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SOME EQUIVALENCE CLASSES OF OPERATORS ON
B(H)

T. AGHASIZADEH AND S. HEJAZIAN∗

Communicated by Gholamhossein Eslamzadeh

Abstract. Let L(B(H)) be the algebra of all linear operators on
B(H) and P be a property on B(H). For φ1, φ2 ∈ L(B(H)), we say
that φ1∼Pφ2, whenever φ1(T ) has property P, if and only if φ2(T )
has this property. In particular, if I is the identity map on B(H),
then φ∼PI means that φ preserves property P in both directions.
Each property P produces an equivalence relation on L(B(H)). We
study the relation between equivalence classes with respect to dif-
ferent properties such as being Fredholm, semi-Fredholm, compact,
finite rank, generalized invertible, or having a specific semi-index.

1. Introduction

Let H be an infinite-dimensional separable complex Hilbert space and
B(H) the algebra of all bounded linear operators on H. We denote by
F(H) and K(H) the ideals of all finite rank and compact operators in
B(H), respectively. The Calkin algebra of H is the quotient algebra
C(H) = B(H)/K(H). An operator T ∈ B(H) is said to be a Fredholm
operator if Im(T ), the range of T , is closed and both its kernel and
co-kernel are finite-dimensional. We recall that T ∈ B(H) is called up-
per (resp. lower) semi-Fredholm if Im(T ) is closed and its kernel (resp.
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co-kernel) is finite-dimensional. An operator which is either upper semi-
Fredholm or lower semi-Fredholm is called a semi-Fredholm operator.
We denote by UF(H), LF(H), SF(H), and FR(H) the sets of upper
semi-Fredholm, lower semi-Fredholm, semi-Fredholm and Fredholm op-
erators, respectively. By Atkinson’s Theorem, [4, Theorem 1.4.16], if H
is an infinite-dimensional Hilbert space, then U ∈ B(H) is Fredholm if
and only if U+K(H) is invertible in the Calkin algebra C(H). The reader
is referred to [4, 6] for more on Fredholm operators. Let A ∈ B(H). If
there exists B ∈ B(H) such that ABA = A, then A is called generalized
invertible and B is said to be a generalized inverse of A. Note that
A ∈ B(H) is generalized invertible if and only if Im(A) is closed [5].
The set of generalized invertible elements of B(H) is denoted by G(H).

The nullity (resp. defect) of an operator T ∈ B(H) is defined to be
dim(Ker(T )) (resp. dim(coker(T ))), denoted by nul(T ) (resp. def(T )).
Now, we define the function s-index : B(H) → {0,∞} ∪ N as follows:

s-index(T ) =


∞ T ∈ B(H)\SF(H),
0 T ∈ FR(H),

nul(T ) T ∈ UF(H)\FR(H),
def(T ) T ∈ LF(H)\FR(H).

The number s-index(T ) is called the semi-index of T . Note that for
a Fredholm operator T , in general, s-index(T ) does not coincide with
the classical index of T which is defined by nul(T )− def(T ).

Let L(B(H)) be the set of all linear mappings on B(H). Recall that
φ ∈ L(B(H)) is said to be surjective up to finite rank operators if B(H) =
Im(φ) + F(H), and φ is said to be surjective up to compact operators
if B(H) = Im(φ) + K(H). Obviously, if φ is surjective up to finite
rank operators, then it is surjective up to compact operators and each
surjective linear map satisfies both of these properties.

Let P be a property on B(H). For φ1, φ2 ∈ L(B(H)), we say that
φ1 ∼P φ2, whenever φ1(T ) has property P, if and only if φ2(T ) has this
property. It is easy to see that each property P produces an equivalence
relation on L(B(H)). Throughout this paper, we use the following no-
tations for some specific properties:
(i) “f” is the property of “being finite-rank”;
(ii) “k” is the property of “being compact”;
(iii) “fr” is the property of “being Fredholm”;
(iv) “sf” is the property of “being semi-Fredholm”;
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(v) “g” is the property of “being generalized invertible”;
(vi) “si” is the property of “having a specific semi-index”.

