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LINEAR PRESERVING GD-MAJORIZATION
FUNCTIONS FROM Mn,m TO Mn,k

A. ARMANDNEJAD∗ AND H. HEYDARI

Communicated by Heydar Radjavi

Abstract. Let Mn,m be the vector space of all n×m real matrices.
For A, B ∈ Mn,m, it is said that B is gd-majorized by A (written
A �gd B) if for every x ∈ Rn there exists a g-doubly stochastic
matrix Dx such that Bx = Dx(Ax). Here, we show that if A �gd B,
then there exists a g-doubly stochastic matrix D (independent of x)
such that B = DA. Also, the possible structures of linear preserving
gd-majorization functions from Mn,m to Mn,k are found. Finally,
all linear strongly preserving gd-majorization functions from Mn,m

to Mn,k are characterized.

1. Introduction

Let T : Mn,m → Mn,k be a linear function and let ∼ be a relation on
both Mn,m and Mn,k. We say that T preserves ∼ when X ∼ Y implies
TX ∼ TY ; if in addition, TX ∼ TY implies X ∼ Y , we say that T
strongly preserves ∼. For x, y ∈ Rn, it is said that x is vector majorized
by y (written y � x) if there exists a doubly stochastic matrix D such
that x = Dy. For given X, Y ∈ Mn,m , it is said that X is directionally
majorized by Y (written Y �d X) if Y v � Xv, for all v ∈ Rm. The
linear preservers of �d on Mn,m have been characterized in [7]. Some
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types of majorization and their linear preservers are presented in [1], [5]
and [6]. Throughout the paper, the notation Mn is fixed for the algebra
of all n × n real matrices. The space Mn,1 of all n × 1 real vectors is
denoted by the usual notation Rn. The collection of all n×n permutation
matrices is denoted by Pn . The notation X = [x1| · · · |xm] is used for
an n × m matrix with xj ∈ Rn as the j th column of X (1 ≤ j ≤ m).
The letters J and e stand for the square matrix and the vector, which
respectively all of their entries are 1, and the dimensions of the matrix J
and the vector e are understood from the context. The standard basis of
Rn is denoted by {ε1, ..., εn}. The notation At stands for the transpose
of a given matrix A . For a given vector x ∈ Rn, tr(x) is the sum of
all components of x. Now, we state an extension of a familiar result [7,
Theorem 2] about linear functions preserving directional majorization
from Mn,m to Mn,k .
Proposition 1.1. [2, Theorem 1.3] A linear function T : Mn,m →
Mn,k preserves directional majorization if and only if one of the follow-
ing holds.

(i) There exist A1, . . . , Am ∈ Mn,k such that T (X) =
m∑

j=1

(trxj)Aj,

where, X = [x1| · · · |xm].
(ii) There exist R,S ∈ Mm,k and P ∈ Pn such that T (X) = PXR +

JXS.

A (not necessarily nonnegative) matrix D ∈ Mn with the properties
De=e and Dte = e is said to be a g-doubly stochastic matrix. This
generalization of stochastic matrices was introduced in [4]. We denote
the set of all n× n g-doubly stochastic matrices by GDn. For matrices
A,B ∈ Mn,m , it is said that B is gs-majorized by A (written A �gs B)
if there exists an n× n g-doubly stochastic matrix D such that B=DA.
In [3], the authors found the possible structures of all linear operators
preserving �gs on Mn,m as follows.

Proposition 1.2. [3, Theorem 3.3] Let T : Mn,m → Mn,m be a linear
operator that preserves �gs. Then, one of the following holds.

(i) There exist A1, · · · , Am ∈ Mn,m such that T(X)=
∑m

j=1 tr(xj)Aj,
where, X = [x1| . . . |xm].

(ii) There exist S ∈ Mm , a1, . . . , am ∈ Rm and invertible matrices
D1, . . . , Dm ∈ GDn such that T(X)=[D1Xa1| · · · |DmXam] + JXS.

For A,B ∈ Mn,m, it is said that B is gd-majorized by A (written
A �gd B) if Ax �gs Bx, for all x ∈ Rm. In fact, A �gd B if and only
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if, for every x ∈ Rm, there exists a g-doubly stochastic matrix Dx such
that Bx = Dx(Ax). Here we prove the following theorem which gives
the possible structures of all linear functions preserving �gd from Mn,m

to Mn,k .

