \times C_{2}\right)=4$, then, by Lemma 2.3, $\operatorname{Cycl}(G)=4$.

If $\operatorname{Cycl}(G)=4$, then, by Lemma 2.2, G has at most three maximal cyclic subgroups. Now, Theorem 2.1 completes the proof.

Theorem 2.16. Let n be an odd positive integer, and G be a finite group. Then, $\operatorname{Cycl}(G)=4$ if and only if G is isomorphic to one of the following groups:

$$
C_{n} \times Q_{8}, C_{2 n} \times C_{2}
$$

Proof. It follows from Lemmas 2.14 and 2.15.

Theorem 2.17. Let n be an odd positive integer, and G be a finite group. Then, $\operatorname{Cycl}(G)=6$ if and only if G is isomorphic to one of the following groups:

$$
C_{n} \times D_{8}, C_{4 n} \times C_{2}, C_{n} \times Q_{16}
$$

Proof. Let $\operatorname{Cycl}(G)=6$. Then, $\operatorname{Cycl}(\bar{G})=6$. Since G has at most five maximal cyclic subgroups, then, by Theorem 2.1, $|G / C y c(G)| \leq 54$. It is easy to see (by the following programs in GAP [11]) that 6-cyclicizer groups whose orders are less than 54 are the followings:

```
    C4}\times\mp@subsup{C}{2}{},\mp@subsup{D}{8}{},\mp@subsup{Q}{16}{},\mp@subsup{C}{12}{}\times\mp@subsup{C}{2}{},\mp@subsup{C}{3}{}\times\mp@subsup{D}{8}{},\mp@subsup{C}{20}{}\times\mp@subsup{C}{2}{},\mp@subsup{C}{5}{}\times\mp@subsup{D}{8}{},\mp@subsup{C}{3}{}\times\mp@subsup{Q}{16}{}
a:=function(n)
    local a;
    a:=AllSmallGroups(n);
    return a;
```

end;
cycelement:=function (G, x)
local c, e, i;
e:=Elements (G);
c: = [] ;
for i in[1..Size(e)] do
if $\operatorname{IsCyclic}(\operatorname{Group}(x, e[i]))=$ true then $\operatorname{Add}(c, e[i])$;
fi;
od;
return c;
end;
for n in[4..54] do
$\mathrm{G}:=\mathrm{a}(\mathrm{n})$;
for i in [1..Size(G)] do
$\mathrm{h}:=\mathrm{G}$ [i];
e:=Elements (h);
l:=List(e,i->[cycelement(h,i)]); if Size (Set(l)) = 6 then Print(StructureDescription(h),"\n"); fi;
od;
od;
But $|\operatorname{Cyc}(G / C y c(G))|=1$, therefore, $G / C y c(G)$ is isomorphic to either $C_{4} \times C_{2}$ or D_{8}. We compute $|C y c(G)|$ by the following program:

```
CycG := function(G)
    local c, e, i;
    c:=G;
    e:=Elements(G);
            for i in[1..Size(G)] do
            c:=Intersection(c,cycelement(G,e[i]));
            od;
    return c;
    end;
```

Similar to the proof of Lemma 2.14, we can conclude that $\operatorname{Cycl}(G)=6$ if and only if G is isomorphic to either $C_{n} \times D_{8}$ or $C_{4 n} \times C_{2}$ or $C_{n} \times Q_{16}$.

Theorem 2.18. Let G be a finite group. Then, $\operatorname{Cycl}(G)=5$ if and only if $G / C y c(G)$ is isomorphic to either S_{3} or $C_{3} \times C_{3}$.

Proof. Let $\operatorname{Cycl}(G)=5$. By Lemma 2.2, G has at most four maximal cyclic subgroups. Since $\operatorname{Cycl}(\bar{G})=5$, then, by Theorem 2.1, we have $5 \leq|G / C y c(G)| \leq 9$. On the other hand, $|G / C y c(G)|$ is not a prime number, and so $|G / C y c(G)|$ is either 6 or 8 or 9 . If $|G / C y c(G)|=8$, then (by GAP) $\operatorname{Cycl}(\bar{G}) \neq 5$, which is a contradiction. Thus, $|G / C y c(G)|=6$ or 9. Therefore, $G / C y c(G)$ is isomorphic to either S_{3} or $C_{3} \times C_{3}$. The converse is clear.

