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ON GENERALIZED LEFT (α, β)-DERIVATIONS IN

RINGS
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Communicated by Omid Ali S. Karamzadeh

Abstract. Let R be a 2-torsion free ring and let U be a square
closed Lie ideal of R. Suppose that α, β are automorphisms of R.
An additive mapping δ : R −→ R is said to be a Jordan left (α, β)-
derivation of R if δ(x2) = α(x)δ(x) + β(x)δ(x) holds for all x ∈ R.
In this paper it is established that if R admits an additive mapping
G : R −→ R satisfying G(u2) = α(u)G(u) + α(u)δ(u) for all u ∈ U
and a Jordan left (α, α)-derivation δ; and U has a commutator
which is not a left zero divisor, then G(uv) = α(u)G(v) + α(v)δ(u)
for all u, v ∈ U . Finally, in the case of prime ring R it is
proved that if G : R −→ R is an additive mapping satisfying
G(xy) = α(x)G(y) + β(y)δ(x) for all x, y ∈ R and a left (α, β)-
derivation δ of R such that G also acts as a homomorphism or as an
anti-homomorphism on a nonzero ideal I of R, then either R is com-
mutative or δ = 0 on R.

1. Introduction

Throughout the present paper, R will denote an associative ring
with center Z(R). For any x, y ∈ R, the symbol [x, y](respectively,
x ◦ y) will denote the commutator xy − yx (respectively, the anti-
commutator xy + yx). Recall that a ring R is prime if aRb = {0}
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implies a = 0 or b = 0. An additive subgroup U of R is said to be a
Lie ideal of R if [U,R] ⊆ U . A Lie ideal U of R is said to be a square
closed Lie ideal if u2 ∈ U for all u ∈ U . If u2 ∈ U for all u ∈ U , then
uv+vu = (u+v)2−u2−v2 ∈ U and uv−vu ∈ U . Hence 2uv ∈ U for all
u, v ∈ U . This remark will be freely used throughout the paper. Let α, β
be endomorphisms of R. An additive mapping δ : R −→ R is said to be
a left (α, β)-derivation (respectively, Jordan left (α, β)-derivation) of R if
δ(xy) = α(x)δ(y)+β(y)δ(x) (respectively, δ(x2) = α(x)δ(x)+β(x)δ(x))
holds for all x, y ∈ R. Of course, a left (I, I)-derivation (respectively,
Jordan left (I, I)-derivation), where I is the identity map on R, is
said to be a left derivation (respectively, Jordan left derivation) of R.
The study of left derivation was initiated by Bresar and Vukman in
[7] and it was shown that if a prime ring R of characteristic different
from 2 and 3 admits a nonzero Jordan left derivation then R must be
commutative. Following [8], an additive mapping F : R −→ R is called
a generalized derivation of R if there exists a derivation d : R −→ R
such that F (xy) = F (x)y + xd(y) holds for all x, y ∈ R. Inspired
by the definition of generalized derivation, Ashraf and Shakir [3]
introduced the concepts of generalized left derivation and generalized
Jordan left derivation as follows: an additive mapping G : R −→ R is
called a generalized left derivation (respectively, generalized Jordan left
derivation) if there exists a Jordan left derivation δ : R −→ R such that
G(xy) = xG(y) + yδ(x) (respectively, G(x2) = xG(x) + xδ(x)) holds
for all x, y ∈ R. Motivated by the above definition, we introduce the
concept of generalized left (α, β)-derivation and generalized Jordan left
(α, β)-derivation as follows: an additive mapping G : R −→ R is said to
be a generalized left (α, β)-derivation (respectively, generalized Jordan
left (α, β)-derivation) if there exists a Jordan left (α, β)-derivation
δ : R −→ R such that G(xy) = α(x)G(y) + β(y)δ(x) (respectively,
G(x2) = α(x)G(x) + β(x)δ(x)) holds for all x, y ∈ R. The definition
of generalized right (α, β)-derivation (respectively, generalized Jordan
right (α, β)-derivation) is self-explanatory. In Section 2, it is shown that
every generalized Jordan left (α, α)-derivation on R is a generalized
left (α, α)-derivation if the underlying ring R is 2-torsion free and has
a commutator which is not a left zero divisor in R. Moreover, in this
section we also prove that if U is a square closed Lie ideal of a prime
ring R of characteristic different from 2 and δ : R −→ R is a Jordan
left (α, α)-derivation of R such that R admits an additive mapping
G : R −→ R satisfying G(uv) = α(u)G(v) + α(v)δ(u) for all u, v ∈ U ,
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then either δ(U) = {0} or U ⊆ Z(R).

