ON GENERALIZED LEFT (α, β) -DERIVATIONS IN RINGS

M. ASHRAF, S. ALI*, N. REHMAN AND M. R. MOZUMDER

Communicated by Omid Ali S. Karamzadeh

ABSTRACT. Let R be a 2-torsion free ring and let U be a square closed Lie ideal of R. Suppose that α, β are automorphisms of R. An additive mapping $\delta: R \longrightarrow R$ is said to be a Jordan left (α, β) derivation of R if $\delta(x^2) = \alpha(x)\delta(x) + \beta(x)\delta(x)$ holds for all $x \in R$. In this paper it is established that if R admits an additive mapping $G: R \longrightarrow R$ satisfying $G(u^2) = \alpha(u)G(u) + \alpha(u)\delta(u)$ for all $u \in U$ and a Jordan left (α, α) -derivation δ ; and U has a commutator which is not a left zero divisor, then $G(uv) = \alpha(u)G(v) + \alpha(v)\delta(u)$ for all $u, v \in U$. Finally, in the case of prime ring R it is proved that if $G: R \longrightarrow R$ is an additive mapping satisfying $G(xy) = \alpha(x)G(y) + \beta(y)\delta(x)$ for all $x, y \in R$ and a left (α, β) derivation δ of R such that G also acts as a homomorphism or as an anti-homomorphism on a nonzero ideal I of R, then either R is commutative or $\delta = 0$ on R.

1. Introduction

Throughout the present paper, R will denote an associative ring with center Z(R). For any $x, y \in R$, the symbol [x, y] (respectively, $x \circ y$) will denote the commutator xy - yx (respectively, the anticommutator xy + yx). Recall that a ring R is prime if $aRb = \{0\}$

MSC(2010): Primary: 16W10; Secondary: 16W25, 16W60.

Keywords: Prime ring, Lie ideal, Jordan left (α, β) -derivation, generalized left (α, β) -derivation and generalized Jordan left (α, β) -derivation.

Received: 3 July 2010, Accepted: 13 November 2011.

 $[*] Corresponding \ author$

 $[\]bigodot$ 2012 Iranian Mathematical Society.

⁸⁹³

implies a = 0 or b = 0. An additive subgroup U of R is said to be a Lie ideal of R if $[U, R] \subseteq U$. A Lie ideal U of R is said to be a square closed Lie ideal if $u^2 \in U$ for all $u \in U$. If $u^2 \in U$ for all $u \in U$, then $uv + vu = (u+v)^2 - u^2 - v^2 \in U$ and $uv - vu \in U$. Hence $2uv \in U$ for all $u, v \in U$. This remark will be freely used throughout the paper. Let α, β be endomorphisms of R. An additive mapping $\delta: R \longrightarrow R$ is said to be a left (α, β) -derivation (respectively, Jordan left (α, β) -derivation) of R if $\delta(xy) = \alpha(x)\delta(y) + \beta(y)\delta(x)$ (respectively, $\delta(x^2) = \alpha(x)\delta(x) + \beta(x)\delta(x)$) holds for all $x, y \in R$. Of course, a left (I, I)-derivation (respectively, Jordan left (I, I)-derivation), where I is the identity map on R, is said to be a left derivation (respectively, Jordan left derivation) of R. The study of left derivation was initiated by Bresar and Vukman in [7] and it was shown that if a prime ring R of characteristic different from 2 and 3 admits a nonzero Jordan left derivation then R must be commutative. Following [8], an additive mapping $F: R \longrightarrow R$ is called a generalized derivation of R if there exists a derivation $d: R \longrightarrow R$ such that F(xy) = F(x)y + xd(y) holds for all $x, y \in R$. Inspired by the definition of generalized derivation, Ashraf and Shakir [3] introduced the concepts of generalized left derivation and generalized Jordan left derivation as follows: an additive mapping $G: R \longrightarrow R$ is called a generalized left derivation (respectively, generalized Jordan left derivation) if there exists a Jordan left derivation $\delta: R \longrightarrow R$ such that $G(xy) = xG(y) + y\delta(x)$ (respectively, $G(x^2) = xG(x) + x\delta(x)$) holds for all $x, y \in R$. Motivated by the above definition, we introduce the concept of generalized left (α, β) -derivation and generalized Jordan left (α, β) -derivation as follows: an additive mapping $G: R \longrightarrow R$ is said to be a generalized left (α, β) -derivation (respectively, generalized Jordan left (α, β) -derivation) if there exists a Jordan left (α, β) -derivation $\delta : R \longrightarrow R$ such that $G(xy) = \alpha(x)G(y) + \beta(y)\delta(x)$ (respectively, $G(x^2) = \alpha(x)G(x) + \beta(x)\delta(x)$ holds for all $x, y \in R$. The definition of generalized right (α, β) -derivation (respectively, generalized Jordan right (α, β) -derivation) is self-explanatory. In Section 2, it is shown that every generalized Jordan left (α, α) -derivation on R is a generalized left (α, α) -derivation if the underlying ring R is 2-torsion free and has a commutator which is not a left zero divisor in R. Moreover, in this section we also prove that if U is a square closed Lie ideal of a prime ring R of characteristic different from 2 and $\delta : R \longrightarrow R$ is a Jordan left (α, α) -derivation of R such that R admits an additive mapping $G: R \longrightarrow R$ satisfying $G(uv) = \alpha(u)G(v) + \alpha(v)\delta(u)$ for all $u, v \in U$,

