LINEAR PRESERVING GD-MAJORIZATION FUNCTIONS FROM $\mathbf{M}_{n, m}$ TO $\mathbf{M}_{n, k}$

A. ARMANDNEJAD* AND H. HEYDARI

Communicated by Heydar Radjavi

Abstract

Let $\mathbf{M}_{n, m}$ be the vector space of all $n \times m$ real matrices. For $A, B \in \mathbf{M}_{n, m}$, it is said that B is gd-majorized by A (written $A \succ_{g d} B$) if for every $x \in \mathbb{R}^{n}$ there exists a g -doubly stochastic matrix D_{x} such that $B x=D_{x}(A x)$. Here, we show that if $A \succ_{g d} B$, then there exists a g-doubly stochastic matrix D (independent of x) such that $B=D A$. Also, the possible structures of linear preserving gd-majorization functions from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$ are found. Finally, all linear strongly preserving gd-majorization functions from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$ are characterized.

1. Introduction

Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, k}$ be a linear function and let \sim be a relation on both $\mathbf{M}_{n, m}$ and $\mathbf{M}_{n, k}$. We say that T preserves \sim when $X \sim Y$ implies $T X \sim T Y$; if in addition, $T X \sim T Y$ implies $X \sim Y$, we say that T strongly preserves \sim. For $x, y \in \mathbb{R}^{n}$, it is said that x is vector majorized by y (written $y \succ x$) if there exists a doubly stochastic matrix D such that $x=D y$. For given $X, Y \in \mathbf{M}_{n, m}$, it is said that X is directionally majorized by Y (written $Y \succ_{d} X$) if $Y v \succ X v$, for all $v \in \mathbb{R}^{m}$. The linear preservers of \succ_{d} on $\mathbf{M}_{n, m}$ have been characterized in [7]. Some

[^0]types of majorization and their linear preservers are presented in [1], [5] and [6]. Throughout the paper, the notation \mathbf{M}_{n} is fixed for the algebra of all $n \times n$ real matrices. The space $\mathbf{M}_{n, 1}$ of all $n \times 1$ real vectors is denoted by the usual notation \mathbb{R}^{n}. The collection of all $n \times n$ permutation matrices is denoted by \mathcal{P}_{n}. The notation $X=\left[x_{1}|\cdots| x_{m}\right]$ is used for an $n \times m$ matrix with $x_{j} \in \mathbb{R}^{n}$ as the j th column of $X(1 \leq j \leq m)$. The letters \mathbf{J} and e stand for the square matrix and the vector, which respectively all of their entries are 1, and the dimensions of the matrix \mathbf{J} and the vector e are understood from the context. The standard basis of \mathbb{R}^{n} is denoted by $\left\{\epsilon_{1}, \ldots, \epsilon_{n}\right\}$. The notation A^{t} stands for the transpose of a given matrix A. For a given vector $x \in \mathbb{R}^{n}, \operatorname{tr}(x)$ is the sum of all components of x. Now, we state an extension of a familiar result [7 , Theorem 2] about linear functions preserving directional majorization from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$.
Proposition 1.1. [2, Theorem 1.3] A linear function $T: \boldsymbol{M}_{n, m} \rightarrow$ $\boldsymbol{M}_{n, k}$ preserves directional majorization if and only if one of the following holds.
(i) There exist $A_{1}, \ldots, A_{m} \in \boldsymbol{M}_{n, k}$ such that $T(X)=\sum_{j=1}^{m}\left(\operatorname{trx}_{j}\right) A_{j}$, where, $X=\left[x_{1}|\cdots| x_{m}\right]$.
(ii) There exist $R, S \in M_{m, k}$ and $P \in \mathcal{P}_{n}$ such that $T(X)=P X R+$ $J X S$.