A derivation d : R −→ R is said to act as a homomorphism
(respectively, anti-homomorphism) on a non-empty subset S of R if
d(xy) = d(x)d(y)(respectively, d(xy) = d(y)d(x)) holds for all x, y ∈ S.
The last section of this paper deals with the study of generalized left
(α, β)-derivation of a prime ring R which acts as a homomorphism or
as an anti-homomorphism on a nonzero ideal I of R. The result of this
section generalizes the results obtained in [1] and [2].

2. Generalized Jordan left (α, β)-derivation

In an attempt to generalize the result obtained by Bresar and
Vukman [7], the first author established that a 2-torsion free prime
ring R which admits a nonzero Jordan left (α, α)-derivation must be
commutative. Further, as an application of this result, it was shown
that if R is a 2-torsion free ring and has a commutator which is not
a left zero divisor, then every Jordan left (α, α)-derivation is a left
(α, α)-derivation (see [2, Theorem 3.3]). It is obvious to see that every
generalized left (α, β)-derivation on a ring R is a generalized Jordan
left (α, β)-derivation of R but the converse need not be true in general.

Example 2.1. Let S be a ring such that square of each element in
S is zero, but the product of some nonzero elements in S is nonzero.

Next, let R =

{(
x y
0 0

)
|x, y ∈ S

}
. Define maps G, δ : R −→ R and

α, β : R −→ R as follows:

G

(
x y
0 0

)
=

(
0 y
0 0

)
, δ

(
x y
0 0

)
=

(
x 0
0 0

)
,

and

α

(
x y
0 0

)
=

(
x −y
0 0

)
, β

(
x y
0 0

)
=

(
−x −y
0 0

)
.

Then it is straightforward to check that G is a generalized Jordan left
(α, β)- derivation but not a generalized left (α, β)- derivation(for a
nonzero left (α, β)-derivation δ).
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In the present section our aim is to establish the conditions under
which the converse of the above statement is true.

Theorem 2.2. Let R be a 2-torsion free ring and let U be a square
closed Lie ideal of R. Suppose that α is an automorphism of R and
δ : R −→ R is a Jordan left (α, α)-derivation of R. Suppose further that
U has a commutator which is not a left zero divisor. If G : R −→ R
is an additive mapping satisfying G(u2) = α(u)G(u) + α(u)δ(u) for all
u ∈ U , then G(uv) = α(u)G(v) + α(v)δ(u) for all u, v ∈ U .

We begin our discussion with the following known lemmas. Lemma
2.3 is essentially proved in [6] while the proof of Lemma 2.4 runs exactly
on the same lines as that of Lemma 2.3 of [4]. We skip the details of
the proof just to avoid repetition.

Lemma 2.3. Let R be a prime ring such that charR 6= 2, and let U be
a Lie ideal of R such that U 6⊆ Z(R). If a, b ∈ R such that aUb = {0},
then a = 0 or b = 0.

Lemma 2.4. Let R be a 2-torsion free ring and let U be a square closed
Lie ideal of R. Suppose that α is an endomorphism of R and δ : R −→ R
is an additive mapping satisfying δ(u2) = 2α(u)δ(u) for all u ∈ U . Then
for all u, v ∈ U

(i) α([u, v])δ([u, v]) = 0,
(ii) α(u2v − 2uvu+ vu2)δ(v) = 0.

