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LINEAR PRESERVING GD-MAJORIZATION
FUNCTIONS FROM M,,,, TO M, ;

A. ARMANDNEJAD* AND H. HEYDARI

Communicated by Heydar Radjavi

ABSTRACT. Let M, » be the vector space of all n xm real matrices.
For A, B € My, m, it is said that B is gd-majorized by A (written
A 44 B) if for every z € R" there exists a g-doubly stochastic
matrix Dy such that Bz = D, (Ax). Here, we show that if A >4q B,
then there exists a g-doubly stochastic matrix D (independent of z)
such that B = DA. Also, the possible structures of linear preserving
gd-majorization functions from M, ,, to M, i are found. Finally,
all linear strongly preserving gd-majorization functions from M, ,
to M, i are characterized.

1. Introduction

Let T : M, ;, — M, j, be a linear function and let ~ be a relation on
both M, ,, and M,, . We say that T" preserves ~ when X ~ Y implies
TX ~ TY; if in addition, TX ~ TY implies X ~ Y, we say that T
strongly preserves ~. For x,y € R™, it is said that x is vector majorized
by y (written y > z) if there exists a doubly stochastic matrix D such
that x = Dy. For given X,Y € M,, ,,, , it is said that X is directionally
majorized by Y (written Y >4 X) if Yv > X, for all v € R™. The
linear preservers of >4 on M,, ,,, have been characterized in [7]. Some
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types of majorization and their linear preservers are presented in [1], [5]
and [6]. Throughout the paper, the notation M, is fixed for the algebra
of all n x n real matrices. The space M,, 1 of all n x 1 real vectors is
denoted by the usual notation R™. The collection of all n xn permutation
matrices is denoted by P, . The notation X = [z1]---|x,,] is used for
an n x m matrix with z; € R™ as the jth column of X (1 < j < m).
The letters J and e stand for the square matrix and the vector, which
respectively all of their entries are 1, and the dimensions of the matrix J
and the vector e are understood from the context. The standard basis of
R" is denoted by {e1,...,€,}. The notation A* stands for the transpose
of a given matrix A . For a given vector x € R", tr(z) is the sum of
all components of z. Now, we state an extension of a familiar result [7,
Theorem 2] about linear functions preserving directional majorization
from M,, ,,, to M, . .
Proposition 1.1. [2, Theorem 1.3] A linear function T : M, , —
M, 1. preserves directional magjorization if and only if one of the follow-
ing holds.
m
(i) There exist A1,..., Ay € M, such that T(X) = Z(trxj)Aj,
j=1

where, X = [x1] -+ |xm].

(i3) There exist R,S € M, and P € Py, such that T(X) = PXR +
JXS.

A (not necessarily nonnegative) matrix D € M,, with the properties
De=e and D'e = e is said to be a g-doubly stochastic matrix. This
generalization of stochastic matrices was introduced in [4]. We denote
the set of all n x n g-doubly stochastic matrices by GD,,. For matrices
A,B € M, , , it is said that B is gs-majorized by A (written A >4, B)
if there exists an n x n g-doubly stochastic matrix D such that B=DA.
In [3], the authors found the possible structures of all linear operators
preserving >, on M,, ,,, as follows.

Proposition 1.2. [3, Theorem 3.3] Let T : My, y, = My, , be a linear
operator that preserves =4s. Then, one of the following holds.

(1) There exist A1,--+, Am € My, such that T(X)=) 0", tr(z;)A;,
where, X = [z1]...|Tm].

(ii) There exist S € M,,, , ai,...,an € R™ and invertible matrices

Dy, ...,Dy, € GD,, such that T(X)=[D1Xaq|---|DnXan]+ JXS.

For A,B € M, ,, it is said that B is gd-majorized by A (written
A =49 B) it Az =4, Bz, for all x € R™. In fact, A >4 B if and only
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if, for every z € R™, there exists a g-doubly stochastic matrix D, such
that Bz = D,(Ax). Here we prove the following theorem which gives
the possible structures of all linear functions preserving >,4 from M, ,,
to M, 1. .

Theorem 1.3. LetT : M,, ,, — M,, ;. be a linear function that preserves
=gd. Then, one of the following holds.