then either $\delta(U) = \{0\}$ or $U \subseteq Z(R)$.

A derivation $d : R \longrightarrow R$ is said to act as a homomorphism (respectively, anti-homomorphism) on a non-empty subset S of R if d(xy) = d(x)d(y)(respectively, d(xy) = d(y)d(x)) holds for all $x, y \in S$. The last section of this paper deals with the study of generalized left (α, β) -derivation of a prime ring R which acts as a homomorphism or as an anti-homomorphism on a nonzero ideal I of R. The result of this section generalizes the results obtained in [1] and [2].

2. Generalized Jordan left (α, β) -derivation

In an attempt to generalize the result obtained by Bresar and Vukman [7], the first author established that a 2-torsion free prime ring R which admits a nonzero Jordan left (α, α) -derivation must be commutative. Further, as an application of this result, it was shown that if R is a 2-torsion free ring and has a commutator which is not a left zero divisor, then every Jordan left (α, α) -derivation is a left (α, α) -derivation (see [2, Theorem 3.3]). It is obvious to see that every generalized left (α, β) -derivation on a ring R is a generalized Jordan left (α, β) -derivation of R but the converse need not be true in general.

Example 2.1. Let S be a ring such that square of each element in S is zero, but the product of some nonzero elements in S is nonzero. Next, let $R = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} | x, y \in S \right\}$. Define maps $G, \delta : R \longrightarrow R$ and $\alpha, \beta : R \longrightarrow R$ as follows:

$$G\left(\begin{array}{cc} x & y \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} 0 & y \\ 0 & 0 \end{array}\right), \ \delta\left(\begin{array}{cc} x & y \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} x & 0 \\ 0 & 0 \end{array}\right),$$

and

$$\alpha \left(\begin{array}{cc} x & y \\ 0 & 0 \end{array} \right) \; = \; \left(\begin{array}{cc} x & -y \\ 0 & 0 \end{array} \right), \; \beta \left(\begin{array}{cc} x & y \\ 0 & 0 \end{array} \right) \; = \; \left(\begin{array}{cc} -x & -y \\ 0 & 0 \end{array} \right).$$

Then it is straightforward to check that G is a generalized Jordan left (α, β) - derivation but not a generalized left (α, β) - derivation(for a nonzero left (α, β) -derivation δ).

In the present section our aim is to establish the conditions under which the converse of the above statement is true.