Lemma 2.5. Let R be a 2-torsion free ring and let U be a square closed
Lie ideal of R. Suppose that α is an endomorphism of R and δ : R −→ R
is a Jordan left (α, α)-derivation of R. If G : R −→ R is an additive
mapping satisfying G(u2) = α(u)G(u)+α(u)δ(u) for all u ∈ U , then for
all u, v, w ∈ U

(i) G(uv + vu) = α(u)G(v) + α(v)G(u) + α(u)δ(v) + α(v)δ(u),
(ii) G(uvu) = α(uv)G(u) + 2α(uv)δ(u) + α(u2)δ(v)

−α(vu)δ(u),
(iii) G(uvw + wvu) = α(uv)G(w) + α(wv)G(u) + 2α(uv)δ(w)

+2α(wv)δ(u) + α(uw)δ(v) + α(wu)δ(v)
−α(vu)δ(w)− α(vw)δ(u).
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Proof. (i) We have

G(u2) = α(u)G(u) + α(u)δ(u) for all u ∈ U.(2.1)

Linearizing (2.1), we get the required result.

(ii) Since uv + vu = (u+ v)2 − u2 − v2 ∈ U , replacing v by uv + vu in
(i), we get

G(u(uv + vu) + (uv + vu)u) = α(u)G(uv + vu) + α(uv + vu)G(u)

+α(u)δ(uv + vu) + α(uv + vu)δ(u).(2.2)

Since δ is a Jordan left (α, α)-derivation, δ(u2) = 2α(u)δ(u) and hence
linearizing this relation, we find that δ(uv+vu) = 2α(u)δ(v)+2α(v)δ(u)
for all u, v ∈ U . Now using relation (i) in (2.2) , we find that

G(u(uv + vu) + (uv + vu)u) = α(u2)G(v) + 2α(uv)G(u)

+α(vu)G(u) + 4α(uv)δ(u)

+3α(u2)δ(v) + α(vu)δ(u).(2.3)

On the other hand,

G(u(uv + vu) + (uv + vu)u) = 2G(uvu) +G(u2v + vu2)

= 2G(uvu) + α(u2)G(v) + α(vu)G(u)

+α(vu)δ(u) + α(u2)δ(v)

+2α(vu)δ(u).(2.4)

Comparing (2.3) and (2.4), we get the required result.

(iii) Linearizing (ii), we find that

G((u+ w)v(u+ w)) = α(uv)G(u) + α(uv)G(w) + α(wv)G(u)

+α(wv)G(w) + 2α(uv)δ(u) + 2α(uv)δ(w)

+2α(wv)δ(u) + 2α(wv)δ(w) + α(u2)δ(v)

+α(uw)δ(v) + α(wu)δ(v) + α(w2)δ(v)

−α(vu)δ(u)− α(vu)δ(w)

−α(vw)δ(u)− α(vw)δ(w).(2.5)
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On the other hand,

G((u+ w)v(u+ w)) = G(uvu) +G(wvw) +G(uvw + wvu)

= α(uv)G(u) + 2α(uv)δ(u) + α(u2)δ(v)

−α(vu)δ(u) + α(wv)G(w) + 2α(wv)δ(w)

+α(w2)δ(v)− α(vw)δ(w) +G(uvw + wvu).(2.6)

Combining (2.5) and (2.6), we get the required result. �

We are now well equipped to prove our theorem:

Proof of Theorem 2.2. Replacing w by uv − vu in part (iii) of
Lemma 2.5 , we get

G(uv(uv − vu) + (uv − vu)vu) = α(uv)G(uv)− α(uv)G(vu)
+α([u, v])α(v)G(u)
+α([u, v])δ([u, v]) + α(uv)δ([u, v])
+2α([u, v])α(v)δ(u)
+α(u)α([u, v])δ(v)
+α([u, v])α(u)δ(v)
−α(v)α([u, v])δ(u).

Using Lemma 2.4 (i) in the above relation we have

G(uv(uv − vu) + (uv − vu)vu) = α(uv)G(uv)− α(uv)G(vu)
+α([u, v])α(v)G(u)
+α(uv)δ([u, v])
+2α([u, v])α(v)δ(u)
+α(u)α([u, v])δ(v)
+α([u, v])α(u)δ(v)
−α(v)α([u, v])δ(u).