(i) There exist Ai,..., Ay € My i such that T(X) = ) tr(z;)A;,
j=1

where, X = [z1] ... |zm].

(i7) There exist R, S € M,, 1 and an invertible matriz D € GD,, such
that T(X) = DXR+ JXS.

(i13) There exist S € My, i, a € R™, r,...,r, € R and invertible
matrices D1, ..., Dy € GD,, such that T(X) = [riD1Xa|...|ryDpXa]+
JXS.

2. Gd-Majorization

In this section, we present some properties of >,4 and then show that
the relation implies =45 on M, ;.

Lemma 2.1. Let x and y be two distinct vectors in R™. Then, x =45 y
if and only if x ¢ span{e} and tr(z) = tr(y).

Proposition 2.2. Let A = [ay|- - - |aw], B = [b1] - - - |bm] € My . Then,
B is gd-majorized by A if and only if the following conditions hold.

(a) For every i (1 < i < m), tr(a;) = tr(b;); in other words, Ale =
Ble.

(b) For every x € R™ such that Ax € span{e}, Az = Bzx.

Proof. 1t is clear that A >,4 B implies the conditions (a) and (b). Con-
versely, assume (a) and (b) hold. For z € R™, if Ax € span{e}, then
Bz = Az, and hence Ax >4 Bx. If Az ¢ span{e}, since tr(b;) = tr(a;)
for every i (1 < i < n), then tr(Bz) = tr(Ax). So, Ax >4, Bz, by
Lemma 2.1, and therefore A >~,; B. O

Remark 2.3. Let X, Y €¢ M,,,,,, A,B € GD,, C € M,, and o, € R
such that A, B and C are invertible and o # 0. Then, the following
conditions are equivalent:

(1) X =44 Y.

(2) AX =49 BY.

(3) aX 4 BIum =ga @Y + Bdpm, where Jpm € My, 1, is the matriz with
all entries equal to one.
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(4) XC =4q YC.

Now, we show that >, coincides with >4 on M,, ;.

Lemma 2.4. Let A,B € M,,. If A is invertible and A =49 B, then
Ay B.

Proof. Put D = BA~!. Since DA = B, it is enough to show that D is a
g-doubly stochastic matrix. By invertibility of A, there exists a unique
2o € R™ such that Axy = e, and hence Bxg = e, by Proposition 2.2. So,
De = (BA™1)e = B(A7'e) = Bxg = e. On the other hand, Ale = Ble,
by Proposition 2.2, and hence D'e = (BA™1)i(e) = (A~Y)!{(Ble) =
(A HiAle =¢ . O

Lemma 2.5. Let A = [C|D] and B = [E|F] € M, ,, where C,E €
M, and D, F € My, (,,_r). Suppose that the columns of D are gener-
ated by the columns of C. If A =4q B and C =45 E, then A =45 B.

Proof. Since C' =45 E, then there exits a g-doubly stochastic matrix
R € GD,, such that RC = E, and hence R¢; = ¢; (1 < i < k),
where ¢; and e; are the ith columns of C and E, respectively. We
claim that RA = B. Suppose that d is the first column of D. Then,
there exist scalars aq,...,ar € R such that d = Zle aic;. Put g =
(a1,...,a8,—1,0,...,0)" € R™. Then, Azg = 0, and hence Bzg = 0 by,
Proposition 2.2. So, f = Zle a;e;, where f is the first column of F.
Thus, Rd = Zle a;Re; = Zle aze; = f. This argument is valid for
other columns of D and F', and hence RA = B. O

Theorem 2.6. The concepts of gs and gd-majorization on M,, ., are
the same.