A (not necessarily nonnegative) matrix $D \in \mathbf{M}_{n}$ with the properties $D e=e$ and $D^{t} e=e$ is said to be a g -doubly stochastic matrix. This generalization of stochastic matrices was introduced in [4]. We denote the set of all $n \times n$ g-doubly stochastic matrices by $\mathbf{G D}_{n}$. For matrices $A, B \in \mathbf{M}_{n, m}$, it is said that B is gs-majorized by A (written $A \succ_{g s} B$) if there exists an $n \times n$ g-doubly stochastic matrix D such that $B=D A$. In [3], the authors found the possible structures of all linear operators preserving $\succ_{g s}$ on $\mathbf{M}_{n, m}$ as follows.
Proposition 1.2. [3, Theorem 3.3] Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear operator that preserves $\succ_{\text {gs }}$. Then, one of the following holds.
(i) There exist $A_{1}, \cdots, A_{m} \in \mathbf{M}_{n, m}$ such that $T(X)=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) A_{j}$, where, $X=\left[x_{1}|\ldots| x_{m}\right]$.
(ii) There exist $S \in \mathbf{M}_{m}, a_{1}, \ldots, a_{m} \in \mathbb{R}^{m}$ and invertible matrices $D_{1}, \ldots, D_{m} \in \mathbf{G D}_{n}$ such that $T(X)=\left[D_{1} X a_{1}|\cdots| D_{m} X a_{m}\right]+\boldsymbol{J X S}$.

For $A, B \in \mathbf{M}_{n, m}$, it is said that B is gd-majorized by A (written $\left.A \succ_{g d} B\right)$ if $A x \succ_{g s} B x$, for all $x \in \mathbb{R}^{m}$. In fact, $A \succ_{g d} B$ if and only
if, for every $x \in \mathbb{R}^{m}$, there exists a g-doubly stochastic matrix D_{x} such that $B x=D_{x}(A x)$. Here we prove the following theorem which gives the possible structures of all linear functions preserving $\succ_{g d}$ from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$.
Theorem 1.3. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, k}$ be a linear function that preserves $\succ_{\text {gd }}$. Then, one of the following holds.
(i) There exist $A_{1}, \ldots, A_{m} \in \mathbf{M}_{n, k}$ such that $T(X)=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) A_{j}$, where, $X=\left[x_{1}|\ldots| x_{m}\right]$.
(ii) There exist $R, S \in \mathbf{M}_{m, k}$ and an invertible matrix $D \in \boldsymbol{G D}_{n}$ such that $T(X)=D X R+J X S$.
(iii) There exist $S \in \mathbf{M}_{m, k}, a \in \mathbb{R}^{m}, r_{1}, \ldots, r_{k} \in \mathbb{R}$ and invertible matrices $D_{1}, \ldots, D_{k} \in \boldsymbol{G} \boldsymbol{D}_{n}$ such that $T(X)=\left[r_{1} D_{1} X a|\ldots| r_{k} D_{k} X a\right]+$ $J X S$.

2. Gd-Majorization

In this section, we present some properties of $\succ_{g d}$ and then show that the relation implies $\succ_{g s}$ on $\mathbf{M}_{n, m}$.
Lemma 2.1. Let x and y be two distinct vectors in \mathbb{R}^{n}. Then, $x \succ_{g s} y$ if and only if $x \notin \operatorname{span}\{e\}$ and $\operatorname{tr}(x)=\operatorname{tr}(y)$.
Proposition 2.2. Let $A=\left[a_{1}|\cdots| a_{m}\right], B=\left[b_{1}|\cdots| b_{m}\right] \in \mathbf{M}_{n, m}$. Then, B is gd-majorized by A if and only if the following conditions hold.
(a) For every $i(1 \leq i \leq m)$, $\operatorname{tr}\left(a_{i}\right)=\operatorname{tr}\left(b_{i}\right)$; in other words, $A^{t} e=$ $B^{t} e$.
(b) For every $x \in \mathbb{R}^{m}$ such that $A x \in \operatorname{span}\{e\}, A x=B x$.

