ON GENERALIZED LEFT (α, β)-DERIVATIONS IN RINGS

M. ASHRAF, S. ALI*, N. REHMAN AND M. R. MOZUMDER
Communicated by Omid Ali S. Karamzadeh

Abstract

Let R be a 2 -torsion free ring and let U be a square closed Lie ideal of R. Suppose that α, β are automorphisms of R. An additive mapping $\delta: R \longrightarrow R$ is said to be a Jordan left (α, β) derivation of R if $\delta\left(x^{2}\right)=\alpha(x) \delta(x)+\beta(x) \delta(x)$ holds for all $x \in R$. In this paper it is established that if R admits an additive mapping $G: R \longrightarrow R$ satisfying $G\left(u^{2}\right)=\alpha(u) G(u)+\alpha(u) \delta(u)$ for all $u \in U$ and a Jordan left (α, α)-derivation δ; and U has a commutator which is not a left zero divisor, then $G(u v)=\alpha(u) G(v)+\alpha(v) \delta(u)$ for all $u, v \in U$. Finally, in the case of prime ring R it is proved that if $G: R \longrightarrow R$ is an additive mapping satisfying $G(x y)=\alpha(x) G(y)+\beta(y) \delta(x)$ for all $x, y \in R$ and a left $(\alpha, \beta)-$ derivation δ of R such that G also acts as a homomorphism or as an anti-homomorphism on a nonzero ideal I of R, then either R is commutative or $\delta=0$ on R.

1. Introduction

Throughout the present paper, R will denote an associative ring with center $Z(R)$. For any $x, y \in R$, the symbol $[x, y]$ (respectively, $x \circ y$) will denote the commutator $x y-y x$ (respectively, the anticommutator $x y+y x)$. Recall that a ring R is prime if $a R b=\{0\}$

[^0]implies $a=0$ or $b=0$. An additive subgroup U of R is said to be a Lie ideal of R if $[U, R] \subseteq U$. A Lie ideal U of R is said to be a square closed Lie ideal if $u^{2} \in U$ for all $u \in U$. If $u^{2} \in U$ for all $u \in U$, then $u v+v u=(u+v)^{2}-u^{2}-v^{2} \in U$ and $u v-v u \in U$. Hence $2 u v \in U$ for all $u, v \in U$. This remark will be freely used throughout the paper. Let α, β be endomorphisms of R. An additive mapping $\delta: R \longrightarrow R$ is said to be a left (α, β)-derivation (respectively, Jordan left (α, β)-derivation) of R if $\delta(x y)=\alpha(x) \delta(y)+\beta(y) \delta(x)$ (respectively, $\left.\delta\left(x^{2}\right)=\alpha(x) \delta(x)+\beta(x) \delta(x)\right)$ holds for all $x, y \in R$. Of course, a left (I, I)-derivation (respectively, Jordan left (I, I)-derivation), where I is the identity map on R, is said to be a left derivation (respectively, Jordan left derivation) of R. The study of left derivation was initiated by Bresar and Vukman in [7] and it was shown that if a prime ring R of characteristic different from 2 and 3 admits a nonzero Jordan left derivation then R must be commutative. Following [8], an additive mapping $F: R \longrightarrow R$ is called a generalized derivation of R if there exists a derivation $d: R \longrightarrow R$ such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$. Inspired by the definition of generalized derivation, Ashraf and Shakir [3] introduced the concepts of generalized left derivation and generalized Jordan left derivation as follows: an additive mapping $G: R \longrightarrow R$ is called a generalized left derivation (respectively, generalized Jordan left derivation) if there exists a Jordan left derivation $\delta: R \longrightarrow R$ such that $G(x y)=x G(y)+y \delta(x)$ (respectively, $G\left(x^{2}\right)=x G(x)+x \delta(x)$) holds for all $x, y \in R$. Motivated by the above definition, we introduce the concept of generalized left (α, β)-derivation and generalized Jordan left (α, β)-derivation as follows: an additive mapping $G: R \longrightarrow R$ is said to be a generalized left (α, β)-derivation (respectively, generalized Jordan left (α, β)-derivation) if there exists a Jordan left (α, β)-derivation $\delta: R \longrightarrow R$ such that $G(x y)=\alpha(x) G(y)+\beta(y) \delta(x)$ (respectively, $\left.G\left(x^{2}\right)=\alpha(x) G(x)+\beta(x) \delta(x)\right)$ holds for all $x, y \in R$. The definition of generalized right (α, β)-derivation (respectively, generalized Jordan right (α, β)-derivation) is self-explanatory. In Section 2 , it is shown that every generalized Jordan left (α, α)-derivation on R is a generalized left (α, α)-derivation if the underlying ring R is 2 -torsion free and has a commutator which is not a left zero divisor in R. Moreover, in this section we also prove that if U is a square closed Lie ideal of a prime ring R of characteristic different from 2 and $\delta: R \longrightarrow R$ is a Jordan left (α, α)-derivation of R such that R admits an additive mapping $G: R \longrightarrow R$ satisfying $G(u v)=\alpha(u) G(v)+\alpha(v) \delta(u)$ for all $u, v \in U$,
then either $\delta(U)=\{0\}$ or $U \subseteq Z(R)$.
A derivation $d: R \longrightarrow R$ is said to act as a homomorphism (respectively, anti-homomorphism) on a non-empty subset S of R if $d(x y)=d(x) d(y)$ (respectively, $d(x y)=d(y) d(x))$ holds for all $x, y \in S$. The last section of this paper deals with the study of generalized left (α, β)-derivation of a prime ring R which acts as a homomorphism or as an anti-homomorphism on a nonzero ideal I of R. The result of this section generalizes the results obtained in [1] and [2].