Theorem 2.2. Let R be a 2-torsion free ring and let U be a square closed Lie ideal of R. Suppose that α is an automorphism of R and $\delta: R \longrightarrow R$ is a Jordan left (α, α) -derivation of R. Suppose further that U has a commutator which is not a left zero divisor. If $G: R \longrightarrow R$ is an additive mapping satisfying $G(u^2) = \alpha(u)G(u) + \alpha(u)\delta(u)$ for all $u \in U$, then $G(uv) = \alpha(u)G(v) + \alpha(v)\delta(u)$ for all $u, v \in U$.

We begin our discussion with the following known lemmas. Lemma 2.3 is essentially proved in [6] while the proof of Lemma 2.4 runs exactly on the same lines as that of Lemma 2.3 of [4]. We skip the details of the proof just to avoid repetition.

Lemma 2.3. Let R be a prime ring such that $char R \neq 2$, and let U be a Lie ideal of R such that $U \not\subseteq Z(R)$. If $a, b \in R$ such that $aUb = \{0\}$, then a = 0 or b = 0.

Lemma 2.4. Let R be a 2-torsion free ring and let U be a square closed Lie ideal of R. Suppose that α is an endomorphism of R and $\delta : R \longrightarrow R$ is an additive mapping satisfying $\delta(u^2) = 2\alpha(u)\delta(u)$ for all $u \in U$. Then for all $u, v \in U$

(i)
$$\alpha([u,v])\delta([u,v]) = 0$$
,

(*ii*) $\alpha(u^2v - 2uvu + vu^2)\delta(v) = 0.$

Lemma 2.5. Let R be a 2-torsion free ring and let U be a square closed Lie ideal of R. Suppose that α is an endomorphism of R and $\delta : R \longrightarrow R$ is a Jordan left (α, α) -derivation of R. If $G : R \longrightarrow R$ is an additive mapping satisfying $G(u^2) = \alpha(u)G(u) + \alpha(u)\delta(u)$ for all $u \in U$, then for all $u, v, w \in U$

(i) $G(uv + vu)$	=	$\alpha(u)G(v) + \alpha(v)G(u) + \alpha(u)\delta(v) + \alpha(v)\delta(u),$
(ii) G(uvu)	=	$\alpha(uv)G(u) + 2\alpha(uv)\delta(u) + \alpha(u^2)\delta(v)$
		$-lpha(vu)\delta(u),$
(iii) G(uvw + wvu)	=	$\alpha(uv)G(w) + \alpha(wv)G(u) + 2\alpha(uv)\delta(w)$
		$+2\alpha(wv)\delta(u) + \alpha(uw)\delta(v) + \alpha(wu)\delta(v)$
		$-lpha(vu)\delta(w)-lpha(vw)\delta(u).$

896

Proof. (i) We have

(2.1)
$$G(u^2) = \alpha(u)G(u) + \alpha(u)\delta(u) \text{ for all } u \in U.$$

Linearizing (2.1), we get the required result.

(ii) Since $uv + vu = (u + v)^2 - u^2 - v^2 \in U$, replacing v by uv + vu in (i), we get

$$G(u(uv + vu) + (uv + vu)u) = \alpha(u)G(uv + vu) + \alpha(uv + vu)G(u) + \alpha(u)\delta(uv + vu) + \alpha(uv + vu)\delta(u).$$

Since δ is a Jordan left (α, α) -derivation, $\delta(u^2) = 2\alpha(u)\delta(u)$ and hence linearizing this relation, we find that $\delta(uv+vu) = 2\alpha(u)\delta(v)+2\alpha(v)\delta(u)$ for all $u, v \in U$. Now using relation (i) in (2.2), we find that

$$G(u(uv + vu) + (uv + vu)u) = \alpha(u^2)G(v) + 2\alpha(uv)G(u) +\alpha(vu)G(u) + 4\alpha(uv)\delta(u) +3\alpha(u^2)\delta(v) + \alpha(vu)\delta(u).$$

On the other hand,

$$G(u(uv + vu) + (uv + vu)u) = 2G(uvu) + G(u^2v + vu^2)$$

$$= 2G(uvu) + \alpha(u^2)G(v) + \alpha(vu)G(u)$$

$$+\alpha(vu)\delta(u) + \alpha(u^2)\delta(v)$$

$$+2\alpha(vu)\delta(u).$$

Comparing (2.3) and (2.4), we get the required result.