Proof. It is clear that $A \succ_{g d} B$ implies the conditions (a) and (b). Conversely, assume (a) and (b) hold. For $x \in \mathbb{R}^{m}$, if $A x \in \operatorname{span}\{e\}$, then $B x=A x$, and hence $A x \succ_{g s} B x$. If $A x \notin \operatorname{span}\{e\}$, since $\operatorname{tr}\left(b_{i}\right)=\operatorname{tr}\left(a_{i}\right)$ for every $i(1 \leq i \leq n)$, then $\operatorname{tr}(B x)=\operatorname{tr}(A x)$. So, $A x \succ_{g s} B x$, by Lemma 2.1, and therefore $A \succ_{g d} B$.
Remark 2.3. Let $X, Y \in \mathbf{M}_{n, m}, A, B \in \boldsymbol{G D}_{n}, C \in \mathbf{M}_{m}$ and $\alpha, \beta \in \mathbb{R}$ such that A, B and C are invertible and $\alpha \neq 0$. Then, the following conditions are equivalent:
(1) $X \succ_{g d} Y$.
(2) $A X \succ_{g d} B Y$.
(3) $\alpha X+\beta \boldsymbol{J}_{n m} \succ_{g d} \alpha Y+\beta \boldsymbol{J}_{n m}$, where $\boldsymbol{J}_{n m} \in \mathbf{M}_{n, m}$ is the matrix with all entries equal to one.
(4) $X C \succ_{g d} Y C$.

Now, we show that $\succ_{g s}$ coincides with $\succ_{g d}$ on $\mathbf{M}_{n, m}$.
Lemma 2.4. Let $A, B \in \mathbf{M}_{n}$. If A is invertible and $A \succ_{g d} B$, then $A \succ_{g s} B$.
Proof. Put $D=B A^{-1}$. Since $D A=B$, it is enough to show that D is a g-doubly stochastic matrix. By invertibility of A, there exists a unique $x_{0} \in \mathbb{R}^{n}$ such that $A x_{0}=e$, and hence $B x_{0}=e$, by Proposition 2.2. So, $D e=\left(B A^{-1}\right) e=B\left(A^{-1} e\right)=B x_{0}=e$. On the other hand, $A^{t} e=B^{t} e$, by Proposition 2.2, and hence $D^{t} e=\left(B A^{-1}\right)^{t}(e)=\left(A^{-1}\right)^{t}\left(B^{t} e\right)=$ $\left(A^{-1}\right)^{t} A^{t} e=e$.
Lemma 2.5. Let $A=[C \mid D]$ and $B=[E \mid F] \in \mathbf{M}_{n, m}$, where $C, E \in$ $\mathbf{M}_{n, k}$ and $D, F \in \mathbf{M}_{n,(m-k)}$. Suppose that the columns of D are generated by the columns of C. If $A \succ_{g d} B$ and $C \succ_{g s} E$, then $A \succ_{g s} B$.
Proof. Since $C \succ_{g s} E$, then there exits a g-doubly stochastic matrix $R \in \mathbf{G D}_{n}$ such that $R C=E$, and hence $R c_{i}=e_{i}(1 \leq i \leq k)$, where c_{i} and e_{i} are the i th columns of C and E, respectively. We claim that $R A=B$. Suppose that d is the first column of D. Then, there exist scalars $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that $d=\sum_{i=1}^{k} \alpha_{i} c_{i}$. Put $x_{0}=$ $\left(\alpha_{1}, \ldots, \alpha_{k},-1,0, \ldots, 0\right)^{t} \in \mathbb{R}^{m}$. Then, $A x_{0}=0$, and hence $B x_{0}=0$ by, Proposition 2.2. So, $f=\sum_{i=1}^{k} \alpha_{i} e_{i}$, where f is the first column of F. Thus, $R d=\sum_{i=1}^{k} \alpha_{i} R c_{i}=\sum_{i=1}^{k} \alpha_{i} e_{i}=f$. This argument is valid for other columns of D and F, and hence $R A=B$.
Theorem 2.6. The concepts of $g s$ and $g d$-majorization on $\mathbf{M}_{n, m}$ are the same.