2. Generalized Jordan left (α, β)-derivation

In an attempt to generalize the result obtained by Bresar and Vukman [7], the first author established that a 2-torsion free prime ring R which admits a nonzero Jordan left (α, α)-derivation must be commutative. Further, as an application of this result, it was shown that if R is a 2 -torsion free ring and has a commutator which is not a left zero divisor, then every Jordan left (α, α)-derivation is a left (α, α)-derivation (see $[2$, Theorem 3.3]). It is obvious to see that every generalized left (α, β)-derivation on a ring R is a generalized Jordan left (α, β)-derivation of R but the converse need not be true in general.

Example 2.1. Let S be a ring such that square of each element in S is zero, but the product of some nonzero elements in S is nonzero. Next, let $R=\left\{\left.\left(\begin{array}{cc}x & y \\ 0 & 0\end{array}\right) \right\rvert\, x, y \in S\right\}$. Define maps $G, \delta: R \longrightarrow R$ and $\alpha, \beta: R \longrightarrow R$ as follows:

$$
G\left(\begin{array}{ll}
x & y \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & y \\
0 & 0
\end{array}\right), \delta\left(\begin{array}{cc}
x & y \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
x & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
\alpha\left(\begin{array}{ll}
x & y \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
x & -y \\
0 & 0
\end{array}\right), \beta\left(\begin{array}{ll}
x & y \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
-x & -y \\
0 & 0
\end{array}\right)
$$

Then it is straightforward to check that G is a generalized Jordan left (α, β) - derivation but not a generalized left (α, β) - derivation(for a nonzero left (α, β)-derivation $\delta)$.

In the present section our aim is to establish the conditions under which the converse of the above statement is true.

Theorem 2.2. Let R be a 2-torsion free ring and let U be a square closed Lie ideal of R. Suppose that α is an automorphism of R and $\delta: R \longrightarrow R$ is a Jordan left (α, α)-derivation of R. Suppose further that U has a commutator which is not a left zero divisor. If $G: R \longrightarrow R$ is an additive mapping satisfying $G\left(u^{2}\right)=\alpha(u) G(u)+\alpha(u) \delta(u)$ for all $u \in U$, then $G(u v)=\alpha(u) G(v)+\alpha(v) \delta(u)$ for all $u, v \in U$.

We begin our discussion with the following known lemmas. Lemma 2.3 is essentially proved in [6] while the proof of Lemma 2.4 runs exactly on the same lines as that of Lemma 2.3 of [4]. We skip the details of the proof just to avoid repetition.

Lemma 2.3. Let R be a prime ring such that char $R \neq 2$, and let U be a Lie ideal of R such that $U \nsubseteq Z(R)$. If $a, b \in R$ such that $a U b=\{0\}$, then $a=0$ or $b=0$.