Proof. 1t is clear that >/, implies >,4 , and so we prove only the con-
verse. Let A,B € M,,,, and A =, B. By Remark 2.3, A >,q B if
and only if AP >~,; BP, for every permutation matrix P € M,,. Then,
without loss of generality, we can assume that A = [C|D], where, C' =
[c1] -+ [ex] € My is a full rank matrix, D = [d1] - |dpm—k] € My, ()
and dy, -+ ,dm_g € span{ci,---,cx} (C or D can be vacuous). It is
clear that £ < n. Choose some vectors cgy1,---,¢, € R™ such that
C" = [e1|--|en) € M, is an invertible matrix. Consider the matrices
E € My and F € M,, 5,y such that B = [E|F]. Since C' is in-
vertible, then there exists a unique vector z = (z1,--- ,7,)"! € R™ such
that C'z = e . Put y = (21, - ,2)" € R*. Since A =, B, then
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C =44 E, by Proposition 2.2, and hence Cy =45 Ey. So, there exists a
g-doubly stochastic matrix R € M,, such that RCy = Ey. Put E' =
[E|Rcgq1] - |Ren] € My, Then, E'z = w161+ - +apep + g1 Rep +
-+ + xy Rey, where e; is the ith column of E. Since RCy = Ey then
x1Re1+- - -+xpRey, = x1e1+- - - +aper, then B'e = 21 Re1+- - +xpRe,, =
R(C'z) = Re = e. On the other hand, tr(e;) = tr(c), for every i
(1 <i<k), and tr(c) = tr(Rc;), for every ¢ (k+1 < i < n). Then,
C' »4a E', by Proposition 2.2. Therefore, C’ 45 E’, by Lemma 2.4, and
hence C' =45 E. Since dy,- - ,dm—k € span{ci, -+ ,cp} and A =4 B,
we get A g5 B, by Lemma 2.5. 0

3. Linear Preservers

In this section, we prove the following statements which shed light on
the structure of linear functions preserving >,q from M, ,, to M,, .

Theorem 3.1. Let T' : M, ,, — R" be a linear function. Then, T
preserves =g if and only if one of the following holds.

m
(a) There existay,...,am € R" such that T(X) = ) tr(xzj)a;, where,

Jj=1
X =[z1]... |zm].
(b) There exist a, b € R™ and an invertible matric A € GD,, such
that T(X) = AXa+ JX0.

Proof. The fact that each of the conditions (a) or (b) is sufficient for T" to
be a preserver of -4, is easy to prove. So, we prove the necessity of the
conditions. Define 77 : M, ,, = M,, 5, by T'(X) = [T'(X)|0], where 0
denotes an n x (m — 1) zero block. Clearly, 7" is a linear function which
preserves >45. Then, by Proposition 1.2, 7" has one of the following
forms.

m
(i) T"(X) = >_ tr(z;)B;, for some By,...,By € My, . So, T(X) =
j=1

m

> tr(zj)a;, where a; is the first column of Bj, for every j (1 < j < m),
j=1

and hence (a) holds.

(i) T"(X) = [D1Xaq] ... |DnXan]+IXS, for some S € My, a1,...,anm
€ R™ and invertible matrices D1,...,D,, € GD,,. So, TX = D1 Xaj +
JX0b, where b is the first column of S, and hence (b) holds. O

Lemma 3.2. [3, Lemma 3.1] Let A € GD,, be invertible. Then, the
following conditions are equivalent.
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(a) A= al+ BJ, for some a, 3 € R.
(b) (x+ Ay) >gs (Dx+ ADy), for all D € GD,, and for all x,y € R™.

Remark 3.3. Assume that Ty and Ty are of the form (a) and (b) in
Theorem 3.1, respectively. Then, T1 = To if and only if a = 0 and
a; = Aje, for every j (1 < j < m), where a, a; (1 < j < m) and
b= (A1,...,A\m)" are as in Theorem 3.1.

Lemma 3.4. Let T1,T5 : M, ,, — R™ be two linear preservers of =g4s
such that T + Ty preserves »gs. If T1(X) = DXa + JXb, for some
a,b € R™, a # 0 and an invertible matric D € GD,,, then Ty(X) =
D'Xc+ JXd, for some c¢,d € R™ and an invertible matriz D' € GD,,.

Proof. Since T + T preserves g, then 71 4 T3 is of the form (a) or (b)
in Theorem 3.1. Now, consider two cases.

Case 1: Suppose that T7 + T3 is of the form (a). Since T, preserves
>gs, it is of the form (a) or (b) in Theorem 3.1. Assume, if possible,
Ty is of the form (a). Then, T7 = (11 + 1) — T is of the form (a),
as well. So, by Remark 3.3, we obtain a = 0, which is a contradiction.
Therefore, Ty is of the form (b).