Adding and substracting α(v)α([u, v])δ(u) in the right hand side of the
above relation, we get

G(uv(uv − vu) + (uv − vu)vu) = α(uv)G(uv)− α(uv)G(vu)

+α([u, v])α(v)G(u) + α(uv)δ([u, v])

+2α([u, v])α(v)δ(u)

+α(u)α([u, v])δ(v))

+α([u, v])α(u)δ(v)

−2α(v)α([u, v])δ(u)

+α(v)α([u, v])δ(u).(2.7)
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Since

4G(uv(uv − vu) + (uv − vu)vu) = G((2uv)2 − (2vu)2)
= 4{α(uv)G(uv) + α(uv)δ(uv)
−α(vu)G(vu)− α(vu)δ(vu)}

and R is 2-torsion free, the above relation yields that

G(uv(uv − vu) + (uv − vu)vu) = α(uv)G(uv) + α(uv)δ(uv)

−α(vu)G(vu)− α(vu)δ(vu).(2.8)

Comparing (2.7) and (2.8) , we find that

0 = α([v, u])G(vu) + α([u, v])α(v)G(u) + α([u, v])α(u)δ(v)

+2α([u, v])α(v)δ(u)− 2α(v)α([u, v])δ(u) + α(u)α([u, v])δ(v)

+α(v)α([u, v])δ(u) + α(vu)δ(vu)− α(uv)δ(vu).(2.9)

In view of [2, Theorem 3.3], every Jordan left (α, α)-derivation is a left
(α, α)-derivation. Hence by using Lemma 2.4(ii) in (2.9), we have

0 = α(u)α([u, v])δ(v) + α(v)α([u, v])δ(u) + α(vu)δ(vu)

−α(uv)δ(vu)

= α(u2v − 2uvu+ vu2)δ(v)− α(v2u− 2vuv + uv2)δ(u).(2.10)

and

0 = 2α([u, v])α(v)δ(u)− 2α(v)α([u, v])δ(u)

= 2α(v2u− 2vuv + uv2)δ(u).(2.11)

Now in view of (2.9) , (2.10) and (2.11) , we find that

α([v, u])G(vu)+α([u, v])α(v)G(u)+α([u, v])α(u)δ(v) = 0 for all u, v ∈ U.

This implies that α([u, v])(G(uv) − α(u)G(v) − α(v)δ(u)) = 0 for all
u, v ∈ U . Now define a map H : U × U −→ R such that H(u, v) =
G(uv) − α(u)G(v) − α(v)δ(u). Since G and δ both are additive, we
find that H is additive in both arguments. Hence the latter relation
can be written as α([u, v])H(u, v) = 0 for all u, v ∈ U . Since α is an
automorphism, we find that

[u, v]α−1(H(u, v)) = 0 for all u, v ∈ U.(2.12)

Now let a, b be fixed elements of U such that [a, b]c = 0 implies that
c = 0. Then (2.11) yields that α−1(H(a, b)) = 0, and hence

H(a, b) = 0.(2.13)
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Replacing u by u+ a in (2.12) and using (2.12) , we get

[u, v]α−1(H(a, v)) + [a, v]α−1(H(u, v)) = 0.(2.14)

Again replace v by b in (2.14) , to get [a, b]α−1(H(u, b)) = 0. Since [a, b]
is not a left zero divisor, we have

α−1(H(u, b)) = 0 for all u ∈ U.(2.15)

Replacing v by v + b in (2.14) and using (2.13) , (2.14) and (2.15) , we
get

[a, b]α−1(H(u, v)) + [u, b]α−1(H(a, v)) = 0.(2.16)

Substituting a for u in (2.16) and using the fact that R is 2-torsion free,
we get [a, b]α−1(H(a, v)) = 0 and hence

α−1(H(a, v)) = 0.(2.17)

Comparing (2.16) and (2.17), we have [a, b]α−1(H(u, v)) = 0 for all
u, v ∈ U and hence H(u, v) = 0 for all u, v ∈ U . This completes the
proof of our theorem. �

Corollary 2.6. Let R be a 2-torsion free ring. Suppose that α is an
automorphism of R and R has a commutator which is not a left zero
divisor. If δ : R −→ R is a Jordan left (α, α)-derivation of R, then δ is
a left (α, α)-derivation of R.

Theorem 2.7. Let R be a prime ring such that char(R) 6= 2 and U
be a square closed Lie ideal of R. Let α be an automorphism of R and
δ : R −→ R be a Jordan left (α, α)-derivation of R. If G : R −→ R
is an additive mapping satisfying G(uv) = α(u)G(v) + α(v)δ(u) for all
u, v ∈ U , then either δ(U) = {0} or U ⊆ Z(R).