(iii) Linearizing (ii), we find that

$$G((u+w)v(u+w)) = \alpha(uv)G(u) + \alpha(uv)G(w) + \alpha(wv)G(u) + \alpha(wv)G(w) + 2\alpha(uv)\delta(u) + 2\alpha(uv)\delta(w) + 2\alpha(wv)\delta(u) + 2\alpha(wv)\delta(w) + \alpha(u^{2})\delta(v) + \alpha(uw)\delta(v) + \alpha(wu)\delta(v) + \alpha(w^{2})\delta(v) - \alpha(vu)\delta(u) - \alpha(vu)\delta(w) (2.5) - \alpha(vw)\delta(u) - \alpha(vw)\delta(w).$$

On the other hand,

$$G((u+w)v(u+w)) = G(uvu) + G(wvw) + G(uvw + wvu)$$

$$= \alpha(uv)G(u) + 2\alpha(uv)\delta(u) + \alpha(u^2)\delta(v)$$

$$-\alpha(vu)\delta(u) + \alpha(wv)G(w) + 2\alpha(wv)\delta(w)$$

$$(2.6) + \alpha(w^2)\delta(v) - \alpha(vw)\delta(w) + G(uvw + wvu).$$

Combining (2.5) and (2.6), we get the required result.

We are now well equipped to prove our theorem:

Proof of Theorem 2.2. Replacing w by uv - vu in part (*iii*) of Lemma 2.5, we get

$$\begin{aligned} G(uv(uv - vu) + (uv - vu)vu) &= \alpha(uv)G(uv) - \alpha(uv)G(vu) \\ &+ \alpha([u, v])\alpha(v)G(u) \\ &+ \alpha([u, v])\delta([u, v]) + \alpha(uv)\delta([u, v]) \\ &+ 2\alpha([u, v])\alpha(v)\delta(u) \\ &+ \alpha(u)\alpha([u, v])\delta(v) \\ &+ \alpha([u, v])\alpha(u)\delta(v) \\ &- \alpha(v)\alpha([u, v])\delta(u). \end{aligned}$$

Using Lemma 2.4 (i) in the above relation we have

$$G(uv(uv - vu) + (uv - vu)vu) = \alpha(uv)G(uv) - \alpha(uv)G(vu) + \alpha([u, v])\alpha(v)G(u) + \alpha(uv)\delta([u, v]) + 2\alpha([u, v])\alpha(v)\delta(u) + \alpha(u)\alpha([u, v])\delta(v) + \alpha([u, v])\alpha(u)\delta(v) - \alpha(v)\alpha([u, v])\delta(u).$$

Adding and substracting $\alpha(v)\alpha([u,v])\delta(u)$ in the right hand side of the above relation, we get

$$G(uv(uv - vu) + (uv - vu)vu) = \alpha(uv)G(uv) - \alpha(uv)G(vu) +\alpha([u, v])\alpha(v)G(u) + \alpha(uv)\delta([u, v]) +2\alpha([u, v])\alpha(v)\delta(u) +\alpha(u)\alpha([u, v])\delta(v)) +\alpha([u, v])\alpha(u)\delta(v) -2\alpha(v)\alpha([u, v])\delta(u) +\alpha(v)\alpha([u, v])\delta(u).$$

