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A GENERALIZATION OF THE PROBABILITY THAT

THE COMMUTATOR OF TWO GROUP ELEMENTS IS

EQUAL TO A GIVEN ELEMENT

A. M. A. ALGHAMDI AND F. G. RUSSO∗

Communicated by Jamshid Moori

Abstract. The probability that the commutator of two group el-
ements is equal to a given element has been introduced in literature
few years ago. Several authors have investigated this notion with
methods of the representation theory and with combinatorial tech-
niques. Here we illustrate that a wider context may be considered
and show some structural restrictions on the group.

1. Different formulations of the commutativity degree

Given two elements x and y of a group G, several authors studied the
probability that a randomly chosen commutator [x, y] of G satisfies a
prescribed property. P. Erdős and P. Turán [6] began to investigate the
case [x, y] = 1, noting some structural restrictions on G from bounds
of statistical nature. Their approach involved combinatorial techniques,
which were developed successively in [2–5, 7, 9, 10, 12, 13, 15, 17] and ex-
tended to the infinite case in [8, 13, 18]. On another hand, P. X. Gal-
lagher [11] investigated the case [x, y] = 1, using character theory, and
opened another line of research, illustrated in [3,4,12,16,19]. The litera-
ture shows that it is possible to variate the condition on [x, y] involving
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arbitrary words, which could not be the commutator word [x, y]. From
now, all the groups which we consider will be finite.

Given two subgroups H and K of G and two integers n,m ≥ 1, we
define

(1.1) |H|n |K|m p(n,m)
g (H,K) = |{(x1, . . . , xn, y1, . . . , ym) ∈ Hn×Km |

[x1, . . . , xn, y1, . . . , ym] = g}|
as the probability that a randomly chosen commutator of weight n + m
of H ×K is equal to a given element of G. Denoting
(1.2)
A = {(x1, . . . , xn, y1, . . . , ym) ∈ Hn×Km | [x1, . . . , xn, y1, . . . , ym] = g},

|A| = |H|n · |K|m ·p(n,m)
g (H,K). The case n = m = 1 can be found in [4]

and is called generalized commutativity degree of G. For n = m = 1 and
H = K = G,

(1.3) p(1,1)
g (G,G) = pg(G) =

|{(x, y) ∈ G2 | [x, y] = g}|
|G|2

is the probability that the commutator of two group elements of G is
equal to a given element of G in [16].

It is well known (see for instance [1, Excercise 3, p. 183]) that the
function ψ(g) = |{(x, y) ∈ G×G | [x, y] = g}| is a character of G and we

have ψ =
∑

χ∈Irr(G)

|G|
χ(1)χ, where Irr(G) denotes the set of all irreducible

complex characters of G. However, the authors in [16, Theorem 2.1]
exploited this fact, writing (1.3) as

(1.4) pg(G) =
1

|G|
∑

χ∈Irr(G)

χ(g)

χ(1)
.

For terminology and notations in character theory we refer to [14].
Now for g = 1,

(1.5)

p
(1,1)
1 (G,G) = p1(G) = d(G) =

|{(x, y) ∈ G2 | [x, y] = 1}|
|G|2

=
|Irr(G)|
|G|

is the probability of commuting pairs of G (or briefly the commutativity
degree of G), largely studied in [2–5,7, 9–13,15,17,19]. Moreover,
(1.6)

p
(n,1)
1 (G,G) =

|{(x1, . . . , xn, xn+1) ∈ Gn+1 | [x1, . . . , xn, xn+1] = 1}|
|G|n+1
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= d(n)(G)

is the nth nilpotency degree of G in [2, 7, 9, 17,18] and

(1.7) p
(n,1)
1 (H,G) =

|{(x1, . . . , xn, y) ∈ Hn ×G | [x1, . . . , xn, y] = 1}|
|H|n |G|

= d(n)(H,G)

is the relative nth nilpotency degree of H in G, studied in [7, 9, 17, 18].
We may express (1.7) not necessarily with g = 1. Assuming that H is
normal in G, [4, Equation (4) and Theorem 4.2] imply

(1.8) p(1,1)
g (H,G) =

|{(x, y) ∈ H ×G | [x, y] = g}|
|H| |G|

=
1

|H||G|
∑

χ∈Irr(G)

|H|〈χH , χH〉
χ(1)

χ(g),

where χH denotes the restriction of χ to H and 〈 , 〉 the usual inner

product. Our purpose is to study p
(n,m)
g (H,K), extending the previous

contributions in [2, 4, 7, 16, 17]. The main results of the present paper
are in Section 3, in which the general considerations of Section 2 are
applied.