Theorem 1.3. Let T : Mn,m → Mn,k be a linear function that preserves
�gd. Then, one of the following holds.

(i) There exist A1, . . . , Am ∈ Mn,k such that T (X) =
m∑

j=1
tr(xj)Aj,

where, X = [x1| . . . |xm].
(ii) There exist R,S ∈ Mm,k and an invertible matrix D ∈ GDn such

that T (X) = DXR + JXS.
(iii) There exist S ∈ Mm,k, a ∈ Rm, r1, . . . , rk ∈ R and invertible

matrices D1, . . . , Dk ∈ GDn such that T (X) = [r1D1Xa| . . . |rkDkXa]+
JXS.

2. Gd-Majorization

In this section, we present some properties of �gd and then show that
the relation implies �gs on Mn,m.

Lemma 2.1. Let x and y be two distinct vectors in Rn. Then, x �gs y
if and only if x /∈ span{e} and tr(x) = tr(y).

Proposition 2.2. Let A = [a1| · · · |am], B = [b1| · · · |bm] ∈ Mn,m. Then,
B is gd-majorized by A if and only if the following conditions hold.

(a) For every i (1 ≤ i ≤ m), tr(ai) = tr(bi); in other words, Ate =
Bte.

(b) For every x ∈ Rm such that Ax ∈ span{e}, Ax = Bx.

Proof. It is clear that A �gd B implies the conditions (a) and (b). Con-
versely, assume (a) and (b) hold. For x ∈ Rm, if Ax ∈ span{e}, then
Bx = Ax, and hence Ax �gs Bx. If Ax /∈ span{e}, since tr(bi) = tr(ai)
for every i (1 ≤ i ≤ n), then tr(Bx) = tr(Ax). So, Ax �gs Bx, by
Lemma 2.1, and therefore A �gd B. �

Remark 2.3. Let X, Y ∈ Mn,m, A,B ∈ GDn, C ∈ Mm and α, β ∈ R
such that A,B and C are invertible and α 6= 0. Then, the following
conditions are equivalent:
(1) X �gd Y.
(2) AX �gd BY.
(3) αX + βJnm �gd αY + βJnm, where Jnm ∈ Mn,m is the matrix with
all entries equal to one.
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(4) XC �gd Y C.

Now, we show that �gs coincides with �gd on Mn,m.

Lemma 2.4. Let A,B ∈ Mn. If A is invertible and A �gd B, then
A �gs B.

Proof. Put D = BA−1. Since DA = B, it is enough to show that D is a
g-doubly stochastic matrix. By invertibility of A, there exists a unique
x0 ∈ Rn such that Ax0 = e, and hence Bx0 = e, by Proposition 2.2. So,
De = (BA−1)e = B(A−1e) = Bx0 = e. On the other hand, Ate = Bte,
by Proposition 2.2, and hence Dte = (BA−1)t(e) = (A−1)t(Bte) =
(A−1)tAte = e . �

Lemma 2.5. Let A = [C|D] and B = [E|F ] ∈ Mn,m, where C,E ∈
Mn,k and D,F ∈ Mn,(m−k). Suppose that the columns of D are gener-
ated by the columns of C. If A �gd B and C �gs E, then A �gs B.

Proof. Since C �gs E, then there exits a g-doubly stochastic matrix
R ∈ GDn such that RC = E, and hence Rci = ei (1 ≤ i ≤ k),
where ci and ei are the ith columns of C and E, respectively. We
claim that RA = B. Suppose that d is the first column of D. Then,
there exist scalars α1, . . . , αk ∈ R such that d =

∑k
i=1 αici. Put x0 =

(α1, . . . , αk,−1, 0, . . . , 0)t ∈ Rm. Then, Ax0 = 0, and hence Bx0 = 0 by,
Proposition 2.2. So, f =

∑k
i=1 αiei, where f is the first column of F .

Thus, Rd =
∑k

i=1 αiRci =
∑k

i=1 αiei = f . This argument is valid for
other columns of D and F , and hence RA = B. �

Theorem 2.6. The concepts of gs and gd-majorization on Mn,m are
the same.