Proof. Let us suppose that U 6⊆ Z(R). We have

G(uv) = α(u)G(v) + α(v)δ(u) for all u ∈ U.
Replacing u by u2 in the above relation, we have

G(u2v) = α(u2)G(v) + 2α(vu)δ(u) for all u ∈ U.(2.18)

On the other hand,

2G(u2v) = G(u(2uv))
= 2{α(u2)G(v) + 2α(uv)δ(u)}.

Since char(R) 6= 2, we get

G(u2v) = α(u2)G(v) + 2α(uv)δ(u).(2.19)
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Comparing (2.18) and (2.19), we get 2α([u, v])δ(u) = 0 for all u, v ∈ U .
Since char(R) 6= 2 and α is an automorphism, we get

[u, v]α−1(δ(u)) = 0.

Replacing v by 2vw in the above expression for any w ∈ U , we find
that [u, v]wα−1(δ(u)) = 0 for all u, v, w ∈ U . This implies that
[u, v]Uα−1(δ(u)) = {0}. By Lemma 2.3, for each fixed u ∈ U either
[u, v] = 0 or α−1(δ(u)) = 0 for all v ∈ U . Now we put A = {u ∈ U |
[u, v] = 0 for any v ∈ U} and B = {u ∈ U | α−1(δ(u)) = 0}. Clearly
A and B are additive subgroups of U whose union is U and hence by
Brauer’s trick either U = A or U = B. If U = A, then [u, v] = 0 for
all u, v ∈ U and hence U is commutative. If U is commutative then
using similar arguments as used in the last paragraph of the proof of
Lemma 1.3 of Herstein [9]; it can be easily seen that U is central, i.e.,
U ⊆ Z(R), a contradiction. On the other hand, we have α−1(δ(u)) = 0
for all u ∈ U . Since α is an automorphism, the last relation forces that
δ(u) = 0 for all u ∈ U, i.e., δ(U) = {0}. �

Remark 2.8. The results of this section are still open for generalized
Jordan left (α, β)-derivations in rings.

3. Generalized left (α, β)-derivation

Let S be a nonempty subset of a ring R and d : R −→ R a derivation
of R. If d(xy) = d(x)d(y)(respectively, d(xy) = d(y)d(x)) holds for
all x, y ∈ S, then d is said to act as a homomorphism (respectively,
anti-homomorphism) on S. In the year 1989, Bell and Kappe [5] proved
that if K is a nonzero right ideal of a prime ring R and d : R −→ R
is a derivation of R such that d acts as a homomorphism or as an
anti-homomorphism on K, then d = 0 on R. In [2], Ashraf proved that
if δ : R −→ R is a left (α, β)-derivation of a prime ring R which acts as
a homomorphism or as an anti-homomorphism on a nonzero ideal I of
R, then δ = 0 on R. This result was further extended for generalized
left derivations in [1]. Now in this section we study generalized left
(α, β)-derivations of a prime ring R with associated left (α, β)-derivation
δ, which acts as a homomorphism or as an anti-homomorphism on a
nonzero ideal of R. The main result of this section generalizes the
results obtained in [1] and [2].
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Theorem 3.1. Let R be a prime ring and let I be a nonzero ideal
of R. Suppose that α, β are automorphisms of R and G : R −→ R
is a generalized left (α, β)-derivation of R with associated left (α, β)-
derivation δ.

(i) If G acts as a homomorphism on I, then either R is commutative
or δ = 0 on R.

(ii) If G acts as an anti-homomorphism on I, then either R is com-
mutative or δ = 0 on R.

