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SOME DIFFERENCE RESULTS ON HAYMAN

CONJECTURE AND UNIQUENESS

K. LIU∗, T. B. CAO AND X. L. LIU

Communicated by Javad Mashreghi

Abstract. In this paper, we show that for any finite order entire
function f(z), the function of the form f(z)n[f(z+c)−f(z)]s has no
nonzero finite Picard exceptional value for all nonnegative integers
n, s satisfying n ≥ 3, which can be viewed as a difference result
on Hayman conjecture. We also obtain some uniqueness theorems
for difference polynomials of entire functions sharing one common
value.

1. Introduction

A meromorphic function f means meromorphic in the whole complex
plane. If no poles occur, then f reduces to an entire function. Recall that
α(z) 6≡ 0,∞ is a small function with respect to f , if T (r, α) = S(r, f),
where S(r, f) denotes any quantity satisfying S(r, f) = o(T (r, f)), as
r →∞ outside of a possible exceptional set of finite logarithmic measure.
We say that two meromorphic functions f and g share a small function α
IM (ignoring multiplicities) when f − α and g − α have the same zeros.
If f − α and g − α have the same zeros with the same multiplicities,
then we say that f and g share the small function α CM (counting
multiplicities). We assume that the reader is familiar with standard
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notations and fundamental results of Nevanlinna Theory, such as [11,
12, 22]. We use ρ(f) to denote the order of f(z).

The Hayman conjecture [10] is an important research subject in con-
sidering the value distributions of differential polynomials, that is if f is
a transcendental meromorphic function and n ∈ N, then fnf ′ takes ev-
ery finite nonzero value infinitely often. This conjecture has been solved
by Hayman [9] for n ≥ 3, by Mues [18] for n = 2, by Bergweiler and
Eremenko [1] for n = 1. From above, it shows that the finite Picard
exceptional value of fnf ′ may only be zero. Recently, Chiang and Feng
[4], Halburd and Korhonen [6, 7, 8] established some difference results of
Nevanlinna theory, such as the lemma of difference of logarithmic deriv-
ative, the difference Clunie lemma, the difference second main theorem
and so on. Bergweiler and Langley [2] also considered the zeros distri-
butions of f(z + c) − f(z) that can be viewed as discrete analogues of
the zeros of f ′(z) [5].

Hence, it is necessary to consider the subject of Hayman conjecture
in difference, which means that f ′(z) will be replaced by f(z + c) or
∆cf = f(z+c)−f(z). Here and in the following, c is a nonzero complex
constant. Recently, some papers are devoted to this subject or related
subjects, such as [13]-[17], [23]. Laine and Yang [13, Theorem 2] proved
the following:

Theorem A. Let f be a transcendental entire function with finite order,
and n ≥ 2. Then f(z)nf(z + c) assumes every nonzero value a ∈ C
infinitely often.

About the zeros distributions of f(z)n∆cf , a result can be stated as
follows:

Theorem B. [14, Theorem 1.4] Let f(z) be a transcendental entire
function with finite order, ∆cf 6≡ 0 and let n ≥ 2 be an integer. Then
f(z)n∆cf−p(z) has infinitely many zeros, where p(z) 6≡ 0 is a polynomial
in z.

In this paper, we will use the Nevanlinna second main theorem and
Hadmard factorization theorem of entire functions to obtain the follow-
ing result.

Theorem 1.1. Let f(z) be a transcendental entire function with finite
order and ∆cf 6≡ 0. If n ≥ 3, n, s ∈ N, then f(z)n(∆cf)s − α(z) has
infinitely many zeros, where α(z) is a small function with respect to f(z).
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If α(z) is an entire function satisfies ρ(α) < ρ(f), then n can be reduced
to n ≥ 2.

Remark: (1) Obviously, Theorem 1.1 is an improvement of Theorem
B. Moreover, it is interesting to find that the result is independent of
the number s. In fact, if s = 0, the same conclusion can be obtained
using the second main theorem for three small functions [11, Theorem
2.5].

(2) If n = 1, Theorem 1.1 is not true, which can be seen by the
function f(z) = ez + p(z), where c = 2kπi and p(z) is a nonconstant
polynomial. Thus,

f(z)[f(z + c)− f(z)]s = [ez + p(z)][p(z + c)− p(z)]s.