Proof. It is clear that $\succ_{g s}$ implies $\succ_{g d}$, and so we prove only the converse. Let $A, B \in \mathbf{M}_{n, m}$ and $A \succ_{g d} B$. By Remark 2.3, $A \succ_{g d} B$ if and only if $A P \succ_{g d} B P$, for every permutation matrix $P \in \mathbf{M}_{n}$. Then, without loss of generality, we can assume that $A=[C \mid D]$, where, $C=$ $\left[c_{1}|\cdots| c_{k}\right] \in \mathbf{M}_{n, k}$ is a full rank matrix, $D=\left[d_{1}|\cdots| d_{m-k}\right] \in \mathbf{M}_{n,(m-k)}$ and $d_{1}, \cdots, d_{m-k} \in \operatorname{span}\left\{c_{1}, \cdots, c_{k}\right\}$ (C or D can be vacuous). It is clear that $k \leq n$. Choose some vectors $c_{k+1}, \cdots, c_{n} \in \mathbb{R}^{n}$ such that $C^{\prime}=\left[c_{1}|\cdots| c_{n}\right] \in \mathbf{M}_{n}$ is an invertible matrix. Consider the matrices $E \in \mathbf{M}_{n, k}$ and $F \in \mathbf{M}_{n,(m-k)}$ such that $B=[E \mid F]$. Since C^{\prime} is invertible, then there exists a unique vector $x=\left(x_{1}, \cdots, x_{n}\right)^{t} \in \mathbb{R}^{n}$ such that $C^{\prime} x=e$. Put $y=\left(x_{1}, \cdots, x_{k}\right)^{t} \in \mathbb{R}^{k}$. Since $A \succ_{g d} B$, then
$C \succ_{g d} E$, by Proposition 2.2, and hence $C y \succ_{g s} E y$. So, there exists a g-doubly stochastic matrix $R \in \mathbf{M}_{n}$ such that $R C y=E y$. Put $E^{\prime}=$ $\left[E\left|R c_{k+1}\right| \cdots \mid R c_{n}\right] \in \mathbf{M}_{n}$. Then, $E^{\prime} x=x_{1} e_{1}+\cdots+x_{k} e_{k}+x_{k+1} R c_{k+1}+$ $\cdots+x_{n} R c_{n}$, where e_{i} is the i th column of E. Since $R C y=E y$ then $x_{1} R c_{1}+\cdots+x_{k} R c_{k}=x_{1} e_{1}+\cdots+x_{k} e_{k}$, then $E^{\prime} x=x_{1} R c_{1}+\cdots+x_{n} R c_{n}=$ $R\left(C^{\prime} x\right)=R e=e$. On the other hand, $\operatorname{tr}\left(e_{i}\right)=\operatorname{tr}\left(c_{i}\right)$, for every i $(1 \leq i \leq k)$, and $\operatorname{tr}\left(c_{i}\right)=\operatorname{tr}\left(R c_{i}\right)$, for every $i(k+1 \leq i \leq n)$. Then, $C^{\prime} \succ_{g d} E^{\prime}$, by Proposition 2.2. Therefore, $C^{\prime} \succ_{g s} E^{\prime}$, by Lemma 2.4, and hence $C \succ_{g s} E$. Since $d_{1}, \cdots, d_{m-k} \in \operatorname{span}\left\{c_{1}, \cdots, c_{k}\right\}$ and $A \succ_{g d} B$, we get $A \succ_{g s} B$, by Lemma 2.5.

3. Linear Preservers

In this section, we prove the following statements which shed light on the structure of linear functions preserving $\succ_{g d}$ from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$.

Theorem 3.1. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbb{R}^{n}$ be a linear function. Then, T preserves $\succ_{\text {gs }}$ if and only if one of the following holds.
(a) There exist $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ such that $T(X)=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) a_{j}$, where, $X=\left[x_{1}|\ldots| x_{m}\right]$.
(b) There exist $a, b \in \mathbb{R}^{m}$ and an invertible matrix $A \in \boldsymbol{G} \boldsymbol{D}_{n}$ such that $T(X)=A X a+\boldsymbol{J X b}$.