Proof. It is clear that �gs implies �gd , and so we prove only the con-
verse. Let A,B ∈ Mn,m and A �gd B. By Remark 2.3, A �gd B if
and only if AP �gd BP , for every permutation matrix P ∈ Mn. Then,
without loss of generality, we can assume that A = [C|D], where, C =
[c1| · · · |ck] ∈ Mn,k is a full rank matrix, D = [d1| · · · |dm−k] ∈ Mn,(m−k)

and d1, · · · , dm−k ∈ span{c1, · · · , ck} (C or D can be vacuous). It is
clear that k ≤ n. Choose some vectors ck+1, · · · , cn ∈ Rn such that
C ′ = [c1| · · · |cn] ∈ Mn is an invertible matrix. Consider the matrices
E ∈ Mn,k and F ∈ Mn,(m−k) such that B = [E|F ]. Since C ′ is in-
vertible, then there exists a unique vector x = (x1, · · · , xn)t ∈ Rn such
that C ′x = e . Put y = (x1, · · · , xk)t ∈ Rk. Since A �gd B, then
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C �gd E, by Proposition 2.2, and hence Cy �gs Ey. So, there exists a
g-doubly stochastic matrix R ∈ Mn such that RCy = Ey. Put E′ =
[E|Rck+1| · · · |Rcn] ∈ Mn. Then, E′x = x1e1 + · · ·+xkek +xk+1Rck+1 +
· · · + xnRcn, where ei is the ith column of E. Since RCy = Ey then
x1Rc1+· · ·+xkRck = x1e1+· · ·+xkek, then E′x = x1Rc1+· · ·+xnRcn =
R(C ′x) = Re = e. On the other hand, tr(ei) = tr(ci), for every i
(1 ≤ i ≤ k), and tr(ci) = tr(Rci), for every i (k + 1 ≤ i ≤ n). Then,
C ′ �gd E′, by Proposition 2.2. Therefore, C ′ �gs E′, by Lemma 2.4, and
hence C �gs E. Since d1, · · · , dm−k ∈ span{c1, · · · , ck} and A �gd B,
we get A �gs B, by Lemma 2.5. �

3. Linear Preservers

In this section, we prove the following statements which shed light on
the structure of linear functions preserving �gd from Mn,m to Mn,k.

Theorem 3.1. Let T : Mn,m → Rn be a linear function. Then, T
preserves �gs if and only if one of the following holds.

(a) There exist a1, . . . , am ∈ Rn such that T (X) =
m∑

j=1
tr(xj)aj, where,

X = [x1| . . . |xm].
(b) There exist a, b ∈ Rm and an invertible matrix A ∈ GDn such

that T (X) = AXa + JXb.

Proof. The fact that each of the conditions (a) or (b) is sufficient for T to
be a preserver of �gs is easy to prove. So, we prove the necessity of the
conditions. Define T ′ : Mn,m → Mn,m by T ′(X) = [T (X)|0], where 0
denotes an n× (m− 1) zero block. Clearly, T ′ is a linear function which
preserves �gs. Then, by Proposition 1.2, T ′ has one of the following
forms.
(i) T ′(X) =

m∑
j=1

tr(xj)Bj , for some B1, . . . , Bm ∈ Mn,m. So, T (X) =

m∑
j=1

tr(xj)aj , where aj is the first column of Bj , for every j (1 ≤ j ≤ m),

and hence (a) holds.
(ii) T ′(X) = [D1Xa1| . . . |DmXam]+JXS, for some S ∈ Mm, a1, . . . , am

∈ Rn and invertible matrices D1, . . . , Dm ∈ GDn. So, TX = D1Xa1 +
JXb, where b is the first column of S, and hence (b) holds. �

Lemma 3.2. [3, Lemma 3.1] Let A ∈ GDn be invertible. Then, the
following conditions are equivalent.
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(a) A = αI + βJ, for some α, β ∈ R.
(b) (x+Ay) �gs (Dx+ADy), for all D ∈ GDn and for all x, y ∈ Rn.

Remark 3.3. Assume that T1 and T2 are of the form (a) and (b) in
Theorem 3.1, respectively. Then, T1 = T2 if and only if a = 0 and
aj = λje, for every j (1 ≤ j ≤ m), where a, aj (1 ≤ j ≤ m) and
b = (λ1, . . . , λm)t are as in Theorem 3.1.