Proof. (i) We have

G(uv) = G(u)G(v)

= α(u)G(v) + β(v)δ(u) for all u, v ∈ I.(3.1)

Using (3.1) we have

G(uvw) = G(u(vw))

= α(u)G(vw) + β(vw)δ(u) for all u, v, w ∈ I.(3.2)

On the other hand, we find that

G(uvw) = G((uv)w))

= G(uv)G(w) = α(u)G(v)G(w) + β(v)δ(u)G(w).(3.3)

Combining (3.2) and (3.3) and using (3.1), we get

β(vw)δ(u) = β(v)δ(u)G(w) for all u, v, w ∈ I.(3.4)

This implies that β(v){β(w)δ(u)−δ(u)G(w)} = 0 for all u, v, w ∈ I. This
can be written as vβ−1{β(w)δ(u) − δ(u)G(w)} = 0 for all u, v, w ∈ I.
Now replacing v by vr for any r ∈ R, we find that

vRβ−1(β(w)δ(u)− δ(u)G(w)) = {0} for all u, v, w ∈ I.
Since I is nonzero and R is prime, the last expression gives that

β(w)δ(u) = δ(u)G(w) for all u,w ∈ I.(3.5)

Replacing u by uv for any v ∈ I in (3.5), we have

β(w)α(u)δ(v) + β(w)β(v)δ(u) = α(u)δ(v)G(w)

+β(v)δ(u)G(w).(3.6)

Using (3.5) in (3.6), we find that

[β(w), β(v)]δ(u) + [β(w), α(u)]δ(v) = 0.(3.7)

Hence in particular, we find that

[β(v), α(u)]δ(v) = 0 for all u, v ∈ I.(3.8)
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Replacing u by ru in (3.8) for any r ∈ R and using (3.8) in the relation
so obtained, we get

[β(v), α(r)]α(u)δ(v) = 0 for all u, v ∈ I.

The above relation implies that α−1([β(v), α(r)])uα−1(δ(v)) = 0
for all u, v ∈ I and r ∈ R. This can be rewritten as
α−1([β(v), α(r)])IRα−1(δ(v)) = {0} for all v ∈ I and r ∈ R.
Since R is prime, we find that for each fixed v ∈ I either
α−1([β(v), α(r)])I = {0} or α−1(δ(v)) = 0 for all r ∈ R. Now if
we put A = {v ∈ I | α−1([β(v), α(r)])I = {0} for all r ∈ R} and
B = {v ∈ I | α−1(δ(v)) = 0}. Then clearly A and B are additive
subgroups of I whose union is I. Hence either A = I or B = I.
If A = I, we find that α−1([β(v), r

′
])I = {0} for every v ∈ I and

r
′ ∈ R. This shows that α−1([β(v), r

′
])RI = {0}. This implies that

[β(v), r
′
] = 0, as α is an automorphism of R and I 6= {0}. Since

β is an automorphism, this implies that I is central and hence R is
commutative. If B = I, then α−1(δ(v)) = 0 for all v ∈ I. Since
α is an automorphism, we find that δ(v) = 0 for all v ∈ I. Thus
for any r ∈ R, δ(rv) = 0, i.e., β(v)δ(r) = 0 or Iβ−1(δ(r)) = {0}.
Since I is nonzero, the last relation yields that δ(r) = 0, i.e., δ = 0 on R.

(ii) We have

G(uv) = G(v)G(u)

= α(u)G(v) + β(v)δ(u) for all u, v ∈ I.(3.9)

Replacing v by uv in (3.9), we have

G(u2v) = G(uv)G(u)

= α(u)G(uv) + β(uv)δ(u) for all u, v ∈ I.(3.10)

Using (3.9) in (3.10), we find that

α(u)G(v)G(u) + β(v)δ(u)G(u)

= α(u)G(uv) + β(uv)δ(u).(3.11)

Again using (3.9) in (3.11), we get

β(uv)δ(u) = β(v)δ(u)G(u) for all u, v ∈ I.(3.12)

Replacing v by rv for any r ∈ R in (3.12), we obtain that

β(u)β(r)β(v)δ(u) = β(r)β(v)δ(u)G(u) for all u, v ∈ I.(3.13)
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Multiplying (3.12) by β(r) from the left, we have

β(r)β(u)β(v)δ(u) = β(r)β(v)δ(u)G(u).(3.14)

Comparing (3.13) and (3.14), we obtain

[β(u), β(r)]β(v)δ(u) = 0 for all u, v ∈ I, r ∈ R.
The last expression can be rewritten as [u, r]Iβ−1(δ(u)) =
{0}, i.e., [u, r]IRβ−1(δ(u)) = {0} for all u ∈ I and r ∈ R. This im-
plies that for each fixed u ∈ I either [u, r]I = {0} or δ(u) = 0. Now
using similar techniques as above, we get the required result. �
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