Proof. The fact that each of the conditions (a) or (b) is sufficient for T to be a preserver of $\succ_{g s}$ is easy to prove. So, we prove the necessity of the conditions. Define $T^{\prime}: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ by $T^{\prime}(X)=[T(X) \mid 0]$, where 0 denotes an $n \times(m-1)$ zero block. Clearly, T^{\prime} is a linear function which preserves $\succ_{g s}$. Then, by Proposition 1.2, T^{\prime} has one of the following forms.
(i) $T^{\prime}(X)=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) B_{j}$, for some $B_{1}, \ldots, B_{m} \in \mathbf{M}_{n, m}$. So, $T(X)=$ $\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) a_{j}$, where a_{j} is the first column of B_{j}, for every $j(1 \leq j \leq m)$, and hence (a) holds.
(ii) $T^{\prime}(X)=\left[D_{1} X a_{1}|\ldots| D_{m} X a_{m}\right]+\mathbf{J} X S$, for some $S \in \mathbf{M}_{m}, a_{1}, \ldots, a_{m}$ $\in \mathbb{R}^{n}$ and invertible matrices $D_{1}, \ldots, D_{m} \in \mathbf{G D}_{n}$. So, $T X=D_{1} X a_{1}+$ $\mathbf{J} X b$, where b is the first column of S, and hence (b) holds.

Lemma 3.2. [3, Lemma 3.1] Let $A \in \boldsymbol{G D}_{n}$ be invertible. Then, the following conditions are equivalent.
(a) $A=\alpha I+\beta \boldsymbol{J}$, for some $\alpha, \beta \in \mathbb{R}$.
(b) $(x+A y) \succ_{g s}(D x+A D y)$, for all $D \in \boldsymbol{G} \boldsymbol{D}_{n}$ and for all $x, y \in \mathbb{R}^{n}$.

Remark 3.3. Assume that T_{1} and T_{2} are of the form (a) and (b) in Theorem 3.1, respectively. Then, $T_{1}=T_{2}$ if and only if $a=0$ and $a_{j}=\lambda_{j} e$, for every $j(1 \leq j \leq m)$, where $a, a_{j}(1 \leq j \leq m)$ and $b=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{t}$ are as in Theorem 3.1.

Lemma 3.4. Let $T_{1}, T_{2}: \mathbf{M}_{n, m} \rightarrow \mathbb{R}^{n}$ be two linear preservers of $\succ_{g s}$ such that $T_{1}+T_{2}$ preserves $\succ_{\text {gs }}$. If $T_{1}(X)=D X a+\boldsymbol{J X b}$, for some $a, b \in \mathbb{R}^{m}, a \neq 0$ and an invertible matrix $D \in \boldsymbol{G} \boldsymbol{D}_{n}$, then $T_{2}(X)=$ $D^{\prime} X c+\boldsymbol{J} X d$, for some $c, d \in \mathbb{R}^{m}$ and an invertible matrix $D^{\prime} \in \boldsymbol{G} \boldsymbol{D}_{n}$.

Proof. Since $T_{1}+T_{2}$ preserves $\succ_{g s}$, then $T_{1}+T_{2}$ is of the form (a) or (b) in Theorem 3.1. Now, consider two cases.

Case 1: Suppose that $T_{1}+T_{2}$ is of the form (a). Since T_{2} preserves $\succ_{g s}$, it is of the form (a) or (b) in Theorem 3.1. Assume, if possible, T_{2} is of the form (a). Then, $T_{1}=\left(T_{1}+T_{2}\right)-T_{2}$ is of the form (a), as well. So, by Remark 3.3, we obtain $a=0$, which is a contradiction. Therefore, T_{2} is of the form (b).

Case 2: Suppose that $T_{1}+T_{2}$ is of the form (b). So, $\left(T_{1}+T_{2}\right)(X)=$ $B X a^{\prime}+\mathbf{J} X b^{\prime}$, for some $a^{\prime}, b^{\prime} \in \mathbb{R}^{m}$ and invertible matrix $B \in \mathbf{G D}_{n}$. Assume, if possible, T_{2} is of the form (a) and is not of the form (b). Then, by Theorem 3.1 and Remark 3.3, there exist (not all in $\operatorname{span}\{e\}$) $a_{1}, \ldots, a_{m} \in \mathbb{R}^{n}$ such that $T_{2}(X)=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) a_{j}$. Without loss of generality, suppose that $a_{1} \notin \operatorname{span}\{e\}$. Put $X:=[e|0| \ldots \mid 0] \in \mathbf{M}_{n, m}$. So,

$$
\begin{align*}
n a_{1} & =\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) a_{j}=T_{2}(X) \\
& =\left(T_{1}+T_{2}-T_{1}\right)(X) \tag{3.1}\\
& =\left[a_{1}^{\prime}+n b_{1}^{\prime}-a_{1}-n b_{1}\right] e \tag{3.2}
\end{align*}
$$

where, $a_{1}^{\prime}, b_{1}^{\prime}, a_{1}$ and b_{1} are the first entry of $a^{\prime}, b^{\prime}, a$ and b, respectively, which is a contradiction. Therefore, T_{2} is of the form (b), and hence there exist $c, d \in \mathbb{R}^{m}$ and an invertible matrix $D^{\prime} \in \mathbf{G D}_{n}$ such that $T_{2}(X)=D^{\prime} X c+\mathbf{J} X d$.