898

Since

$$4G(uv(uv - vu) + (uv - vu)vu) = G((2uv)^2 - (2vu)^2)$$

=
$$4\{\alpha(uv)G(uv) + \alpha(uv)\delta(uv) - \alpha(vu)G(vu) - \alpha(vu)\delta(vu)\}$$

and R is 2-torsion free, the above relation yields that

$$G(uv(uv - vu) + (uv - vu)vu) = \alpha(uv)G(uv) + \alpha(uv)\delta(uv)$$

(2.8)
$$-\alpha(vu)G(vu) - \alpha(vu)\delta(vu).$$

Comparing (2.7) and (2.8), we find that

$$0 = \alpha([v,u])G(vu) + \alpha([u,v])\alpha(v)G(u) + \alpha([u,v])\alpha(u)\delta(v) + 2\alpha([u,v])\alpha(v)\delta(u) - 2\alpha(v)\alpha([u,v])\delta(u) + \alpha(u)\alpha([u,v])\delta(v) + \alpha(v)\alpha([u,v])\delta(u) + \alpha(vu)\delta(vu) - \alpha(uv)\delta(vu).$$

In view of [2, Theorem 3.3], every Jordan left (α, α) -derivation is a left (α, α) -derivation. Hence by using Lemma 2.4(*ii*) in (2.9), we have

$$0 = \alpha(u)\alpha([u,v])\delta(v) + \alpha(v)\alpha([u,v])\delta(u) + \alpha(vu)\delta(vu) -\alpha(uv)\delta(vu)$$

(2.10) = $\alpha(u^2v - 2uvu + vu^2)\delta(v) - \alpha(v^2u - 2vuv + uv^2)\delta(u).$

and

$$(2.11) \qquad 0 = 2\alpha([u,v])\alpha(v)\delta(u) - 2\alpha(v)\alpha([u,v])\delta(u)$$
$$= 2\alpha(v^2u - 2vuv + uv^2)\delta(u).$$

Now in view of (2.9), (2.10) and (2.11), we find that

 $\alpha([v,u])G(vu) + \alpha([u,v])\alpha(v)G(u) + \alpha([u,v])\alpha(u)\delta(v) = 0 \ \text{ for all } u,v \in U.$

This implies that $\alpha([u, v])(G(uv) - \alpha(u)G(v) - \alpha(v)\delta(u)) = 0$ for all $u, v \in U$. Now define a map $H : U \times U \longrightarrow R$ such that $H(u, v) = G(uv) - \alpha(u)G(v) - \alpha(v)\delta(u)$. Since G and δ both are additive, we find that H is additive in both arguments. Hence the latter relation can be written as $\alpha([u, v])H(u, v) = 0$ for all $u, v \in U$. Since α is an automorphism, we find that

(2.12)
$$[u, v]\alpha^{-1}(H(u, v)) = 0 \text{ for all } u, v \in U.$$

Now let a, b be fixed elements of U such that [a, b]c = 0 implies that c = 0. Then (2.11) yields that $\alpha^{-1}(H(a, b)) = 0$, and hence

(2.13)
$$H(a,b) = 0.$$

Replacing u by u + a in (2.12) and using (2.12), we get

(2.14)
$$[u,v]\alpha^{-1}(H(a,v)) + [a,v]\alpha^{-1}(H(u,v)) = 0.$$

Again replace v by b in (2.14), to get $[a, b]\alpha^{-1}(H(u, b)) = 0$. Since [a, b] is not a left zero divisor, we have

(2.15)
$$\alpha^{-1}(H(u,b)) = 0 \text{ for all } u \in U.$$

Replacing v by v+b in (2.14) and using (2.13) , (2.14) and (2.15) , we get

(2.16)
$$[a,b]\alpha^{-1}(H(u,v)) + [u,b]\alpha^{-1}(H(a,v)) = 0.$$

Substituting a for u in (2.16) and using the fact that R is 2-torsion free, we get $[a, b]\alpha^{-1}(H(a, v)) = 0$ and hence

(2.17)
$$\alpha^{-1}(H(a,v)) = 0.$$

Comparing (2.16) and (2.17), we have $[a,b]\alpha^{-1}(H(u,v)) = 0$ for all $u, v \in U$ and hence H(u,v) = 0 for all $u, v \in U$. This completes the proof of our theorem.

Corollary 2.6. Let R be a 2-torsion free ring. Suppose that α is an automorphism of R and R has a commutator which is not a left zero divisor. If $\delta : R \longrightarrow R$ is a Jordan left (α, α) -derivation of R, then δ is a left (α, α) -derivation of R.