Let α(z) = p(z)[p(z + c)− p(z)]s, then

f(z)[f(z + c)− f(z)]s − α(z) = [p(z + c)− p(z)]sez,

which has only finitely many zeros. If n = 2, and α is any small function
with respect to f , we have not succeeded in proving that Theorem 1.1
is still valid.

(3) In the condition of finite order can not be removed, which can be
seen by the function f(z) = z

eez
of infinite order, and

f(z)n∆cf − zn(z + c) = − zn+1

e(n+1)ez

has only one zero with n+ 1 multiplicities, where ec = −n.

In the following, we will consider the case of meromorphic functions
of Theorem 1.1. We also can obtain the following result.

Theorem 1.2. Let f be a transcendental meromorphic function with
finite order and ∆cf 6≡ 0. If n ≥ s + 6, n, s ∈ N, then the difference
polynomial f(z)n(∆cf)s − α(z) has infinitely many zeros, where α(z) is
a small function with respect to f(z) .

Some results on the existence and growth of solutions of difference
equations can be found in [3, 4, 6, 19]. Here, from Theorem 1.1 and
Theorem 1.2, we immediately get the following result on some nonlinear
difference equations.

Corollary 1.3. Let p(z), q(z) be polynomials, n, s ∈ N. Then the dif-
ference equation

f(z)n(∆cf)s − p(z) = q(z)
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has no transcendental entire solutions with finite order, provided that,
n ≥ 2. This equation has no transcendental meromorphic functions with
finite order if n ≥ s+ 6, unless f(z) is a periodic function with period c.

In 1997, Yang and Hua studied the unicity of the differential mono-
mials fnf ′ and proved the uniqueness theorem of meromorphic func-
tion, such as [21, Theorem 1]. They also pointed out that the following
uniqueness result in the case f is an entire function.

Theorem D. Let f and g be two nonconstant entire functions, let a be
a nonzero constant, and let n ≥ 7 be a positive integer. If fnf ′ and gng′

share a CM, then either f = tg for tn+1 = 1, or f = c1e
cz and g = c2e

−cz

for some nonzero constants c, c1 and c2 with (c1c2)n+1c2 = −a2.

Similarly, we can investigate the uniqueness of difference polynomials
sharing one common value. We now obtain the following two theorems.

Theorem 1.4. Let f and g be transcendental entire functions with finite
order, and let n ≥ 9, n, s ∈ N. If f(z)n[f(z+c)−f(z)]s and g(z)n[g(z+
c)− g(z)]s share the nonzero value d CM, then f(z)n[f(z+ c)−f(z)]s =

g(z)n[g(z + c) − g(z)]s or fg = t for tn+s = d2

(a−1)s(b−1)s , where a, b are
nonzero constants.

Remark: Let f(z) = 2
z
c
A
ez and g(z) = 1

2

z
c ez, where c = 2kπi, k ∈ N

and An+s = (−2)s. By calculating, we know that

f(z)n[f(z + c)− f(z)]s − 1 =
(2

z
2kπiA)n+s − ez(n+s)

ez(n+s)
,

and

g(z)n[g(z + c)− g(z)]s − 1 =
ez(n+s) − (2

z
2kπiA)n+s

(2
z

2kπi )n+s(−2)s
.

Furthermore, all zeros of f(z)n[f(z+ c)−f(z)]s−1 and g(z)n[g(z+ c)−
g(z)]s− 1 are simple. Thus, f(z)n[f(z+ c)− f(z)]s and g(z)n[g(z+ c)−
g(z)]s share 1 CM. It shows that the second case of Theorem 1.4 can
occur.

Theorem 1.5. Let f and g be transcendental entire functions with finite
order, and let n ≥ 15, n, s ∈ N. If f(z)n[f(z+c)−f(z)]s and g(z)n[g(z+
c)− g(z)]s share the nonzero value d IM, then f(z)n[f(z+ c)− f(z)]s =

g(z)n[g(z + c) − g(z)]s or fg = t for tn+s = d2

(a−1)s(b−1)s , where a, b are
nonzero constants.
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Remark: If f(z)n[f(z+ c)− f(z)]s = g(z)n[g(z+ c)− g(z)]s, we believe
that f = tg, where tn+s = 1, or f, g are periodic functions with period
c, but we did not succeed in proving that.