Now, we can prove Theorem 1.3.
Proof of Theorem 1.3. Suppose that T preserves $\succ_{g d}$. Then, for every $i(1 \leq i \leq k), T_{i}=E_{i} \circ T: \mathbf{M}_{n, m} \rightarrow \mathbb{R}^{n}$ preserves $\succ_{g d}$, where,
$E_{i}: \mathbf{M}_{n, k} \rightarrow \mathbb{R}^{n}$ is defined by $E_{i}(A)=A \epsilon_{i}$. Thus, T_{i} is of the form (a) or (b) in Theorem 3.1. Now, consider two cases.
Case 1: Assume T_{i} is of the form (a), for every $i(1 \leq i \leq k)$. Then, $T_{i}(X)=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) a_{j}^{i}$, for some $a_{j}^{i} \in \mathbb{R}^{n}$. Put $A_{j}:=\left[a_{j}^{1}|\ldots| a_{j}^{k}\right]$, for every $j(1 \leq j \leq m)$. So, $T(X)=\sum_{j=1}^{m} \operatorname{tr}\left(x_{j}\right) A_{j}$, and hence the condition (i) holds.

Case 2: Assume there exists $p(1 \leq p \leq k)$ such that $T_{p}(X)=$ $D_{p} X a_{p}+\mathbf{J} X b_{p}$, for some $a_{p}, b_{p} \in \mathbb{R}^{k}, a_{p} \neq 0$ and an invertible matrix $D_{p} \in \mathbf{G D}_{n}$. Since T preserves $\succ_{g d}$, so $T_{p}+T_{j}$ preserves $\succ_{g d}$, for every $j(1 \leq j \leq k)$. Then, by Lemma 3.4, $T_{j}(X)=D_{j} X a_{j}+\mathbf{J} X b_{j}$, for some $a_{j}, b_{j} \in \mathbb{R}^{m}$, and an invertible matrix $D_{j} \in \mathbf{G} \mathbf{D}_{n}$. So,

$$
\begin{aligned}
T(X) & =\left[T_{1}(X)|\cdots| T_{k}(X)\right] \\
& =\left[D_{1} X a_{1}+\mathbf{J} X b_{1}|\cdots| D_{m} X a_{m}+\mathbf{J} X b_{k}\right] \\
& =\left[D_{1} X a_{1}|\cdots| D_{k} X a_{k}\right]+\mathbf{J} X\left[b_{1}|\cdots| b_{k}\right]
\end{aligned}
$$

If $\operatorname{rank}\left[a_{1}|\cdots| a_{k}\right] \geq 2$, then, without loss of generality, we may assume that $\operatorname{rank}\left[a_{1} \mid a_{2}\right]=2$. Since for every $X \in \mathbf{M}_{n, m}$ and every $D \in \mathbf{G D}_{n}, X \succ_{g s} D X$, then $\left(T_{1}+T_{2}\right) X \succ_{g s}\left(T_{1}+T_{2}\right)(D X)$, and hence $D_{1} X a_{1}+D_{2} X a_{2} \succ_{g s} D_{1} D X a_{1}+D_{2} D X a_{2}$. So, for every $D \in \mathbf{G D}_{n}$,

$$
X a_{1}+\left(D_{1}^{-1} D_{2}\right) X a_{2} \succ_{g s} D X a_{1}+\left(D_{1}^{-1} D_{2}\right) D X a_{2}, \forall X \in \mathbf{M}_{n, m} .
$$