Theorem 2.7. Let R be a prime ring such that $char(R) \neq 2$ and U be a square closed Lie ideal of R. Let α be an automorphism of R and $\delta : R \longrightarrow R$ be a Jordan left (α, α) -derivation of R. If $G : R \longrightarrow R$ is an additive mapping satisfying $G(uv) = \alpha(u)G(v) + \alpha(v)\delta(u)$ for all $u, v \in U$, then either $\delta(U) = \{0\}$ or $U \subseteq Z(R)$.

Proof. Let us suppose that $U \not\subseteq Z(R)$. We have

$$G(uv) = \alpha(u)G(v) + \alpha(v)\delta(u)$$
 for all $u \in U$.

Replacing u by u^2 in the above relation, we have

(2.18) $G(u^2v) = \alpha(u^2)G(v) + 2\alpha(vu)\delta(u) \text{ for all } u \in U.$

$$\begin{aligned} G(u^2v) &= G(u(2uv)) \\ &= 2\{\alpha(u^2)G(v) + 2\alpha(uv)\delta(u)\}. \end{aligned}$$

Since $char(R) \neq 2$, we get

 $\mathbf{2}$

(2.19)
$$G(u^2v) = \alpha(u^2)G(v) + 2\alpha(uv)\delta(u).$$

Comparing (2.18) and (2.19), we get $2\alpha([u, v])\delta(u) = 0$ for all $u, v \in U$. Since $char(R) \neq 2$ and α is an automorphism, we get

$$[u, v]\alpha^{-1}(\delta(u)) = 0.$$

Replacing v by 2vw in the above expression for any $w \in U$, we find that $[u, v]w\alpha^{-1}(\delta(u)) = 0$ for all $u, v, w \in U$. This implies that $[u, v]U\alpha^{-1}(\delta(u)) = \{0\}$. By Lemma 2.3, for each fixed $u \in U$ either [u, v] = 0 or $\alpha^{-1}(\delta(u)) = 0$ for all $v \in U$. Now we put $A = \{u \in U \mid [u, v] = 0$ for any $v \in U\}$ and $B = \{u \in U \mid \alpha^{-1}(\delta(u)) = 0\}$. Clearly A and B are additive subgroups of U whose union is U and hence by Brauer's trick either U = A or U = B. If U = A, then [u, v] = 0 for all $u, v \in U$ and hence U is commutative. If U is commutative then using similar arguments as used in the last paragraph of the proof of Lemma 1.3 of Herstein [9]; it can be easily seen that U is central, i.e., $U \subseteq Z(R)$, a contradiction. On the other hand, we have $\alpha^{-1}(\delta(u)) = 0$ for all $u \in U$. Since α is an automorphism, the last relation forces that $\delta(u) = 0$ for all $u \in U$, i.e., $\delta(U) = \{0\}$.

Remark 2.8. The results of this section are still open for generalized Jordan left (α, β) -derivations in rings.

3. Generalized left (α, β) -derivation

Let S be a nonempty subset of a ring R and $d: R \longrightarrow R$ a derivation of R. If d(xy) = d(x)d(y) (respectively, d(xy) = d(y)d(x)) holds for all $x, y \in S$, then d is said to act as a homomorphism (respectively, anti-homomorphism) on S. In the year 1989, Bell and Kappe [5] proved that if K is a nonzero right ideal of a prime ring R and $d: R \longrightarrow R$ is a derivation of R such that d acts as a homomorphism or as an anti-homomorphism on K, then d = 0 on R. In [2], Ashraf proved that if $\delta: R \longrightarrow R$ is a left (α, β) -derivation of a prime ring R which acts as a homomorphism or as an anti-homomorphism on a nonzero ideal I of R, then $\delta = 0$ on R. This result was further extended for generalized left derivations in [1]. Now in this section we study generalized left (α, β) -derivations of a prime ring R with associated left (α, β) -derivation δ , which acts as a homomorphism or as an anti-homomorphism on a nonzero ideal of R. The main result of this section generalizes the results obtained in [1] and [2]. **Theorem 3.1.** Let R be a prime ring and let I be a nonzero ideal of R. Suppose that α, β are automorphisms of R and $G : R \longrightarrow R$ is a generalized left (α, β) -derivation of R with associated left (α, β) derivation δ .