2. Some Lemmas

true cm The difference logarithmic derivative lemma of functions with
finite order, given by Chiang and Feng [4, Corollary 2.5], Halburd and
Korhonen [6, Theorem 2.1], plays an important part in considering the
difference Nevanlinna theory. Here, we state the following version.

Lemma 2.1. [8, Theoem 5.6] Let f be a transcendental meromorphic
function with finite order. Then

(2.1) m

(
r,
f(z + c)

f(z)

)
= S(r, f),

for all r outside of a set of finite logarithmic measure.

The following result is important when considering the characteristic
function of difference operator of entire functions.

Lemma 2.2. Let f be a transcendental entire function with finite order.
Then

(2.2) T (r, f(z + c)− f(z)) ≤ T (r, f) + S(r, f).

Proof. Since f is an entire function, then

T (r, f(z + c)− f(z)) = m

(
r, f(z)(

f(z + c)

f(z)
− 1)

)
≤ m(r, f) +m

(
r,
f(z + c)

f(z)

)
+O(1)

≤ T (r, f) + S(r, f).(2.3)

�

But, if f is a transcendental meromorphic function in Lemma 2.2, we
only get

T (r, f(z + c)− f(z)) ≤ 2T (r, f) + S(r, f).

The proof is trivial using the following lemma.

Lemma 2.3. [4, Theorem 2.1] Let f(z) be a transcendental meromor-
phic function with finite order. Then,

(2.4) T (r, f(z + c)) = T (r, f) + S(r, f).
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For the proof of Theorem 1.1 and Theorem 1.2, we need the following
lemma.

Lemma 2.4. Let f(z) be a transcendental meromorphic function with
finite order. Then,

(2.5) T (r, f(z)n[f(z + c)− f(z)]s) ≥ (n− s)T (r, f) + S(r, f).

If f(z) is a transcendental entire function with finite order. Then,
(2.6)
(n+s)T (r, f)+S(r, f) ≥ T (r, f(z)n[f(z+c)−f(z)]s) ≥ nT (r, f)+S(r, f).

Proof. Assume that G(z) = f(z)n[f(z + c)− f(z)]s, then

(2.7)
1

f(z)n+s
=

1

G

[
f(z + c)− f(z)

f(z)

]s
.

Combining the first main theorem of Nevanlinna, Lemma 2.1 and (2.4),
we get

(n+ s)T (r, f) ≤ T (r,G(z)) + T (r,

[
f(z + c)− f(z)

f(z)

]s
) +O(1)

≤ T (r,G(z)) + sm

(
r,
f(z + c)− f(z)

f(z)

)
+sN

(
r,
f(z + c)− f(z)

f(z)

)
+O(1)

≤ T (r,G(z)) + sN

(
r,
f(z + c)

f(z)

)
+ S(r, f)

≤ T (r,G(z)) + 2sT (r, f) + S(r, f),(2.8)

thus (2.5) follows.
If f(z) is a transcendental entire function with finite order, we get

T (r, f(z)n[f(z+ c)− f(z)]s) ≤ (n+ s)T (r, f) +S(r, f) from Lemma 2.2.
Using similar method as above, it is easy to obtain (2.6). �

Lemma 2.5. [21, Lemma 3] Let F and G be two nonconstant meromor-
phic functions. If F and G share 1 CM, then one of the following three
cases holds:

(i) max{T (r, F ), T (r,G)} ≤ N2(r, 1
F )+N2(r, F )+N2(r, 1

G)+N2(r,G)+
S(r, F ) + S(r,G),

(ii) F = G,
(iii) F ·G = 1,
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where N2(r, 1
F ) denotes the counting function of zeros of F such that

simple zeros are counted once and multiple zeros are counted twice.

For the proof of Theorem 1.5, we need the following lemma.

Lemma 2.6. [20, Lemma 2.3] Let F and G be two nonconstant mero-
morphic functions sharing the value 1 IM. Let

H =
F ′′

F ′
− 2

F ′

F − 1
− G′′

G′
+ 2

G′

G− 1
.