Since a_{1} and a_{2} are linearly independent, we may put some suitable X in the above relation and obtain the following:

$$
x+\left(D_{1}^{-1} D_{2}\right) y \succ_{g s} D x+\left(D_{1}^{-1} D_{2}\right) D y, \forall x, y \in \mathbb{R}^{m}, \forall D \in \mathbf{G D}_{n} .
$$

Then, by Lemma 3.2, $D_{1}^{-1} D_{2}=\lambda_{1} I+\mu_{1} \mathbf{J}$, and hence $D_{2}=\lambda_{1} D_{1}+\mu_{1} \mathbf{J}$, for some $\lambda_{1}, \mu_{1} \in \mathbb{R}$. For every $i(2 \leq i \leq k)$, with $a_{i} \neq 0$, it is clear that $\left\{a_{1}, a_{i}\right\}$ or $\left\{a_{2}, a_{i}\right\}$ is linearly independent, and so, by a similar argument as above, $D_{i}=\lambda_{i} D_{1}+\mu_{i} \mathbf{J}$, for some $\lambda_{i}, \mu_{i} \in \mathbb{R}$. Set $D:=D_{1}$. Then, for every $i(1 \leq i \leq k), D_{i}=\lambda_{i} D+\mu_{i} \mathbf{J}$, for some $\lambda_{i}, \mu_{i} \in \mathbb{R}$, and hence $T(X)=D X R+\mathbf{J} X S$, where, $R=\left[\lambda_{1} a_{1}|\cdots| \lambda_{k} a_{k}\right]$ and $S=\left[\mu_{1} a_{1}+b_{1}|\cdots| \mu_{k} a_{k}+b_{k}\right]$. Therefore, the condition (ii) holds. If $\operatorname{rank}\left[a_{1}|\ldots| a_{k}\right] \leq 1$, then there exist $a \in \mathbb{R}^{m}$ and $r_{1}, \ldots, r_{k} \in \mathbb{R}$ such that for every $i(1 \leq i \leq k), a_{i}=r_{i} a$. Therefore, $T(X)=$ $\left[r_{1} D_{1} X a|\ldots| r_{k} D_{k} X a\right]+\mathbf{J} X S$, where, $S=\left[b_{1}|\ldots| b_{k}\right]$, and hence the condition (iii) holds.

It is easy to show that if T is of the form (i) or (ii) in Theorem 1.3, then T preserves $\succ_{g d}$. The following example shows that there is a linear function of the form (iii) not preserving $\succ_{g d}$.
Example 3.5. Suppose that $T: \mathbf{M}_{3,2} \rightarrow \mathbf{M}_{3,2}$ is defined by $T(X)=$ $\left[X \epsilon_{1} \mid P X \epsilon_{1}\right]$, where, $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$. So, T is of the form (iii) in
Theorem 1.3. Put $A:=\left(\begin{array}{cc}1 & 1 \\ -1 & 2 \\ 1 & 0\end{array}\right)$ and $B:=\left(\begin{array}{cc}-1 & 1 \\ 1 & 0 \\ 1 & 2\end{array}\right)$. It is easy to show that $B \succ_{g d} A$ and $T B \nsucc_{g d} T A$. Then, T does not preserve $\succ_{g d}$.

It is clear that the form (ii) is a special case of the form (iii) in Theorem 1.3 (put $D_{1}=\cdots=D_{k}:=D$ and $R:=\left[r_{1} a|\cdots| r_{k} a\right]$). The following example shows that there is a linear function preserving $\succ_{g d}$, which is of the form (iii) but is not of the form (ii).
Example 3.6. [3, Example 3.5] Let $T: \mathbf{M}_{3,2} \rightarrow \mathbf{M}_{3,2}$ be defined by $T(X)=\left[X \epsilon_{1} \mid P X \epsilon_{1}\right]$, where, $P=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. Then, T preserves $\succ_{g d}$ and T is not of the form (ii) in Theorem 1.3.