- (i) If G acts as a homomorphism on I, then either R is commutative or $\delta = 0$ on R.
- (ii) If G acts as an anti-homomorphism on I, then either R is commutative or $\delta = 0$ on R.

Proof. (i) We have

$$G(uv) = G(u)G(v)$$

(3.1)
$$= \alpha(u)G(v) + \beta(v)\delta(u) \text{ for all } u, v \in I$$

Using (3.1) we have

$$\begin{array}{lll} G(uvw) &=& G(u(vw)) \\ (3.2) &=& \alpha(u)G(vw) + \beta(vw)\delta(u) \mbox{ for all } u,v,w \in I. \end{array}$$

On the other hand, we find that

$$G(uvw) = G((uv)w))$$

(3.3)
$$= G(uv)G(w) = \alpha(u)G(v)G(w) + \beta(v)\delta(u)G(w).$$

Combining (3.2) and (3.3) and using (3.1), we get

(3.4)
$$\beta(vw)\delta(u) = \beta(v)\delta(u)G(w) \text{ for all } u, v, w \in I.$$

This implies that $\beta(v)\{\beta(w)\delta(u)-\delta(u)G(w)\}=0$ for all $u, v, w \in I$. This can be written as $v\beta^{-1}\{\beta(w)\delta(u) - \delta(u)G(w)\} = 0$ for all $u, v, w \in I$. Now replacing v by vr for any $r \in R$, we find that

$$vR\beta^{-1}(\beta(w)\delta(u) - \delta(u)G(w)) = \{0\} \text{ for all } u, v, w \in I.$$

Since I is nonzero and R is prime, the last expression gives that

(3.5)
$$\beta(w)\delta(u) = \delta(u)G(w)$$
 for all $u, w \in I$

Replacing u by uv for any $v \in I$ in (3.5), we have

$$\beta(w)\alpha(u)\delta(v) + \beta(w)\beta(v)\delta(u) = \alpha(u)\delta(v)G(w) + \beta(v)\delta(u)G(w).$$

(3.6)

Using (3.5) in (3.6), we find that

(3.7)
$$[\beta(w), \beta(v)]\delta(u) + [\beta(w), \alpha(u)]\delta(v) = 0$$

Hence in particular, we find that

(3.8) $[\beta(v), \alpha(u)]\delta(v) = 0$ for all $u, v \in I$. Replacing u by ru in (3.8) for any $r \in R$ and using (3.8) in the relation so obtained, we get

$$[\beta(v), \alpha(r)]\alpha(u)\delta(v) = 0 \text{ for all } u, v \in I.$$

The above relation implies that $\alpha^{-1}([\beta(v), \alpha(r)])u\alpha^{-1}(\delta(v)) = 0$ for all $u, v \in I$ and $r \in R$. This can be rewritten as $\alpha^{-1}([\beta(v), \alpha(r)])IR\alpha^{-1}(\delta(v)) = \{0\}$ for all $v \in I$ and $r \in R$. Since R is prime, we find that for each fixed $v \in I$ either $\alpha^{-1}([\beta(v),\alpha(r)])I = \{0\}$ or $\alpha^{-1}(\delta(v)) = 0$ for all $r \in R$. Now if we put $A = \{v \in I \mid \alpha^{-1}([\beta(v), \alpha(r)])I = \{0\}$ for all $r \in R\}$ and $B = \{v \in I \mid \alpha^{-1}(\delta(v)) = 0\}$. Then clearly A and B are additive subgroups of I whose union is I. Hence either A = I or B = I. If A = I, we find that $\alpha^{-1}([\beta(v), r'])I = \{0\}$ for every $v \in I$ and $r' \in R$. This shows that $\alpha^{-1}([\beta(v), r'])RI = \{0\}$. This implies that $[\beta(v), r'] = 0$, as α is an automorphism of R and $I \neq \{0\}$. Since β is an automorphism, this implies that I is central and hence R is commutative. If B = I, then $\alpha^{-1}(\delta(v)) = 0$ for all $v \in I$. Since α is an automorphism, we find that $\delta(v) = 0$ for all $v \in I$. Thus for any $r \in R$, $\delta(rv) = 0$, i.e., $\beta(v)\delta(r) = 0$ or $I\beta^{-1}(\delta(r)) = \{0\}$. Since I is nonzero, the last relation yields that $\delta(r) = 0$, i.e., $\delta = 0$ on R.