Lemma 2.4. Let R be a 2-torsion free ring and let U be a square closed Lie ideal of R. Suppose that α is an endomorphism of R and $\delta: R \longrightarrow R$ is an additive mapping satisfying $\delta\left(u^{2}\right)=2 \alpha(u) \delta(u)$ for all $u \in U$. Then for all $u, v \in U$
(i) $\alpha([u, v]) \delta([u, v])=0$,
(ii) $\alpha\left(u^{2} v-2 u v u+v u^{2}\right) \delta(v)=0$.

Lemma 2.5. Let R be a 2-torsion free ring and let U be a square closed Lie ideal of R. Suppose that α is an endomorphism of R and $\delta: R \longrightarrow R$ is a Jordan left (α, α)-derivation of R. If $G: R \longrightarrow R$ is an additive mapping satisfying $G\left(u^{2}\right)=\alpha(u) G(u)+\alpha(u) \delta(u)$ for all $u \in U$, then for all $u, v, w \in U$

$$
\begin{aligned}
(i) G(u v+v u)= & \alpha(u) G(v)+\alpha(v) G(u)+\alpha(u) \delta(v)+\alpha(v) \delta(u), \\
(i i) G(u v u)= & \alpha(u v) G(u)+2 \alpha(u v) \delta(u)+\alpha\left(u^{2}\right) \delta(v) \\
(i i i) G(u v w+w v u)= & -\alpha(v u) \delta(u), \\
& +2 \alpha(w v) \delta(u)+\alpha(w v) G(u)+2 \alpha(u v) \delta(w) \\
& -\alpha(v u) \delta(w)-\alpha(v w) \delta(v)+\alpha(w u) \delta(v)
\end{aligned}
$$

Proof. (i) We have

$$
\begin{equation*}
G\left(u^{2}\right)=\alpha(u) G(u)+\alpha(u) \delta(u) \text { for all } u \in U \tag{2.1}
\end{equation*}
$$

Linearizing (2.1), we get the required result.
(ii) Since $u v+v u=(u+v)^{2}-u^{2}-v^{2} \in U$, replacing v by $u v+v u$ in (i), we get

$$
\begin{align*}
G(u(u v+v u)+(u v+v u) u)= & \alpha(u) G(u v+v u)+\alpha(u v+v u) G(u) \\
& +\alpha(u) \delta(u v+v u)+\alpha(u v+v u) \delta(u) . \tag{2.2}
\end{align*}
$$

Since δ is a Jordan left (α, α)-derivation, $\delta\left(u^{2}\right)=2 \alpha(u) \delta(u)$ and hence linearizing this relation, we find that $\delta(u v+v u)=2 \alpha(u) \delta(v)+2 \alpha(v) \delta(u)$ for all $u, v \in U$. Now using relation (i) in (2.2), we find that

$$
\begin{align*}
G(u(u v+v u)+(u v+v u) u)= & \alpha\left(u^{2}\right) G(v)+2 \alpha(u v) G(u) \\
& +\alpha(v u) G(u)+4 \alpha(u v) \delta(u) \\
& +3 \alpha\left(u^{2}\right) \delta(v)+\alpha(v u) \delta(u) . \tag{2.3}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
G(u(u v+v u)+(u v+v u) u)= & 2 G(u v u)+G\left(u^{2} v+v u^{2}\right) \\
= & 2 G(u v u)+\alpha\left(u^{2}\right) G(v)+\alpha(v u) G(u) \\
& +\alpha(v u) \delta(u)+\alpha\left(u^{2}\right) \delta(v) \\
& +2 \alpha(v u) \delta(u) .
\end{aligned}
$$

Comparing (2.3) and (2.4), we get the required result.
(iii) Linearizing (ii), we find that

$$
\begin{aligned}
G((u+w) v(u+w))= & \alpha(u v) G(u)+\alpha(u v) G(w)+\alpha(w v) G(u) \\
& +\alpha(w v) G(w)+2 \alpha(u v) \delta(u)+2 \alpha(u v) \delta(w) \\
& +2 \alpha(w v) \delta(u)+2 \alpha(w v) \delta(w)+\alpha\left(u^{2}\right) \delta(v) \\
& +\alpha(u w) \delta(v)+\alpha(w u) \delta(v)+\alpha\left(w^{2}\right) \delta(v) \\
& -\alpha(v u) \delta(u)-\alpha(v u) \delta(w) \\
& -\alpha(v w) \delta(u)-\alpha(v w) \delta(w) .
\end{aligned}
$$