Case 2: Suppose that T} + T5 is of the form (b). So, (71 + T2)(X) =
BXad' + JXV, for some a',b' € R™ and invertible matrix B € GD,,.
Assume, if possible, T5 is of the form (a) and is not of the form (b).
Then, by Theorem 3.1 and Remark 3.3, there exist (not all in span{e})

m
ai,...,am € R™ such that T5(X) = > tr(z;)a;. Without loss of gener-
=1

J_
ality, suppose that a1 ¢ span{e}. Put X :=[e|0]...|0] € M, . So,

na; = Ztr(xj)aj:Tg(X)
j=1

(3.1) = (I +T—T)(X)
(3.2) = [a} + nb] —a; — nbi]e,

where, a}, b}, a1 and b; are the first entry of @/, b, a and b, respectively,
which is a contradiction. Therefore, T3 is of the form (b), and hence
there exist ¢,d € R™ and an invertible matrix D’ € GD,, such that
Ty(X) = D'Xec + IXd. O

Now, we can prove Theorem 1.3.
Proof of Theorem 1.3. Suppose that T" preserves >,44. Then, for
every i (1 <i < k), T; = E;oT : M,,, — R" preserves >,4q, where,
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E; : M, , — R" is defined by E;(A) = Ae;. Thus, T; is of the form (a)
or (b) in Theorem 3.1. Now, consider two cases.
Case 1: Assume T; is of the form (a), for every i (1 < i < k). Then,

m . .
T;(X) = thr(xj)a;», for some aj € R™. Put 4; := [a}| . |a§], for every
]:

j (1 <j7<m). So, T(X) = > tr(z;)A;, and hence the condition (i)
j=1

holds.

Case 2: Assume there exists p (1 < p < k) such that T,(X) =
D,Xa, + JXb,, for some a,,b, € R¥, a, # 0 and an invertible ma-
trix D, € GD,. Since T preserves »>4q, so 1}, + T} preserves =44, for
every j (1 <j <k). Then, by Lemma 3.4, T;(X) = D;Xa; + JXb;, for
some aj,b; € R™, and an invertible matrix D; € GD,,. So,

T(X) = X)) |Te(X)]
= [D1Xa1 +JXb1‘~-|DmXCLm+Jka]
= [DlXCL1||Dank]+JX[b1‘|bk]

If ranklay|---|ag] > 2, then, without loss of generality, we may as-
sume that rank[ai|az] = 2. Since for every X € M, ,, and every
D € GD,,, X =4, DX, then (T1 +12)X >4s (T1 +T>)(DX), and hence
D1 Xa1+ Dy Xas >gs DiDXai1 + DoDXas . So, for every D € GD,,,

Xaj + (D7 D) Xas =45 DXay + (Dy'D2)DXaz, ¥X € My, .

Since a1 and asy are linearly independent, we may put some suitable X
in the above relation and obtain the following:

x4+ (D' Da)y =gs Dz + (D' D2)Dy , Y,y € R™ VD € GD,, .

Then, by Lemma 3.2, D; ' Dy = AT+ p1J, and hence Dy = Ay Dy + 11,
for some Aj,pu; € R. For every i (2 < i < k), with a; # 0, it is
clear that {aj,a;} or {ag,a;} is linearly independent, and so, by a sim-
ilar argument as above, D; = A\, D1 + p;J, for some A, u; € R. Set
D := D;. Then, for every i (1 < i < k), D; = \;D + p;J, for some
i, i € R, and hence T'(X) = DXR+JXS, where, R = [Mai] - - [A\pak]
and S = [pu1a1 + b1l - - - |ugar + bg]. Therefore, the condition (i¢) holds.
If rank[aq]|...|ag] < 1, then there exist a € R™ and rq,...,rx € R
such that for every i (1 < i < k), a; = rja. Therefore, T(X) =
[rDi1Xal...|rgDrXa] + JXS, where, S = [b1]...]|bg], and hence the
condition (7i7) holds. O
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It is easy to show that if T" is of the form (i) or (i) in Theorem 1.3,
then T' preserves >44. The following example shows that there is a linear
function of the form (iii) not preserving > gq.