2. Technical properties and some computations

We begin with two elementary observations on (1.1).

Remark 2.1. If

S = {[x1, . . . , xn, y1, . . . , ym] | x1, . . . , xn ∈ H; y1, . . . , ym ∈ K},

then p
(n,m)
g (H,K) = 0 if and only if g 6∈ S. Moreover, p

(n,m)
1 (H,K) = 1

if and only if [H, . . . ,H︸ ︷︷ ︸
n−times

,K, . . . ,K︸ ︷︷ ︸
m−times

] = [nH, mK] = 1.

Remark 2.2. The equation (1.1) assigns by default the map
(2.1)

p(n,m)
g : (x1, . . . , xn, y1, . . . , ym) ∈ Hn ×Km 7→ p(n,m)

g (H,K) ∈ [0, 1],

which is a probability measure on Hn ×Km, satisfying a series of stan-
dard properties (see below) such as being multiplicative, symmetric and
monotone.
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Let E and F be two groups such that A,C ≤ E and B,D ≤ F . Then
A×B and C×D are subgroups of E×F . The subgroup A×{1F } can be
identified with A and similarly for C. Also {1E} × B can be identified
with B and similarly for D. The fact that (2.1) is multiplicative is
described by the next result.

Proposition 2.3. Let E and F be two groups such that e ∈ E, f ∈ F ,
A,C ≤ E and B,D ≤ F . Then A × B and C × D are subgroups of
E × F such that

p
(n,m)
(e,f) (A×B,C ×D) = p(n,m)

e (A,B) · p(n,m)
f (C,D).

Proof. It is enough to note that

[([a1, . . . , an], [c1, . . . , cn]), ([b1, . . . , bm], [d1, . . . , dm])]

= ([[a1, . . . , an], [b1, . . . , bm]], [c1, . . . , cn], [d1, . . . , dm]]).

�

Proposition 2.3 is true for finitely many factors instead of only two
factors and this can be checked with easy computations. Therefore the
proof is omitted. The fact that (2.1) is symmetric is described by the
next result.

Proposition 2.4. Let H and K be two subgroups of a group G. Then

p(n,m)
g (H,K) = p

(n,m)
g−1 (K,H).

Moreover, if H or K, is normal in G, then

p(n,m)
g (H,K) = p(n,m)

g (K,H) = p
(n,m)
g−1 (H,K).

Proof. The commutator rule [x, y]−1 = [y, x] implies the first part of the
result. Now let H be normal in G, n ≤ m, and let A be the set in (1.2)
and

B = {(y1, . . . , ym, x1, . . . , xn) ∈ Km ×Hn | [y1, . . . , ym, x1, . . . , xn] = g}.

The map

ϕ : (x1, . . . , xn, y1, . . . , ym) ∈ A 7−→

(y−11 , y−12 , . . . , y−1n , y−1n+1, . . . , y
−1
m , y1x1y

−1
1 , y2x2y

−1
2 , . . . , ynxny

−1
n ) ∈ B

is bijective and so the remaining equalities follow. A similar argument
can be applied, when the assumption (H is normal in G) is replaced by
(K is normal in G). �
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The fact that (2.1) is monotone is more delicate to prove, since this
is a situation in which we may find upper bounds for (1.1). Details are
given later on. Now we will get another expression for (1.1). We define
ClK([x1, . . . , xn]) as the K–conjugacy class of [x1, . . . , xn] ∈ H.

Proposition 2.5. Let H and K be two subgroups of a group G. Then,

p(n,m)
g (H,K) =

1

|H|n |K|m
∑

x1,...,xn∈H
g−1[x1,...,xn]∈ClK ([x1,...,xn])

|CK([x1, . . . , xn])|m.