On the other hand,

$$
\begin{align*}
G((u+w) v(u+w))= & G(u v u)+G(w v w)+G(u v w+w v u) \\
= & \alpha(u v) G(u)+2 \alpha(u v) \delta(u)+\alpha\left(u^{2}\right) \delta(v) \\
& -\alpha(v u) \delta(u)+\alpha(w v) G(w)+2 \alpha(w v) \delta(w) \\
& +\alpha\left(w^{2}\right) \delta(v)-\alpha(v w) \delta(w)+G(u v w+w v u) . \tag{2.6}
\end{align*}
$$

Combining (2.5) and (2.6), we get the required result.
We are now well equipped to prove our theorem:
Proof of Theorem 2.2. Replacing w by $u v-v u$ in part (iii) of Lemma 2.5, we get

$$
\begin{aligned}
G(u v(u v-v u)+(u v-v u) v u)= & \alpha(u v) G(u v)-\alpha(u v) G(v u) \\
& +\alpha([u, v]) \alpha(v) G(u) \\
& +\alpha([u, v]) \delta([u, v])+\alpha(u v) \delta([u, v]) \\
& +2 \alpha([u, v]) \alpha(v) \delta(u) \\
& +\alpha(u) \alpha([u, v]) \delta(v) \\
& +\alpha([u, v]) \alpha(u) \delta(v) \\
& -\alpha(v) \alpha([u, v]) \delta(u) .
\end{aligned}
$$

Using Lemma $2.4(i)$ in the above relation we have

$$
\begin{aligned}
G(u v(u v-v u)+(u v-v u) v u)= & \alpha(u v) G(u v)-\alpha(u v) G(v u) \\
& +\alpha([u, v]) \alpha(v) G(u) \\
& +\alpha(u v) \delta([u, v]) \\
& +2 \alpha([u, v]) \alpha(v) \delta(u) \\
& +\alpha(u) \alpha([u, v]) \delta(v) \\
& +\alpha([u, v]) \alpha(u) \delta(v) \\
& -\alpha(v) \alpha([u, v]) \delta(u) .
\end{aligned}
$$

Adding and substracting $\alpha(v) \alpha([u, v]) \delta(u)$ in the right hand side of the above relation, we get

$$
\begin{align*}
G(u v(u v-v u)+(u v-v u) v u)= & \alpha(u v) G(u v)-\alpha(u v) G(v u) \\
& +\alpha([u, v]) \alpha(v) G(u)+\alpha(u v) \delta([u, v]) \\
& +2 \alpha([u, v]) \alpha(v) \delta(u) \\
& +\alpha(u) \alpha([u, v]) \delta(v)) \\
& +\alpha([u, v]) \alpha(u) \delta(v) \\
& -2 \alpha(v) \alpha([u, v]) \delta(u) \\
& +\alpha(v) \alpha([u, v]) \delta(u) . \tag{2.7}
\end{align*}
$$

Since

$$
\begin{aligned}
4 G(u v(u v-v u)+(u v-v u) v u)= & G\left((2 u v)^{2}-(2 v u)^{2}\right) \\
= & 4\{\alpha(u v) G(u v)+\alpha(u v) \delta(u v) \\
& -\alpha(v u) G(v u)-\alpha(v u) \delta(v u)\}
\end{aligned}
$$

and R is 2-torsion free, the above relation yields that

$$
G(u v(u v-v u)+(u v-v u) v u)=\alpha(u v) G(u v)+\alpha(u v) \delta(u v)
$$

$$
\begin{equation*}
-\alpha(v u) G(v u)-\alpha(v u) \delta(v u) . \tag{2.8}
\end{equation*}
$$

Comparing (2.7) and (2.8), we find that

$$
\begin{aligned}
0= & \alpha([v, u]) G(v u)+\alpha([u, v]) \alpha(v) G(u)+\alpha([u, v]) \alpha(u) \delta(v) \\
& +2 \alpha([u, v]) \alpha(v) \delta(u)-2 \alpha(v) \alpha([u, v]) \delta(u)+\alpha(u) \alpha([u, v]) \delta(v) \\
2.9) \quad & +\alpha(v) \alpha([u, v]) \delta(u)+\alpha(v u) \delta(v u)-\alpha(u v) \delta(v u) .
\end{aligned}
$$