Now, we state the following lemma which characterizes all strong linear preservers of $\succ_{g d}$ from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$.
Lemma 3.7. [2, Lemma 2.4] Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, k}$ be a linear function of the form $T(X)=X R+\boldsymbol{J X S}$, for some $R, S \in \mathbf{M}_{m, k}$. Then, T is injective if and only if R and $R+n S$ are full-rank matrices.
Proof. It is easy to see that the matrix representation of T with respect to the standard bases of $M_{n, m}$ and $M_{n, k}$ is similar to the following block matrix:

$$
\left(\begin{array}{cccc}
R+n S & & & * \\
& R & & \\
& & \ddots & \\
0 & & & R
\end{array}\right) \in M_{n k, n m}
$$

Therefore, T is injective if and only if R and $R+n S$ are full-rank matrices.

If T is a strong linear preserver of $\succ_{g d}$ and $T(A)=0$, then $T(0) \succ_{g d}$ $T(A)$. So, $0 \succ_{g d} A$, and hence $A=0$.

Remark 3.8. Every strong linear preserver of $\succ_{\text {gd }}$ from $M_{n, m}$ to $M_{n, k}$ is injective.

If $m=1$, then the following theorem is obtained from Theorem 3.1. So, in the proof we may assume $m \geq 2$.

Theorem 3.9. Let $T: \boldsymbol{M}_{n, m} \rightarrow M_{n, k}$ be a linear function. Then, T strongly preserves $\succ_{\text {gd }}$ if and only if there exist an invertible matrix $D \in \boldsymbol{G} \boldsymbol{D}_{n}$ and matrices $R, S \in \boldsymbol{M}_{m, k}$ such that R and $R+n S$ are full-rank matrices and $T X=D X R+\boldsymbol{J X S}$.

Proof. If T is of the form $T X=D X R+\mathbf{J} X S$, for some invertible matrix $D \in \mathbf{G D}_{n}$ and full-rank matrices $R, R+n S \in \mathbf{M}_{m, k}$, then it is easy to show that T is a strong linear preserver of $\succ_{g d}$. Conversely, assume T is a strong linear preserver of $\succ_{g d}$. So, T is of the form (\mathbf{i}, (i ii) or (iii^{\prime}) in Theorem 1.3. If T is of the form (i), then T is not injective, which is a contradiction. If T is of the form (iii), then we can choose $0 \neq b \in(\operatorname{span}\{a\})^{\perp}$, by the assumption $m \geq 2$. Put $X_{0}:=[b|-b| 0|\cdots| 0]^{t} \in \mathbf{M}_{n, m}$. So, $X_{0} \neq 0$ and $T\left(X_{0}\right)=0$, which is a contradiction. Therefore, T is of the form ($i i$), and by Lemma 3.7, R and $R+n S$ are full-rank matrices.

Acknowledgments

The authors are very grateful to the anonymous referee for his/her helpful comments and for detecting an error in the first version of the article which helped us to state Theorem 2.6.

References

[1] A. Armandnejad, Right GW-majorization on $\mathbf{M}_{n, m}$, Bull. Iranian Math. Soc. 35 (2009) 69-76.
[2] A. Armandnejad and H. R. Afshin, Linear functions preserving multivariate and directional majorization, Iran. J. Math. Sci. Inform. 5 (2010) 1-5.
[3] A. Armandnejad and A. Salemi, The structure of linear preservers of gsmajorization, Bull. Iranian Math. Soc. 32 (2006) 31-42.
[4] H. Chiang and C.-K. Li, Generalized doubly stochastic matrices and linear preservers, Linear Multilinear Algebra 53 (2005) 1-11.
[5] A. M. Hasani and M. Radjabalipuor, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra 15 (2006) 260268.
[6] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorization on \mathbb{R}^{p}, Electron. J. Linear Algebra 18 (2009) 88-97.
[7] C.-K. Li and E. Poon, Linear operators preserving directional majorization, Linear Algebra Appl. 325 (2001) 141-146.

Ali Armandnejad and Hossein Heydari
Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7713936417, Rafsanjan, Iran
Email: armandnejad@mail.vru.ac.ir and
Email: hosein8212@yahoo.com

[^0]: MSC(2010): Primary: 15A04; Secondary: 15A21, 15A51.
 Keywords: Doubly stochastic matrix, g-doubly stochastic matrix, girectional majorization, gd-majorization, linear preserver.
 Received: 27 April 2009, Accepted: 28 December 2009.
 *Corresponding author
 (c) 2011 Iranian Mathematical Society.