Proof. It is straightforward to check that

CKm([x1, . . . , xn]) = CK([x1, . . . , xn])× . . .× CK([x1, . . . , xn])︸ ︷︷ ︸
m−times

.

In particular, |CKm([x1, . . . , xn])| = |CK([x1, . . . , xn])|m. Recalling (1.2),
we have

A =
⋃

[x1,...,xn]∈H

{[x1, . . . , xn]} × T[x1,...,xn],

where

T[x1,...,xn] = {(y1, . . . , ym) ∈ Km | [x1, . . . , xn, y1, . . . , ym] = g}.

Obviously, T[x1,...,xn] 6= ∅ if and only if

g−1[x1, . . . , xn] ∈ ClK([x1, . . . , xn]).

Let T[x1,...,xn] 6= ∅. Then |T[x1,...,xn]| = |CKm([x1, . . . , xn])|, because the

map ψ : [y1, . . . , ym] 7→ g[y1, . . . , ym]
−1

[y1, . . . , ym] is bijective, where

[y1, . . . , ym] is a fixed element of T[x1,...,xn]. We deduce that

|A| =
∑

[x1,...,xn]∈H

|T[x1,...,xn]| =
∑

x1,...,xn∈H
g−1[x1,...,xn]∈ClK ([x1,...,xn])

|CKm([x1, . . . , xn])|

=
∑

x1,...,xn∈H
g−1[x1,...,xn]∈ClK ([x1,...,xn])

|CK([x1, . . . , xn])|m

and the result follows. �

Special cases of Proposition 2.5 are listed below.
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Corollary 2.6. In Proposition 2.5 , if m = 1 and G = K, then

p(n,1)
g (H,G) =

1

|H|n |G|
∑

x1,...,xn∈H
g−1[x1,...,xn]∈ClG([x1,...,xn])

|CG([x1, . . . , xn])|.

Corollary 2.7 (See [4], Theorem 2.3). In Proposition 2.5 , if m = n =
1, then

p(1,1)
g (H,K) =

1

|H| |K|
∑
x∈H

g−1x∈ClK (x)

|CK(x)|.

In particular, if G = K, then

p(1,1)
g (H,G) =

1

|H| |G|
∑
x∈H

g−1x∈ClG(x)

|CG(x)|.

Corollary 2.8 (See [7], Proof of Lemma 4.2). In Proposition 2.5 , if
m = 1 and G = K, then

p
(n,1)
1 (H,G) = d(n)(H,G) =

1

|H|n |G|
∑

x1,...,xn∈H
|CG([x1, . . . , xn])|.

Corollary 2.9. In Proposition 2.5 , if CK([x1, . . . , xn]) = 1, then

p
(n,m)
1 (H,K) =

1

|H|n
+

1

|K|m
− 1

|H|n |K|m
.

The result [4, Proposition 3.4] follows from Corollary 2.9, when m =
n = 1.

Remark 2.10. Equation (1.7) makes the study of p
(n,1)
1 (H,G) and that

of d(n)(H,G) equivalent. This is illustrated in Corollary 2.8 and noted
here for the first time. Therefore, there are many information from
[2, 7, 9, 17] and [3, 4, 16] which can be connected. It is relevant to point
out that these concepts were treated independently and with different
methods in the last few years.

Let χ be a character of G and θ a character of H ≤ G. The Frobe-
nius Reciprocity Law [14, Lemma 5.2] gives a link between the restric-
tion χH of χ to H and the induced character θG of θ. Therefore
〈χ, θG〉G = 〈χH , θ〉H . Write this number as e(χ,θ) = 〈χ, θG〉G = 〈χH , θ〉H .
If e(χ,θ) = 0, then θ does not appear in χH and so χ does not ap-

pear in θG. Recall from [14] that, if e(χ,θ) 6= 0, then χ covers θ (or
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θ belongs to the constituents of χH). In particular, if θ = χH , then
e(χ,χH) = 〈χ, (χH)G〉G = 〈χH , χH〉H . From a classic relation (see [14,

Lemma 2.29]), e(χ,χH) = 〈χ, (χH)G〉G = 〈χH , χH〉H ≤ |G : H| 〈χ, χ〉G =
|G : H|e(χ,χ) and the equality holds if and only if χ(x) = 0 for all
x ∈ G − H. In particular, if χ ∈ Irr(G), then 〈χH , χH〉H = |G :
H| if and only if χ(x) = 0, for all x ∈ G − H. Therefore the follow-
ing result is straightforward.