Let I denote the identity operator of L(B(H)) and φ ∈ L(B(H)).
Then, φ ∼P I means that φ preserves the property P in both directions,
that is, φ(T ) has property P if and only if T has this property. Mbekhta
and Šemrl in [3] study those φ which satisfy φ ∼g I and φ ∼sf I. In
general, if ψ is a linear operator on B(H), which preserves property P
in both directions, then ψφ ∼P φ, for all φ ∈ L(B(H)). Also, if υ is a
linear operator on B(H), which does not preserve property P in both
directions, then for each surjective linear operator φ, υφ �P φ.

In the next section, we study the equivalence classes with respect to
the above properties. We show that for surjective up to finite rank map-
pings φ1 and φ2 in L(B(H)), φ1 ∼g φ2 implies that φ1 ∼sf φ2 and φ1 ∼f

φ2. Also, if φ1, φ2 are linear mappings on B(H), which are surjective up
to compact operators, and φ1 ∼sf φ2 or φ1 ∼fr φ2, then φ1 ∼k φ2. It is
also proved that φ1 ∼si φ2 implies φ1 ∼sf φ2. We give some examples to
illustrate that some of the reverse implications do not hold, in general.
We also prove that for surjective linear operators φ1, φ2 ∈ L(B(H)),
φ1 ∼si φ2 and φ1 ∼f φ2 imply that Ker(φ1) = Ker(φ2), and we give
an example to show that the converse is not true, in general. Finally, it
is proved that if φ1, φ2 are bijections such that φ1 ∼sf φ2, then φ1φ2

−1

induces a map ψ̃ : C(H) → C(H), which is either an automorphism or
an anti-automorphism, multiplied by an invertible element A ∈ C(H).

2. The Results

In the following lemma, (i) ⇔ (ii) comes from [2, Lemma 2.2] and
(i) ⇔ (iii) comes from [3, Lemma 2.2].

Lemma 2.1. Let K ∈ B(H). Then, the following are equivalent.
(i) K is compact.
(ii) for every B ∈ FR(H), we have B +K ∈ FR(H).
(iii) for every B ∈ SF(H), we have B +K ∈ SF(H).

Take C = {T ∈ B(H) | for every operator A ∈ B(H) with Im(A) not
closed, there exists λ ∈ C such that A + λT 6= 0 and Im(A + λT ) is
closed}. It is proved in [1, Lemma 3.1] that C = SF(H).

We recall that if T ∈ G(H), then, for each finite rank operator F , we
have T + F ∈ G(H).
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Theorem 2.2. Let φ1, φ2 : B(H) → B(H) be linear mappings. Then,
(i) φ1 ∼si φ2 ⇒ φ1 ∼sf φ2;
if φ1, φ2 are surjective up to finite rank operators, then
(ii) φ1 ∼g φ2 ⇒ φ1 ∼sf φ2;
(iii) φ1 ∼g φ2 ⇒ φ1 ∼f φ2;
if φ1, φ2 are surjective up to compact operators, then
(iv) φ1 ∼fr φ2 ⇒ φ1 ∼k φ2;
(v) φ1 ∼sf φ2 ⇒ φ1 ∼k φ2.