In view of [2, Theorem 3.3], every Jordan left (α, α)-derivation is a left (α, α)-derivation. Hence by using Lemma 2.4(ii) in (2.9), we have

$$
\begin{align*}
0= & \alpha(u) \alpha([u, v]) \delta(v)+\alpha(v) \alpha([u, v]) \delta(u)+\alpha(v u) \delta(v u) \\
& -\alpha(u v) \delta(v u) \\
= & \alpha\left(u^{2} v-2 u v u+v u^{2}\right) \delta(v)-\alpha\left(v^{2} u-2 v u v+u v^{2}\right) \delta(u) . \tag{2.10}
\end{align*}
$$

and

$$
\begin{align*}
0 & =2 \alpha([u, v]) \alpha(v) \delta(u)-2 \alpha(v) \alpha([u, v]) \delta(u) \\
& =2 \alpha\left(v^{2} u-2 v u v+u v^{2}\right) \delta(u) . \tag{2.11}
\end{align*}
$$

Now in view of (2.9), (2.10) and (2.11), we find that
$\alpha([v, u]) G(v u)+\alpha([u, v]) \alpha(v) G(u)+\alpha([u, v]) \alpha(u) \delta(v)=0$ for all $u, v \in U$.
This implies that $\alpha([u, v])(G(u v)-\alpha(u) G(v)-\alpha(v) \delta(u))=0$ for all $u, v \in U$. Now define a map $H: U \times U \longrightarrow R$ such that $H(u, v)=$ $G(u v)-\alpha(u) G(v)-\alpha(v) \delta(u)$. Since G and δ both are additive, we find that H is additive in both arguments. Hence the latter relation can be written as $\alpha([u, v]) H(u, v)=0$ for all $u, v \in U$. Since α is an automorphism, we find that

$$
\begin{equation*}
[u, v] \alpha^{-1}(H(u, v))=0 \text { for all } u, v \in U . \tag{2.12}
\end{equation*}
$$

Now let a, b be fixed elements of U such that $[a, b] c=0$ implies that $c=0$. Then (2.11) yields that $\alpha^{-1}(H(a, b))=0$, and hence

$$
\begin{equation*}
H(a, b)=0 . \tag{2.13}
\end{equation*}
$$

Replacing u by $u+a$ in (2.12) and using (2.12), we get

$$
\begin{equation*}
[u, v] \alpha^{-1}(H(a, v))+[a, v] \alpha^{-1}(H(u, v))=0 . \tag{2.14}
\end{equation*}
$$

Again replace v by b in (2.14), to get $[a, b] \alpha^{-1}(H(u, b))=0$. Since $[a, b]$ is not a left zero divisor, we have

$$
\begin{equation*}
\alpha^{-1}(H(u, b))=0 \text { for all } u \in U . \tag{2.15}
\end{equation*}
$$

Replacing v by $v+b$ in (2.14) and using (2.13), (2.14) and (2.15), we get

$$
\begin{equation*}
[a, b] \alpha^{-1}(H(u, v))+[u, b] \alpha^{-1}(H(a, v))=0 . \tag{2.16}
\end{equation*}
$$

Substituting a for u in (2.16) and using the fact that R is 2-torsion free, we get $[a, b] \alpha^{-1}(H(a, v))=0$ and hence

$$
\begin{equation*}
\alpha^{-1}(H(a, v))=0 . \tag{2.17}
\end{equation*}
$$

Comparing (2.16) and (2.17), we have $[a, b] \alpha^{-1}(H(u, v))=0$ for all $u, v \in U$ and hence $H(u, v)=0$ for all $u, v \in U$. This completes the proof of our theorem.
Corollary 2.6. Let R be a 2-torsion free ring. Suppose that α is an automorphism of R and R has a commutator which is not a left zero divisor. If $\delta: R \longrightarrow R$ is a Jordan left (α, α)-derivation of R, then δ is a left (α, α)-derivation of R.