A covering for a group G is a collection of subgroups of G whose union is G. An n-cover for a group G is a cover with n members. A cover is irredundant if no proper subcollection is also a cover.

We write $f(n)$ for the largest index $|G: D|$ over all groups G having an irredundant n-cover with intersection D. Bryce et al. obtained $f(5)=$ 16 [8]. Also, Abdollahi et al. obtained $f(6)=36$, and $f(7)=81[3,4]$. We use these results to prove the following theorems.

Theorem 2.19. Let G be a finite group. Then, $\operatorname{Cycl}(G)=7$ if and only if $G / \operatorname{Cyc}(G)$ is isomorphic to one of the following groups:

$$
D_{10}, A=\left\langle x, y \mid x^{5}=y^{4}=1, x^{y}=x^{3}\right\rangle, C_{5} \times C_{5}
$$

Proof. Let $\operatorname{Cycl}(G)=7$. By Lemma 2.2, G has at most six maximal cyclic subgroups. Since $f(6)=36$, then $8 \leq|G / C y c(G)| \leq 36$. Now, it is easy to see (by GAP) that G is isomorphic to one of the following groups:

$$
D_{10}, C_{5} \times C_{5}, A, Q_{20}, C_{3} \times D_{10}
$$

On the other hand, $|C y c(G / C y c(G))|=1$, and so G is isomorphic to either D_{10} or $C_{5} \times C_{5}$ or A. The converse is clear.

Theorem 2.20. Let G be a finite group. Then, $\operatorname{Cycl}(G)=8$ if and only if $G / \operatorname{Cyc}(G)$ is isomorphic to one of the following groups:

$$
\left(C_{2}\right)^{3}, A_{4}, D_{12}, C_{8} \times C_{2}, C_{8}: C_{2}, C_{3} \times S_{3}, C_{9} \times C_{3}, C_{9}: C_{3}
$$

Proof. Let $\operatorname{Cycl}(G)=8$. By Lemma 2.2, G has at most seven maximal cyclic subgroups. As $f(7)=81$, with an argument similar to the proof of Theorem 2.19, we can prove our claim. The converse is clear.

Acknowledgments

This paper has been extracted from my thesis when I was an M.Sc. student at the University of Isfahan. I would like to express my gratitude to my supervisors Professor A. Mohammadi Hassanabadi, and Professor A. Abdollahi for many helpful ideas, suggestions, and their encouragements. This research was financially supported by the Center of Excellence for Mathematics, University of Isfahan.

References

[1] A. Abdollahi and A. Mohammadi Hassanabadi, Non-cylcic graph associated with a group, J. Algebra Appl. 8 (2009) 243-257.
[2] A. Abdollahi and A. Mohammadi Hassanabadi, Noncyclic graph of a group, Comm. Algebra 35 (2007) 2057-2081.
[3] A. Abdollahi, M. J. Ataei, S. M. Jafarian Amiri and A. Mohammadi Hassanabadi, Groups with a maximal irredundant 6-cover, Comm. Algebra 33 (2005) 3225-3238.
[4] A. Abdollahi and S. M. Jafarian Amiri, On groups with an irredundant 7-cover, J. Pure Appl. Algebra 209 (2007) 291-300.
[5] A. Abdollahi, S. M. Jafarian Amiri and A. Mohammadi Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (2007) 43-57.
[6] A. R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2000) 139-146.
[7] S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (1994) 366-374.
[8] R. A. Bryce, V. Fedri and L. Serena, Covering groups with subgroups, Bull. Austral. Math. Soc. 55 (1997) 469-476.
[9] K. O'Brayant, D. Patrick, L. Smithline and E. Wepsic, Some facts about cycles and tidy groups, Rose-Hulman Institue of Technology, Technical Report MS-TR 92-04, (1992).
[10] D. Patrick and E. Wepsic, Cyclicizers, centralizers and normalizers, Rose Hulman Institue of Technology, Technical Report MS-TR 91-05, (1991).
[11] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4; 2005, (http://www.gap-system.org).

L. Mousavi

Department of Mathematics, University of Isfahan, P.O.Box 81746-73441, Isfahan, Iran
Email: lmousavi@ymail.com

[^0]: MSC(2010): Primary: 20D60; Secondary: 20D99.
 Keywords: Centralizer, cyclicizer, n-cyclicizer group.
 Received: 30 July 2009, Accepted: 21 December 2009.
 *Corresponding author
 (c) 2011 Iranian Mathematical Society.