(*ii*) We have

(3.9)
$$G(uv) = G(v)G(u)$$
$$= \alpha(u)G(v) + \beta(v)\delta(u) \text{ for all } u, v \in I.$$

Replacing v by uv in (3.9), we have

(3.10)
$$G(u^2v) = G(uv)G(u)$$
$$= \alpha(u)G(uv) + \beta(uv)\delta(u) \text{ for all } u, v \in I.$$

Using (3.9) in (3.10), we find that

(3.11)
$$\begin{aligned} \alpha(u)G(v)G(u) + \beta(v)\delta(u)G(u) \\ = \alpha(u)G(uv) + \beta(uv)\delta(u). \end{aligned}$$

Again using (3.9) in (3.11), we get

(3.12)
$$\beta(uv)\delta(u) = \beta(v)\delta(u)G(u) \text{ for all } u, v \in I.$$

Replacing v by rv for any $r \in R$ in (3.12), we obtain that

(3.13)
$$\beta(u)\beta(r)\beta(v)\delta(u) = \beta(r)\beta(v)\delta(u)G(u)$$
 for all $u, v \in I$.

Multiplying (3.12) by $\beta(r)$ from the left, we have

(3.14)
$$\beta(r)\beta(u)\beta(v)\delta(u) = \beta(r)\beta(v)\delta(u)G(u).$$

Comparing (3.13) and (3.14), we obtain

 $[\beta(u), \beta(r)]\beta(v)\delta(u) = 0$ for all $u, v \in I, r \in R$.

The last expression can be rewritten as $[u, r]I\beta^{-1}(\delta(u)) = \{0\}$, *i.e.*, $[u, r]IR\beta^{-1}(\delta(u)) = \{0\}$ for all $u \in I$ and $r \in R$. This implies that for each fixed $u \in I$ either $[u, r]I = \{0\}$ or $\delta(u) = 0$. Now using similar techniques as above, we get the required result. \Box

Acknowledgments

The authors are greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper. This research is partially supported by research grants from DST (Grant No. SR/S4/MS:556/08), UGC (Grant No. 36 - 8/2008(SR)) and UGC (Grant No. 39 - 37/2010(SR)).

References

- S. Ali, On generalized left derivations in rings and Banach Algebras, Aequationes Math. 81 (2011), no. 3, 209–226.
- [2] M. Ashraf, On left (θ, φ)-derivations of prime rings, Arch. Math. (Brno) 41 (2005), no. 2, 157–166.
- [3] M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2008), no. 2, 253–261.
- [4] M. Ashraf and N. Rehman, On Lie ideals and Jordan left derivations of prime rings, Arch. Math. (Brno) 36 (2000), no. 3, 201–206.
- [5] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339–346.
- [6] J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), no. 1, 259–267.
- [7] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7–16.
- [8] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, *Glasgow Math. J.* **33** (1991), no. 1, 89–93.
- [9] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.

Mohammad Ashraf

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India Email: mashraf80@hotmail.com

904

Shakir Ali

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India Email: shakir.ali.mm@amu.ac.in

Nadeem-ur Rehman

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India Email: rehman100@gmail.com

Muzibur Rahman Mozumder

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India Email: mrm7862000@yahoo.co.in