Theorem 2.7. Let R be a prime ring such that $\operatorname{char}(R) \neq 2$ and U be a square closed Lie ideal of R. Let α be an automorphism of R and $\delta: R \longrightarrow R$ be a Jordan left (α, α)-derivation of R. If $G: R \longrightarrow R$ is an additive mapping satisfying $G(u v)=\alpha(u) G(v)+\alpha(v) \delta(u)$ for all $u, v \in U$, then either $\delta(U)=\{0\}$ or $U \subseteq Z(R)$.
Proof. Let us suppose that $U \nsubseteq Z(R)$. We have

$$
G(u v)=\alpha(u) G(v)+\alpha(v) \delta(u) \text { for all } u \in U
$$

Replacing u by u^{2} in the above relation, we have

$$
\begin{equation*}
G\left(u^{2} v\right)=\alpha\left(u^{2}\right) G(v)+2 \alpha(v u) \delta(u) \text { for all } u \in U . \tag{2.18}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
2 G\left(u^{2} v\right) & =G(u(2 u v)) \\
& =2\left\{\alpha\left(u^{2}\right) G(v)+2 \alpha(u v) \delta(u)\right\} .
\end{aligned}
$$

Since $\operatorname{char}(R) \neq 2$, we get

$$
\begin{equation*}
G\left(u^{2} v\right)=\alpha\left(u^{2}\right) G(v)+2 \alpha(u v) \delta(u) . \tag{2.19}
\end{equation*}
$$

Comparing (2.18) and (2.19), we get $2 \alpha([u, v]) \delta(u)=0$ for all $u, v \in U$. Since $\operatorname{char}(R) \neq 2$ and α is an automorphism, we get

$$
[u, v] \alpha^{-1}(\delta(u))=0 .
$$

Replacing v by $2 v w$ in the above expression for any $w \in U$, we find that $[u, v] w \alpha^{-1}(\delta(u))=0$ for all $u, v, w \in U$. This implies that $[u, v] U \alpha^{-1}(\delta(u))=\{0\}$. By Lemma 2.3, for each fixed $u \in U$ either $[u, v]=0$ or $\alpha^{-1}(\delta(u))=0$ for all $v \in U$. Now we put $A=\{u \in U \mid$ $[u, v]=0$ for any $v \in U\}$ and $B=\left\{u \in U \mid \alpha^{-1}(\delta(u))=0\right\}$. Clearly A and B are additive subgroups of U whose union is U and hence by Brauer's trick either $U=A$ or $U=B$. If $U=A$, then $[u, v]=0$ for all $u, v \in U$ and hence U is commutative. If U is commutative then using similar arguments as used in the last paragraph of the proof of Lemma 1.3 of Herstein [9]; it can be easily seen that U is central, i.e., $U \subseteq Z(R)$, a contradiction. On the other hand, we have $\alpha^{-1}(\delta(u))=0$ for all $u \in U$. Since α is an automorphism, the last relation forces that $\delta(u)=0$ for all $u \in U$, i.e., $\delta(U)=\{0\}$.

Remark 2.8. The results of this section are still open for generalized Jordan left (α, β)-derivations in rings.

3. Generalized left (α, β)-derivation

Let S be a nonempty subset of a ring R and $d: R \longrightarrow R$ a derivation of R. If $d(x y)=d(x) d(y)$ (respectively, $d(x y)=d(y) d(x))$ holds for all $x, y \in S$, then d is said to act as a homomorphism (respectively, anti-homomorphism) on S. In the year 1989, Bell and Kappe [5] proved that if K is a nonzero right ideal of a prime ring R and $d: R \longrightarrow R$ is a derivation of R such that d acts as a homomorphism or as an anti-homomorphism on K, then $d=0$ on R. In [2], Ashraf proved that if $\delta: R \longrightarrow R$ is a left (α, β)-derivation of a prime ring R which acts as a homomorphism or as an anti-homomorphism on a nonzero ideal I of R, then $\delta=0$ on R. This result was further extended for generalized left derivations in [1]. Now in this section we study generalized left (α, β)-derivations of a prime ring R with associated left (α, β)-derivation δ, which acts as a homomorphism or as an anti-homomorphism on a nonzero ideal of R. The main result of this section generalizes the results obtained in [1] and [2].