Proof. (i) It is trivial by the definition of semi-index.
(ii) Suppose that φ1(T ) is a semi-Fredholm operator. We show that
φ2(T ) ∈ C. Suppose that B ∈ B(H) is not generalized invertible, or
equivalently Im(B) is not closed. Since φ2 is surjective up to finite rank
operators, there exist A ∈ B(H) and F ∈ F(H) such that φ2(A) = B+F .
Since F is finite rank, Im(φ2(A)) is not closed and it follows that the
range of φ1(A) is not closed. Since φ1(T ) is semi-Fredholm, we have
φ1(T ) ∈ C. Thus, there exists α ∈ C such that Im(φ1(αT + A)) is
closed. It follows that the range of φ2(αT + A) = αφ2(T ) + B + F is
also closed, which implies that Im(αφ2(T ) + B) is closed. Note that
αφ2(T ) +B 6= 0. Otherwise, Im(αφ2(T )) = Im(B) is not closed, which
contradicts φ1 ∼g φ2. Therefore, φ2(T ) ∈ C.
(iii) Let φ1 ∼g φ2. Suppose that φ1(T ) ∈ F(H), but φ2(T ) is not
finite-rank. Therefore, the range of φ1(T ) is closed, but it is not semi-
Fredholm. By the fact that φ1 ∼g φ2, Im(φ2(T )) is closed. Also, by (ii),
φ2(T ) is not semi-Fredholm. Take S = φ2(T ). Then, both Ker(S) and
Im(S)⊥ are infinite-dimensional and we can define a bounded linear
bijection S′ : Ker(S) → Im(S)⊥. Extend S′ on H by S′(x) = 0,
for all x ∈ Ker(S)⊥, and denote this extension by S′ as well. Since
S is not finite rank, S′ is not a semi-Fredholm operator on H. Now,
take T̃ ∈ B(H) and F ∈ F(H) such that φ2(T̃ ) = S′ + F . We have
S + S′ is a bijective bounded linear operator on H, and hence it is
Fredholm. Therefore, φ2(T + T̃ ) = S + S′ + F ∈ FR(H). On the other
hand, φ1(T + T̃ ) is not semi-Fredholm. Otherwise, φ1(T̃ ) must be semi-
Fredholm and it follows by (ii) that S′ + F = φ2(T̃ ) is semi-Fredholm,
which is not correct. Thus, φ1 �sf φ2, a contradiction with (ii), and so
φ1 ∼f φ2.
(iv) Suppose that φ1(T ) is compact. Let S be an arbitrary Fredholm
operator. Since φ2 is surjective up to compact operators, there exist
A ∈ B(H) and K ∈ K(H) such that φ2(A) = S+K. Obviously, φ2(A) ∈
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FR(H), and since φ1 ∼fr φ2, we have φ1(A) is Fredholm. On the other
hand, φ1(T ) is compact and so by Lemma 2.1, φ1(T + A) ∈ FR(H).
Thus, φ2(T + A) is Fredholm, and it follows that φ2(T ) + S = φ2(T +
A)−K is also a Fredholm operator and Lemma 2.1 implies that φ2(T )
is compact.
(v) The proof is similar to the one given in (iv). �

In what follows we give some examples to show that in Theorem 2.2
some of the reverse implications do not hold, in general.

Example 2.3. Suppose that φ : B(H) → B(H) is a surjective linear map
and S ∈ B(H) is a lower semi-Fredholm operator such that s-index(S) =
1. Since φ is surjective, there exists T ∈ B(H) such that φ(T ) = S. Now,
if A ∈ B(H) is a Fredholm operator with def(A) = 2, then φ ∼sf LAφ,
but φ �si LAφ, since s-index(Aφ(T )) ≥ 2 > 1. Here LA : B(H) → B(H)
is the left multiplier operator defined by LA(S) = AS.

Example 2.4. We show that, in general, φ1 ∼sf φ2 or φ1 ∼fr φ2 does
not imply φ1 ∼g φ2. Let S be a surjective bounded linear map on H such
that dim(Ker(S)) = 1. Note that S ∈ FR(H). Let P : H → Ker(S) be
the projection of H onto Ker(S). Take φ0 = LS. Since S has a bounded
right inverse, φ0 is surjective. Extend {P} to a vector space basis {Tα}
for B(H). Suppose that K ∈ K(H) has a non-closed range. Define a
linear map λ : B(H) → K(H) by

λ(Tα) =
{
K Tα = P
0 Tα 6= P.

Now, define φ1 : B(H) → B(H) by φ0(T ) + λ(T ). Then, by Lemma
2.1, φ1 ∼sf φ0. Also, φ1 is surjective. To see this, take T ∈ B(H).
There exists U ∈ B(H) such that φ0(U) = T . Since {Tα} is a vector
space basis for B(H), there exist β1, ..., βn ∈ C and Tα1 , ..., Tαn ∈ {Tα}
such that U =

∑n
i=1 βiTαi. If for each 1 ≤ j ≤ n, Tαj 6= P , then

φ1(U) = φ0(U) = T . Otherwise, if for some 1 ≤ j ≤ n, Tαj = P ,
then take U ′ = U − βjTαj and we have φ0(U) = φ0(U ′), and therefore,
φ1(U ′) = φ0(U ′) + λ(U ′) = T .

Finally, φ1(P ) = K, which is not generalized invertible since Im(K)
is not closed, while φ0(P ) = 0 is generalized invertible and this shows
φ1 �g φ0.

We do not know any example of two linear mappings φ1, φ2 ∈ L(B(H)),
which are surjective up to compact operators, φ1 ∼k φ2 but φ1 �fr φ2

or φ1 �sf φ2. As seen in the above examples, the multiplier operator LT
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for a suitable T plays an important role. But, here we show that if φ1

and φ2 satisfy the above mentioned conditions, they can not be related
by φ2 = LARBφ1 + λ, where λ is a linear mapping from B(H) to K(H).
Here, RB denotes the right multiplier operator T 7→ TB on B(H).