Example 3.5. Suppose that T : Mzs — Ms is defined by T'(X) =

1
[Xe1|PXe], where, P = | 0
0
1
Theorem 1.3. Put A .= -1
1

00

0 1 |. So, T is of the form (iii) in
10

1 -1 1

2 and B := 1 0 |. It is easy
0 1 2

to show that B =49 A and TB #4q TA. Then, T does not preserve =4q.

It is clear that the form (i7) is a special case of the form (ii) in
Theorem 1.3 (put Dy = --- = Dy := D and R := [ria|---|rxa] ). The
following example shows that there is a linear function preserving >4,
which is of the form (ii7) but is not of the form (7).

Example 3.6. [3, Example 3.5] Let T : M3y — Mazo be defined by

0 01
T(X) = [Xe1|PXe], where, P = 1 00 Then, T preserves
010

—ga and T is not of the form (ii) in Theorem 1.3.

Now, we state the following lemma which characterizes all strong
linear preservers of >,4 from M, ,, to M, . .

Lemma 3.7. [2, Lemma 2.4] Let T : M, ;,, — M,, i, be a linear function
of the form T(X) = XR + JXS, for some R,S € My, . Then, T is
injective if and only if R and R+ nS are full-rank matrices.

Proof. It is easy to see that the matrix representation of 17" with respect
to the standard bases of M, ,,, and M, ;, is similar to the following block
matrix:

R+nS *
R
€ Mnk,nm .
0 R
Therefore, T is injective if and only if R and R 4+ nS are full-rank ma-
trices. g

If T is a strong linear preserver of g4 and T'(A) = 0, then T'(0) >4q
T(A). So, 0 =49 A, and hence A = 0.
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Remark 3.8. Every strong linear preserver of =gq from My, m, to My
15 injective.

If m = 1, then the following theorem is obtained from Theorem 3.1.
So, in the proof we may assume m > 2.

Theorem 3.9. Let T : M, ,, — M, be a linear function. Then,
T strongly preserves =g4q if and only if there exist an invertible matriz
D € GD, and matrices R,S € My, such that R and R + nS are
full-rank matrices and TX = DXR + JXS.

Proof. If T is of the form TX = DXR + JXS, for some invertible
matrix D € GD,, and full-rank matrices R, R + nS € M,, j, then it
is easy to show that T is a strong linear preserver of >,4. Conversely,
assume T' is a strong linear preserver of ~,; . So, T is of the form
(7), (i) or (¢it) in Theorem 1.3. If T' is of the form (¢), then T is
not injective, which is a contradiction. If T is of the form (iii), then
we can choose 0 # b € (span{a})*, by the assumption m > 2 . Put

Xo:=1[b|=b]0]|--]0]" € Mym. So, Xo # 0 and T'(Xp) = 0, which is

a contradiction. Therefore, T is of the form (i7), and by Lemma 3.7, R

and R+ nS are full-rank matrices. g
Acknowledgments

The authors are very grateful to the anonymous referee for his/her help-
ful comments and for detecting an error in the first version of the article
which helped us to state Theorem 2.6.

REFERENCES

[1] A. Armandnejad, Right GW-majorization on My, n,, Bull. Iranian Math. Soc.
35 (2009) 69-76.

[2] A. Armandnejad and H. R. Afshin, Linear functions preserving multivariate and
directional majorization, Iran. J. Math. Sci. Inform. 5 (2010) 1-5.

[3] A. Armandnejad and A. Salemi, The structure of linear preservers of gs-
majorization, Bull. Iranian Math. Soc. 32 (2006) 31-42.

[4] H. Chiang and C.-K. Li, Generalized doubly stochastic matrices and linear pre-
servers, Linear Multilinear Algebra 53 ( 2005) 1-11.

[5] A. M. Hasani and M. Radjabalipuor, The structure of linear operators strongly
preserving majorizations of matrices, Electron. J. Linear Algebra 15 (2006) 260-
268.



224 Armandnejad and Heydari

[6] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix
majorization on RP, Electron. J. Linear Algebra 18 (2009) 88-97.

[7] C.-K. Li and E. Poon, Linear operators preserving directional majorization, Lin-
ear Algebra Appl. 325 (2001) 141-146.

Ali Armandnejad and Hossein Heydari

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7713936417,
Rafsanjan, Iran

Email: armandnejad@mail.vru.ac.ir and

Email: hosein8212@yahoo.com