Lemma 3.4. Let T1, T2 : Mn,m → Rn be two linear preservers of �gs

such that T1 + T2 preserves �gs. If T1(X) = DXa + JXb, for some
a, b ∈ Rm, a 6= 0 and an invertible matrix D ∈ GDn, then T2(X) =
D′Xc + JXd, for some c, d ∈ Rm and an invertible matrix D′ ∈ GDn.

Proof. Since T1 +T2 preserves �gs, then T1 +T2 is of the form (a) or (b)
in Theorem 3.1. Now, consider two cases.

Case 1: Suppose that T1 + T2 is of the form (a). Since T2 preserves
�gs, it is of the form (a) or (b) in Theorem 3.1. Assume, if possible,
T2 is of the form (a). Then, T1 = (T1 + T2) − T2 is of the form (a),
as well. So, by Remark 3.3, we obtain a = 0, which is a contradiction.
Therefore, T2 is of the form (b).

Case 2: Suppose that T1 + T2 is of the form (b). So, (T1 + T2)(X) =
BXa′ + JXb′, for some a′, b′ ∈ Rm and invertible matrix B ∈ GDn.
Assume, if possible, T2 is of the form (a) and is not of the form (b).
Then, by Theorem 3.1 and Remark 3.3, there exist (not all in span{e})
a1, . . . , am ∈ Rn such that T2(X) =

m∑
j=1

tr(xj)aj . Without loss of gener-

ality, suppose that a1 /∈ span{e}. Put X := [e|0| . . . |0] ∈ Mn,m. So,

na1 =
m∑

j=1

tr(xj)aj = T2(X)

= (T1 + T2 − T1)(X)(3.1)
= [a′1 + nb′1 − a1 − nb1]e ,(3.2)

where, a′1, b′1, a1 and b1 are the first entry of a′, b′, a and b, respectively,
which is a contradiction. Therefore, T2 is of the form (b), and hence
there exist c, d ∈ Rm and an invertible matrix D′ ∈ GDn such that
T2(X) = D′Xc + JXd. �

Now, we can prove Theorem 1.3.
Proof of Theorem 1.3. Suppose that T preserves �gd. Then, for

every i (1 ≤ i ≤ k), Ti = Ei ◦ T : Mn,m → Rn preserves �gd, where,
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Ei : Mn,k → Rn is defined by Ei(A) = Aεi. Thus, Ti is of the form (a)
or (b) in Theorem 3.1. Now, consider two cases.
Case 1: Assume Ti is of the form (a), for every i (1 ≤ i ≤ k). Then,

Ti(X) =
m∑

j=1
tr(xj)ai

j , for some ai
j ∈ Rn. Put Aj := [a1

j | . . . |ak
j ], for every

j (1 ≤ j ≤ m). So, T (X) =
m∑

j=1
tr(xj)Aj , and hence the condition (i)

holds.
Case 2: Assume there exists p (1 ≤ p ≤ k) such that Tp(X) =

DpXap + JXbp, for some ap, bp ∈ Rk, ap 6= 0 and an invertible ma-
trix Dp ∈ GDn. Since T preserves �gd, so Tp + Tj preserves �gd, for
every j (1 ≤ j ≤ k). Then, by Lemma 3.4, Tj(X) = DjXaj + JXbj , for
some aj , bj ∈ Rm, and an invertible matrix Dj ∈ GDn. So,

T (X) = [T1(X)| · · · |Tk(X)]
= [D1Xa1 + JXb1| · · · |DmXam + JXbk]
= [D1Xa1| · · · |DkXak] + JX[b1| · · · |bk].

If rank[a1| · · · |ak] ≥ 2, then, without loss of generality, we may as-
sume that rank[a1|a2] = 2. Since for every X ∈ Mn,m and every
D ∈ GDn, X �gs DX, then (T1 + T2)X �gs (T1 + T2)(DX), and hence
D1Xa1 + D2Xa2 �gs D1DXa1 + D2DXa2 . So, for every D ∈ GDn,