Theorem 3.1. Let R be a prime ring and let I be a nonzero ideal of R. Suppose that α, β are automorphisms of R and $G: R \longrightarrow R$ is a generalized left (α, β)-derivation of R with associated left (α, β) derivation δ.
(i) If G acts as a homomorphism on I, then either R is commutative or $\delta=0$ on R.
(ii) If G acts as an anti-homomorphism on I, then either R is commutative or $\delta=0$ on R.
Proof. (i) We have

$$
\begin{align*}
G(u v) & =G(u) G(v) \\
& =\alpha(u) G(v)+\beta(v) \delta(u) \text { for all } u, v \in I \tag{3.1}
\end{align*}
$$

Using (3.1) we have

$$
\begin{align*}
G(u v w) & =G(u(v w)) \\
& =\alpha(u) G(v w)+\beta(v w) \delta(u) \text { for all } u, v, w \in I . \tag{3.2}
\end{align*}
$$

On the other hand, we find that

$$
\begin{align*}
G(u v w) & =G((u v) w)) \\
& =G(u v) G(w)=\alpha(u) G(v) G(w)+\beta(v) \delta(u) G(w) . \tag{3.3}
\end{align*}
$$

Combining (3.2) and (3.3) and using (3.1), we get

$$
\begin{equation*}
\beta(v w) \delta(u)=\beta(v) \delta(u) G(w) \text { for all } u, v, w \in I \tag{3.4}
\end{equation*}
$$

This implies that $\beta(v)\{\beta(w) \delta(u)-\delta(u) G(w)\}=0$ for all $u, v, w \in I$. This can be written as $v \beta^{-1}\{\beta(w) \delta(u)-\delta(u) G(w)\}=0$ for all $u, v, w \in I$. Now replacing v by $v r$ for any $r \in R$, we find that

$$
v R \beta^{-1}(\beta(w) \delta(u)-\delta(u) G(w))=\{0\} \text { for all } u, v, w \in I
$$

Since I is nonzero and R is prime, the last expression gives that

$$
\begin{equation*}
\beta(w) \delta(u)=\delta(u) G(w) \text { for all } u, w \in I \tag{3.5}
\end{equation*}
$$

Replacing u by $u v$ for any $v \in I$ in (3.5), we have

$$
\begin{align*}
\beta(w) \alpha(u) \delta(v)+\beta(w) \beta(v) \delta(u)= & \alpha(u) \delta(v) G(w) \\
& +\beta(v) \delta(u) G(w) . \tag{3.6}
\end{align*}
$$

Using (3.5) in (3.6), we find that

$$
\begin{equation*}
[\beta(w), \beta(v)] \delta(u)+[\beta(w), \alpha(u)] \delta(v)=0 \tag{3.7}
\end{equation*}
$$

Hence in particular, we find that

$$
\begin{equation*}
[\beta(v), \alpha(u)] \delta(v)=0 \text { for all } u, v \in I . \tag{3.8}
\end{equation*}
$$

Replacing u by $r u$ in (3.8) for any $r \in R$ and using (3.8) in the relation so obtained, we get

$$
[\beta(v), \alpha(r)] \alpha(u) \delta(v)=0 \text { for all } u, v \in I .
$$

The above relation implies that $\alpha^{-1}([\beta(v), \alpha(r)]) u \alpha^{-1}(\delta(v))=0$ for all $u, v \in I$ and $r \in R$. This can be rewritten as $\alpha^{-1}([\beta(v), \alpha(r)]) I R \alpha^{-1}(\delta(v))=\{0\}$ for all $v \in I$ and $r \in R$. Since R is prime, we find that for each fixed $v \in I$ either $\alpha^{-1}([\beta(v), \alpha(r)]) I=\{0\}$ or $\alpha^{-1}(\delta(v))=0$ for all $r \in R$. Now if we put $A=\left\{v \in I \mid \alpha^{-1}([\beta(v), \alpha(r)]) I=\{0\}\right.$ for all $\left.r \in R\right\}$ and $B=\left\{v \in I \mid \alpha^{-1}(\delta(v))=0\right\}$. Then clearly A and B are additive subgroups of I whose union is I. Hence either $A=I$ or $B=I$. If $A=I$, we find that $\alpha^{-1}\left(\left[\beta(v), r^{\prime}\right]\right) I=\{0\}$ for every $v \in I$ and $r^{\prime} \in R$. This shows that $\alpha^{-1}\left(\left[\beta(v), r^{\prime}\right]\right) R I=\{0\}$. This implies that $\left[\beta(v), r^{\prime}\right]=0$, as α is an automorphism of R and $I \neq\{0\}$. Since β is an automorphism, this implies that I is central and hence R is commutative. If $B=I$, then $\alpha^{-1}(\delta(v))=0$ for all $v \in I$. Since α is an automorphism, we find that $\delta(v)=0$ for all $v \in I$. Thus for any $r \in R, \delta(r v)=0$, i.e., $\beta(v) \delta(r)=0$ or $I \beta^{-1}(\delta(r))=\{0\}$. Since I is nonzero, the last relation yields that $\delta(r)=0$, i.e., $\delta=0$ on R.
(ii) We have