Proposition 2.5. Let φ1, φ2 ∈ L(B(H)) be surjective up to compact
operators and φ2 = LARBφ1 + λ, where, λ : B(H) → K(H) is a linear
mapping. If φ1 ∼k φ2, then A and B are Fredholm operators, and hence
φ1 ∼fr φ2 and φ1 ∼sf φ2.

Proof. Let φ2 = LARBφ1 + λ. For i = 1, 2, consider τi : B(H) → C(H)
defined by τi(T ) = π ◦ φi(T ), where, π : B(H) → C(H) is the canonical
quotient map. It is easy to check that τ2(T ) = aτ1(T )b, for all T ∈ B(H),
where, a = π(A), b = π(B).

The condition that φ1, φ2 are surjective up to compact operators
implies that τ1 , τ2 are surjective. The condition φ1 ∼k φ2 says that
τ1(T ) = 0 if and only if τ2(T ) = 0 if and only if aτ1(T )b = 0. Since τ1 is
onto, this in turn says that with x ∈ C(H), axb = 0 if and only if x = 0.

Now, τ2 is onto, and so azb = π(I), for some z ∈ C(H). Thus, there
exists Z ∈ B(H) such that AZB is a Fredholm operator, which shows
that A and B are semi-Fredholm. If A were not Fredholm, then (since
a = π(A) is right invertible), we must have nul(A) = ∞. Let P ∈ B(H)
be the orthogonal projection of H onto Ker(A). Then, p = π(P ) 6= 0,
but apb = π(APB) = π(0B) = 0, which is a contradiction. Thus, A
is Fredholm. Finally, since AZB is a Fredholm operator, we have that
B∗Z∗A∗ is also a Fredholm operator. The same argument implies that
B∗, and hence B is a Fredholm operator.

�

In the sequel, we explore the consequences when both φ1 and φ2 are
in certain equivalence classes.

Theorem 2.6. If φ1, φ2 : B(H) → B(H) are surjective linear maps such
that φ1 ∼si φ2 and φ1 ∼f φ2, then Ker(φ1) = Ker(φ2).

Proof. Let T ∈ Ker(φ1). Since φ1 ∼f φ2, φ2(T ) is finite-rank, then it
is not a semi-Fredholm operator. It follows that null(φ2(T )) = ∞ =
def(φ2(T )). Now, we can write Ker(φ2(T )) = M ⊕ N , where M
and N are infinite-dimensional closed subspaces of Ker(φ2(T )). De-
fine a bounded linear bijection T ′ : N → Im(φ2(T ))⊥. Extend T ′ on
H by T ′(x) = 0, for all x ∈ (Ker(φ2(T ))⊥ ⊕M and denote this ex-
tension by T ′ as well. Clearly, T ′ is a semi-Fredholm operator and
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s-index(T ′) = rank(φ2(T )). We have φ2(T ) + T ′ is surjective and
M ⊆ Ker(φ2(T ) + T ′). Thus, it is a semi-Fredholm operator with
s-index(φ2(T ) + T ′) = 0. Since φ2 is surjective, there exists S ∈ B(H)
such that φ2(S) = T ′. Therefore, rank(φ2(T )) = s-index(φ2(S)) =
s-index(φ1(S)) = s-index(φ1(S + T )) = s-index(φ2(S + T )) = 0. It
follows that Ker(φ1) ⊆ Ker(φ2). The reverse inclusion follows similarly
and we have the result. �

Corollary 2.7. If φ is a surjective linear map on B(H) that preserves
finite rank operators and semi-index property in both directions, then φ
is injective.

As a consequence, by Theorem 2.2 (iii), if φ is a surjective linear map
on B(H) that preserves generalized invertible operators and semi-index
property in both directions, then it is injective.