Xa1 + (D−1
1 D2)Xa2 �gs DXa1 + (D−1

1 D2)DXa2,∀X ∈ Mn,m.

Since a1 and a2 are linearly independent, we may put some suitable X
in the above relation and obtain the following:

x + (D−1
1 D2)y �gs Dx + (D−1

1 D2)Dy , ∀x, y ∈ Rm ,∀D ∈ GDn .

Then, by Lemma 3.2 , D−1
1 D2 = λ1I+µ1J, and hence D2 = λ1D1+µ1J,

for some λ1, µ1 ∈ R. For every i (2 ≤ i ≤ k), with ai 6= 0, it is
clear that {a1, ai} or {a2, ai} is linearly independent, and so, by a sim-
ilar argument as above, Di = λiD1 + µiJ, for some λi, µi ∈ R. Set
D := D1. Then, for every i (1 ≤ i ≤ k), Di = λiD + µiJ, for some
λi, µi ∈ R, and hence T (X) = DXR+JXS, where, R = [λ1a1| · · · |λkak]
and S = [µ1a1 + b1| · · · |µkak + bk]. Therefore, the condition (ii) holds.
If rank[a1| . . . |ak] ≤ 1, then there exist a ∈ Rm and r1, . . . , rk ∈ R
such that for every i (1 ≤ i ≤ k), ai = ria. Therefore, T (X) =
[r1D1Xa| . . . |rkDkXa] + JXS, where, S = [b1| . . . |bk], and hence the
condition (iii) holds. 2
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It is easy to show that if T is of the form (i) or (ii) in Theorem 1.3,
then T preserves �gd. The following example shows that there is a linear
function of the form (iii) not preserving �gd.

Example 3.5. Suppose that T : M3,2 → M3,2 is defined by T (X) =

[Xε1|PXε1], where, P =

 1 0 0
0 0 1
0 1 0

. So, T is of the form (iii) in

Theorem 1.3. Put A :=

 1 1
−1 2
1 0

 and B :=

 −1 1
1 0
1 2

. It is easy

to show that B �gd A and TB �gd TA. Then, T does not preserve �gd.

It is clear that the form (ii) is a special case of the form (iii) in
Theorem 1.3 (put D1 = · · · = Dk := D and R := [r1a| · · · |rka] ). The
following example shows that there is a linear function preserving �gd,
which is of the form (iii) but is not of the form (ii).

Example 3.6. [3, Example 3.5] Let T : M3,2 → M3,2 be defined by

T (X) = [Xε1|PXε1], where, P =

 0 0 1
1 0 0
0 1 0

. Then, T preserves

�gd and T is not of the form (ii) in Theorem 1.3.

Now, we state the following lemma which characterizes all strong
linear preservers of �gd from Mn,m to Mn,k .

Lemma 3.7. [2, Lemma 2.4] Let T : Mn,m → Mn,k be a linear function
of the form T (X) = XR + JXS, for some R,S ∈ Mm,k. Then, T is
injective if and only if R and R + nS are full-rank matrices.

Proof. It is easy to see that the matrix representation of T with respect
to the standard bases of Mn,m and Mn,k is similar to the following block
matrix: 

R + nS ∗
R

. . .
0 R

 ∈ Mnk,nm .

Therefore, T is injective if and only if R and R + nS are full-rank ma-
trices. �

If T is a strong linear preserver of �gd and T (A) = 0, then T (0) �gd

T (A). So, 0 �gd A, and hence A = 0.
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Remark 3.8. Every strong linear preserver of �gd from Mn,m to Mn,k

is injective.

If m = 1, then the following theorem is obtained from Theorem 3.1.
So, in the proof we may assume m ≥ 2.

Theorem 3.9. Let T : Mn,m → Mn,k be a linear function. Then,
T strongly preserves �gd if and only if there exist an invertible matrix
D ∈ GDn and matrices R,S ∈ Mm,k such that R and R + nS are
full-rank matrices and TX = DXR + JXS.

Proof. If T is of the form TX = DXR + JXS, for some invertible
matrix D ∈ GDn and full-rank matrices R,R + nS ∈ Mm,k, then it
is easy to show that T is a strong linear preserver of �gd. Conversely,
assume T is a strong linear preserver of �gd . So, T is of the form
(i), (ii) or (iii) in Theorem 1.3. If T is of the form (i), then T is
not injective, which is a contradiction. If T is of the form (iii), then
we can choose 0 6= b ∈ (span{a})⊥, by the assumption m ≥ 2 . Put
X0 := [b | −b | 0 | · · · | 0]t ∈ Mn,m. So, X0 6= 0 and T (X0) = 0, which is
a contradiction. Therefore, T is of the form (ii), and by Lemma 3.7, R
and R + nS are full-rank matrices. �
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