$$
\begin{align*}
G(u v) & =G(v) G(u) \\
& =\alpha(u) G(v)+\beta(v) \delta(u) \text { for all } u, v \in I \tag{3.9}
\end{align*}
$$

Replacing v by $u v$ in (3.9), we have

$$
\begin{align*}
G\left(u^{2} v\right) & =G(u v) G(u) \\
& =\alpha(u) G(u v)+\beta(u v) \delta(u) \text { for all } u, v \in I \tag{3.10}
\end{align*}
$$

Using (3.9) in (3.10), we find that

$$
\begin{align*}
& \alpha(u) G(v) G(u)+\beta(v) \delta(u) G(u) \\
& \quad=\alpha(u) G(u v)+\beta(u v) \delta(u) . \tag{3.11}
\end{align*}
$$

Again using (3.9) in (3.11), we get

$$
\begin{equation*}
\beta(u v) \delta(u)=\beta(v) \delta(u) G(u) \text { for all } u, v \in I \tag{3.12}
\end{equation*}
$$

Replacing v by $r v$ for any $r \in R$ in (3.12), we obtain that
(3.13) $\beta(u) \beta(r) \beta(v) \delta(u)=\beta(r) \beta(v) \delta(u) G(u)$ for all $u, v \in I$.

Multiplying (3.12) by $\beta(r)$ from the left, we have

$$
\begin{equation*}
\beta(r) \beta(u) \beta(v) \delta(u)=\beta(r) \beta(v) \delta(u) G(u) . \tag{3.14}
\end{equation*}
$$

Comparing (3.13) and (3.14), we obtain

$$
[\beta(u), \beta(r)] \beta(v) \delta(u)=0 \text { for all } u, v \in I, r \in R .
$$

The last expression can be rewritten as $[u, r] I \beta^{-1}(\delta(u))=$ $\{0\}$, i.e., $[u, r] I R \beta^{-1}(\delta(u))=\{0\}$ for all $u \in I$ and $r \in R$. This implies that for each fixed $u \in I$ either $[u, r] I=\{0\}$ or $\delta(u)=0$. Now using similar techniques as above, we get the required result.

Acknowledgments

The authors are greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper. This research is partially supported by research grants from DST (Grant No. SR/S4/MS:556/08), UGC (Grant No. $36-8 / 2008(S R)$) and UGC (Grant No. $39-$ $37 / 2010(\mathrm{SR})$).

References

[1] S. Ali, On generalized left derivations in rings and Banach Algebras, Aequationes Math. 81 (2011), no. 3, 209-226.
[2] M. Ashraf, On left (θ, ϕ)-derivations of prime rings, Arch. Math. (Brno) 41 (2005), no. 2, 157-166.
[3] M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2008), no. 2, 253-261.
[4] M. Ashraf and N. Rehman, On Lie ideals and Jordan left derivations of prime rings, Arch. Math. (Brno) 36 (2000), no. 3, 201-206.
[5] H. E. Bell and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346.
[6] J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71 (1981), no. 1, 259-267.
[7] M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7-16.
[8] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89-93.
[9] I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1969.

Mohammad Ashraf

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Email: mashraf80@hotmail.com

Shakir Ali

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
Email: shakir.ali.mm@amu.ac.in

Nadeem-ur Rehman

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
Email: rehman100@gmail.com
Muzibur Rahman Mozumder
Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India
Email: mrm7862000@yahoo.co.in

[^0]: MSC(2010): Primary: 16W10; Secondary: 16W25, 16W60.
 Keywords: Prime ring, Lie ideal, Jordan left (α, β)-derivation, generalized left (α, β) derivation and generalized Jordan left (α, β)-derivation.
 Received: 3 July 2010, Accepted: 13 November 2011.
 *Corresponding author
 (c) 2012 Iranian Mathematical Society.