Corollary 2.11. If H is a subgroup of a group G, then

p(1,1)
g (H,G) ≤ |G : H| p1(G),

and the equality holds if and only if all characters vanish on G−H.

At this point, [4, Theorem 4.2] becomes

(2.2) ζ(g) = |H|
∑

χ∈Irr(G)

e(χH ,χH)

χ(1)
·χ(g) = |{(x, y) ∈ H×G | [x, y] = g}|

=
∑
x∈H

g−1x∈ClG(x)

|CG(x)|,

where ζ(g) is the number of solutions (x, y) ∈ H × G of the equation
[x, y] = g. Note that (2.2) and [1, Excercise 3, p. 183] give a short
argument to prove that ζ(g) is a character of G with respect to the
argument in [4, Corollary 4.3]. The equation (1.8) becomes

p(1,1)
g (H,G) =

ζ(g)

|H| |G|
.

For the general case, when n > 1, m > 1 and G = K, we have

p(n,m)
g (H,G) =

ζ(n,m)(g)

|H|n |G|m

=
1

|H|n |G|m
( ∑

x1,...,xn∈H
g−1[x1,...,xn]∈ClG([x1,...,xn])

|CG([x1, . . . , xn])|m
)
,

where

ζ(n,m)(g) =
∑

x1,...,xn∈H
g−1[x1,...,xn]∈ClG([x1,...,xn])

|CG([x1, . . . , xn])|m

is the number of solutions (x1, . . . , xn, y1, . . . , ym) ∈ Hn × Gm of the
equation [x1, . . . , xn, y1, . . . , ym] = g.
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Remark 2.12. There are many evidences from the computations that
ζ(n,m)(g) is a character of G. The research report in [20] contains some
similar computations in this direction.

Now we may prove upper bounds for (1.1), finding that (2.1) is mono-
tone.

Proposition 2.13. Let H and K be two subgroups of a group G. If
H ≤ K, then

p(n,m)
g (H,G) ≥ p(n,m)

g (K,G).

The equality holds if and only if ClH(x) = ClK(x) for all x ∈ G.

Proof. We note that 1
|K| ≤

1
|H| and then 1

|K|n ≤
1
|H|n . By Proposition

2.5, we have

|G|m · p(n,m)
g (K,G) =

1

|K|n
∑

x1,...,xn∈K
g−1[x1,...,xn]∈ClG([x1,...,xn])

|CG([x1, . . . , xn])|

≤ 1

|H|n
∑

x1,...,xn∈K
g−1[x1,...,xn]∈ClG([x1,...,xn])

|CG([x1, . . . , xn])|.

In particular, the last relation is true for x1, . . . , xn ∈ H ≤ K, and by
continuing this process,

=
1

|H|n
∑

x1,...,xn∈H
g−1[x1,...,xn]∈ClG([x1,...,xn])

|CG([x1, . . . , xn])| = |G|m · p(n,m)
g (H,G).

The rest of the proof is clear. �

The next result shows an upper bound, which generalizes [7, Theorem
4.6].

Proposition 2.14. Let N be a normal subgroup of a group G and H a
subgroup of G such that H ≥ N , then

p(n,m)
g (H,G) ≤ p(n,m)

g

(H
N
,
G

N

)
.

Moreover, if N ∩ [nH, mG] = 1, then the equality holds.

Proof. The normality ofN allows us to consider the quotientG/N . Then

|H|n |G|m p(n,m)
g (H,G) = |A|

= |{(x1, . . . , xn, y1, . . . , ym) ∈ Hn×Gm | [x1, . . . , xn, y1, . . . , ym]·g−1 = 1}|
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= |{(x1, . . . , xn, y1, . . . , ym) ∈ Hn×Gm | [x1, . . . , xn, y1, . . . , ym, g−1] = 1}|