Remark 2.8. (i) In general, if surjective linear maps φ1, φ2 : B(H) →
B(H) have the same kernels, then it may happen that φ1 �f φ2, and
hence the converse of Theorem 2.6 does not hold. To see this, take
e ∈ H with ‖e‖ = 1. It is clear that I and e⊗e are linearly independent.
We can extend {I, e ⊗ e} to a basis for the vector space B(H). Now,
define φ : B(H) → B(H) such that φ(I) = e ⊗ e, φ(e ⊗ e) = I and
φ(T ) = T , for every T in the basis with T 6= I, T 6= e ⊗ e. Extend φ
to a bijection on B(H), by linearity. Hence, Ker(φ) = 0 = Ker(I), but
we do not have φ ∼f I, since φ(I) = e⊗ e. It also follows that φ �g I,
since otherwise by Theorem 2.2 (iii), we must have φ ∼f I.
(ii) The condition φ1 ∼si φ2 in Theorem 2.6 can not be omitted. Suppose
that S ∈ B(H) is surjective and dim(Ker(S)) = 1. Thus, I ∼f LS,
I �si LS, and clearly Ker(I) 6= Ker(LS). We do not know any example
of surjective linear operators φ1, φ2 on B(H) such that φ1 ∼si φ2, but
φ �f φ2. So, at this point we do not know whether the case φ1 ∼si φ2,
φ1 �f φ2 happens or not.

Now, we consider the case Ker(φ1) = {0} = Ker(φ2).

Proposition 2.9. Let P be a property on B(H). If φ1, φ2 : B(H) →
B(H) are bijective linear maps such that φ1 ∼P φ2, then φ1φ2

−1 pre-
serves property P in both directions.

Proof. LetMP = {T ∈ B(H) : T has property P}. Then, φ1
−1(MP )

= φ2
−1(MP ), and hence MP = φ1φ2

−1(MP ). It follows that φ1φ2
−1

preserves P in both directions. �
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The following theorem was proved by Mbekhta and Šemrl [3, Theorem
1.2].

Theorem 2.10. Let H be an infinite-dimensional separable Hilbert space
and φ : B(H) → B(H) be a linear map preserving semi-Fredholm oper-
ators in both directions. Suppose that φ is surjective up to compact
operators. Then,

φ(K(H)) ⊆ K(H),

and the induced map φ̃ : C(H) → C(H) is either an automorphism, or
an anti-automorphism multiplied by an invertible element a ∈ C(H).

Corollary 2.11. Suppose that φ1, φ2 are bijective linear maps on B(H)
such that φ1 ∼sf φ2. Take ψ = φ1φ2

−1. Then, ψ(K(H)) = K(H) and the
induced map ψ̃ on C(H) is an automorphism or an anti-automorphism
multiplied by an invertible element a ∈ C(H).

Note that, by Theorem 2.2 (ii), we have the same result for φ1 ∼g φ2.
Now, a question comes to mind: Is it possible to identify the equivalence
class of φ with respect to a property P?

Remark 2.12. (i) Let τ : B(H) → B(H) be the linear map which takes
T to its transpose with respect to a given basis for H. If φ ∈ L(B(H)),
then it is easy to see that τφ ∼g φ, and hence τφ ∼sf φ, τφ ∼k φ, and
τφ ∼f φ. Also, τφ ∼fr φ and τφ ∼si φ.
(ii) Let A and B be Fredholm operators and λ : B(H) → K(H) be a
linear map. If φ1, φ2 ∈ L(B(H)) are related as φ2 = LARBφ1 + λ or
φ2 = LARBτφ1 + λ, then it is easy to see that φ1 ∼sf φ2, φ1 ∼fr φ2.
(iii) Let A and B be Fredholm operators and λ : B(H) → F(H) be a
linear map. If φ1, φ2 ∈ L(B(H)) are such that φ2 = LARBφ1 + λ or
φ2 = LARBτφ1 + λ, then φ1 ∼g φ2.
(iv) Let A,B ∈ B(H) be invertible operators. If φ2 = LARBφ1 or
φ2 = LARBτφ1, then it is easy to see that φ1 ∼si φ2.

Question 2.13. Let φ1 ∼g φ2. Are there A, B ∈ FR(H) and a
linear map λ : B(H) → F(H) such that φ2 = LARBφ1 + λ or φ2 =
LARBτφ1 + λ?

Question 2.14. Let φ1 ∼sf φ2 or φ1 ∼fr φ2. Are there A, B ∈ FR(H)
and a linear map λ : B(H) → K(H) such that φ2 = LARBφ1 + λ or
φ2 = LARBτφ1 + λ?
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Question 2.15. Let φ1 ∼si φ2. Are there invertible operators A,B ∈
B(H) such that φ2 = LARBφ1 or φ2 = LARBτφ1?
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