=
∑
x1∈H

. . .
∑
xn∈H

∑
y1∈G

. . .
∑
ym∈G

|CG([x1, . . . , xn, y1, . . . , ym])|

=
∑
x1∈H

. . .
∑
xn∈H

∑
y1∈G

. . .
∑
ym∈G

|CG([x1, . . . , xn, y1, . . . , ym])N | · |CN ([x1, . . . , xn, y1, . . . , ym])|
|N |

≤
∑
x1∈H

. . .
∑
xn∈H

∑
y1∈G

. . .
∑
ym∈G

|CG/N ([x1N, . . . , xnN, y1N, . . . , ymN ])|

·|CN ([x1, . . . , xn, y1, . . . , ym])|

=
∑

S1∈H/N

∑
x1∈S1

. . .
∑

Sn∈H/N

∑
xn∈Sn

∑
T1∈G/N

∑
y1∈T1

. . .
∑

Tm∈G/N

∑
ym∈Tm

|CG/N ([S1, . . . , Sn, T1, . . . , Tm])| · |CN ([x1, . . . , ym])|

=
( ∑
S1∈H/N

. . .
∑

Sn∈H/N

∑
T1∈G/N

. . .
∑

Tm∈G/N

|CG/N ([S1, . . . , Sn, T1, . . . , Tm])|
)

·
( ∑
x1∈S1

. . .
∑
xn∈Sn

∑
y1∈T1

. . .
∑

ym∈Tm

|CN ([x1, . . . , ym])|
)

≤ |N |n+m
∑

S1∈H/N

. . .
∑

Sn∈H/N

∑
T1∈G/N

. . .
∑

Tm∈G/N

|CG/N ([S1, . . . , Sn, T1, . . . , Tm])|

=
∣∣∣H
N

∣∣∣n ∣∣∣G
N

∣∣∣m p(n,m)
g

(H
N
,
G

N

)
|N |n+m

= |H|n |G|m p(n,m)
g

(H
N
,
G

N

)
.

The condition of equality in the above relations is satisfied exactly when
N ∩ [nH, mG] = 1. The result follows. �

Corollary 2.15. A special case of Proposition 2.14 is pg(G) ≤ pg(G/N).

Corollary 2.16 (See [7], Theorem 4.6). In Proposition 2.14 , if m = 1
and g = 1, then

d(n)(H,G) ≤ d(n)(H/N,G/N).
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3. Some upper and lower bounds

A relation between (1.1)–(1.8) is described below.

Theorem 3.1. If H and K are subgroups of a group G, then

p(n,m)
g (G,G) ≤ p(n,m)

g (H,K) ≤ p
(n,m)
1 (H,K) ≤ p

(n,m)
1 (H,G) ≤ p

(n,m)
1 (H,H).

Proof. From Proposition 2.13, p
(n,m)
g (G,G) ≤ p

(n,m)
g (G,H). From Propo-

sition 2.5, one has

p(n,m)
g (H,K) =

1

|H|n |K|m
∑

x1,...,xn∈H
g−1[x1,...,xn]∈ClK ([x1,...,xn])

|CK([x1, . . . , xn])|m,

and for g = 1 we get

p(n,m)
g (H,K) ≤ 1

|H|n |K|m
∑

x1,...,xn∈H
|CK([x1, . . . , xn])|m = p

(n,m)
1 (H,K),

where in the last passage Proposition 2.5 is again used. From

CK([x1, . . . , xn]) ⊆ CG([x1, . . . , xn]),

we deduce

p(n,m)
g (H,K) ≤

∑
x1,...,xn∈H

|CG([x1, . . . , xn])|m = p
(n,m)
1 (H,G).

Applying Proposition 2.4, p
(n,m)
1 (H,G) = p

(n,m)
1 (G,H) and so we have

p
(n,m)
1 (G,H) ≤ p

(n,m)
1 (H,H) by Proposition 2.13. �

Corollary 3.2. Let H and K be subgroups of a group G. If G has trivial
center, then

p(n,1)
g (H,K) ≤ 2n − 1

2n
.

Proof. It follows from Theorem 3.1 and [7, Theorem 5.3]. �

Another significant restriction is the following.

Theorem 3.3. Let H and K be two subgroups of a group G and let p
be the smallest prime divisor of |G|. Then

(i) p
(n,m)
g (H,K) ≤ 2pn+p−2

pm+n ;

(ii) p
(n,m)
g (H,K) ≥ (1−p)|YHn |+p|Hn|

|Hn| |Km| − (|K|+p)|CH(K)|n
|Hn| |Km| ;

where YHn = {[x1, . . . , xn] ∈ Hn | CK([x1, . . . , xn]) = 1}.
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Proof. If [nH, mK] = 1, then CHn(Km) = Hn and YHn is equal to Hn or
it is the empty set provided that Km is trivial or nontrivial, respectively.
Assume that [nH, mK] 6= 1. Then

YHn ∩ CHn(Km) = YHn ∩ (CH(Km)× . . .× CH(Km))

= YHn ∩ (CH(K)× CH(K)× . . .× CH(K)) = YHn ∩ (CH(K))nm 6= ∅,
and ∑

x1,...,xn∈H
|CKm([x1, . . . , xn])| =

∑
x1,...,xn∈H

|CK([x1, . . . , xn])|m

∑
x1,...,xn∈YHn

|CK([x1, . . . , xn])|m +
∑

x1,...,xn∈CHn (K)

|CK([x1, . . . , xn])|m

+
∑

x1,...,xn∈Hn−(YHn∪CHn (K))

|CK([x1, . . . , xn])|m

= |YHn |+ |K| |CH(K)|n +
∑

x1,...,xn∈Hn−(YHn∪CHn (K))

|CK([x1, . . . , xn])|m.

Since

pm ≤ |CK([x1, . . . , xn])|m ≤ |K
m|

pm
,

we have |YHn | ≤ |Hn| and pn ≤ |CH(K)|n ≤ |H
n|

pn . It follows that

|Hn| · |Km| · p(n,m)
g ≤ |YHn |+ |K| |CH(K)|n + (|Hn|

−(|YHn |+ |CH(K)|n) · |K
m|

pm

and then
(3.1)

p(n,m)
g (H,K) ≤ |YHn |

|Hn| |Km|
+
|K| |CH(K)|n

|Hn| |Km|
+

1

pm
− |YHn |
pm |Hn|

− |CH(K)|n

pm |Hn|

1

pm
+

1

pm+n−1 +
1

pm
− 1

pm+n
− 1

pm+n
=

2pn + p− 2

pm+n
.

Hence (i) follows. On the other hand, we may continue in the opposite
direction

|Hn| · |Km| · p(n,m)
g ≥ |YHn |+ |K| |CH(K)|n

+p (|Hn| − (|YHn |+ |CH(K)|n)
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and then

p(n,m)
g (H,K) ≥ (1− p)|YHn |

|Hn| |Km|
+

p

|Km|
− (|K|+ p)|CH(K)|n

|Hn| |Km|
.

Thus (ii) follows. �

The bound in Theorem 3.3 (i) is a little bit different from the bound

in [4, Corollary 3.9], where it is proved that p
(1,1)
g (H,K) ≤ 2p−1

p2
and

in particular p
(1,1)
g (H,K) ≤ 3

4 . We conclude the following structural
restriction.

Corollary 3.4. In Theorem 3.3, if p
(n,m)
g (H,K) = 2pn+p−2

pm+n and p 6= 2,

then

p · p
1
n

(p− 2)
1
n

≥ |H : CH(K)|.

Proof. Looking at (3.1) and the proof of Theorem 3.3 (i), we deduce

2pn + p− 2

pm+n
≤ |YHn |
|Hn| |Km|

+
|K||CH(K)|n

|Hn| |Km|
+

1

pm

≤ 1

pm
+

1

pm−1

∣∣∣CH(K)

H

∣∣∣n +
1

pm
=

1

pm−1

(2

p
+ |CH(K)

H
|n
)
,

and then
2pn + p− 2

pn+1
≤ 2

p
+
∣∣∣CH(K)

H

∣∣∣n.
We conclude that

2pn + p− 2

pn+1
− 2

p
=
p− 2

pn+1
≤
∣∣∣CH(K)

H

∣∣∣n,
and then

pn+1

p− 2
≥
∣∣∣ H

CH(K)

∣∣∣n.
Extracting the n-th root, we have

p · p
1
n

(p− 2)
1
n

≥ |H : CH(K)|.

Now the result follows. �
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