If H 6≡ 0, then

T (r, F ) + T (r,G) ≤ 2

(
N2(r,

1

F
) +N2(r, F ) +N2(r,

1

G
) +N2(r,G)

)
+ 3

(
N(r, F ) +N(r,G) +N(r,

1

F
) +N(r,

1

G
)

)
+ S(r, F ) + S(r,G).(2.9)

3. Proofs of Theorem 1.1 and 1.2

Let G(z) = f(z)n[f(z+ c)− f(z)]s. From (2.6), we know that G(z) is
not a constant, we also get S(r,G) = S(r, f). Since f is an entire func-
tion, from the Nevanlinna second main theorem for three small functions
[11, Theorem 2.5], Lemma 2.2 and (2.6), we obtain

nT (r, f) ≤ T (r,G) + S(r, f)

≤ N(r,G) +N(r,
1

G
) +N(r,

1

G− α
) + S(r, f)

≤ N(r,
1

f
) +N

(
r,

1

f(z + c)− f(z)

)
+N(r,

1

G− α
) + S(r, f)

≤ 2T (r, f) +N(r,
1

G− α
) + S(r, f).(3.1)

Since n ≥ 3, then (3.1) implies that G− α has infinitely many zeros.
If n = 2, α is an entire function with respect to f and ρ(α) < ρ(f) = ρ,

that is, T (r, α) = O(rρ−ε), 0 < ε < 1. Suppose on contrary to the
assertion that f(z)2[f(z + c) − f(z)]s − α(z) has finitely many zeros.
Then

(3.2) f(z)2[f(z + c)− f(z)]s − α(z) = P (z)eQ(z),
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where P (z) is nonzero polynomials andQ(z) is nonconstant polynomials.
Because otherwise, we get

T (f(z)2[f(z + c)− f(z)]s) = O(rρ−ε) + S(r, f),

which is a contradiction to (2.6).

Differentiating (3.2) and eliminating eQ(z), we obtain

(3.3) f(z)2+sF (z, f) = q∗(z),

where

F (z, f) = 2
f ′(z)

f(z)

[
f(z + c)− f(z)

f(z)

]s
+ s

[
f(z + c)− f(z)

f(z)

]s−1

f ′(z + c)− f ′(z)
f(z)

− p∗(z)
[
f(z + c)− f(z)

f(z)

]s
,

and

p∗(z) =
P ′(z) + P (z)Q′(z)

P (z)
, q∗(z) = α′(z)− p∗(z)α(z).

We now prove that F (z, f) cannot vanish identically. Indeed, if
F (z, f) ≡ 0, then

α′(z)− p∗(z)α(z) ≡ 0.

By integrating above equation, we have

α(z) = AP (z)eQ(z),

where A is a nonzero constant. Substitute the above into (3.2), we get

(3.4) f(z)2[f(z + c)− f(z)]s = (A+ 1)P (z)eQ(z).

Thus, the zeros of f must be the zeros of P (z). Then f(z) = a(z)eb(z),
a(z), b(z) are nonzero polynomials. Since the zeros of f(z + c) − f(z)
also must be the zeros of P (z), then b(z + c) − b(z) ≡ b, where b is a
nonzero constant. Thus, b(z) must be a linear polynomial. It implies
that the order of f must be one. Hence, from (3.4), we know that Q(z)
is also a linear polynomial, which is a contradiction to ρ(α) < ρ(f) = ρ.
Thus, we get F (z, f) 6≡ 0.

By Lemma 2.1 and the lemma of logarithmic derivative, we get

(3.5) m(r, F (z, f)) = S(r, f).

From the Clunie lemma [12, Lemma 2.4.2], we obtain

(3.6) m(r, fF (z, f)) = O(rρ−ε) + S(r, f).
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We know that the poles of F (z, f) may be located only at the zeros of
f(z) and P (z). And the zero of f(z) with multiplicity l should be a pole
of F (z, f) with multiplicity at most sl+ 1. Thus the zero multiplicity of
the left hand side of (3.3) is at least 2l − 1. Hence these zeros must be
the zeros of q∗(z). Thus, we obtain that

(3.7) N(r,
1

f
) = O(rρ−ε) + S(r, f).

So

(3.8) N(r, F (z, f)) = O(rρ−ε)

and

(3.9) N(r, fF (z, f)) = O(rρ−ε).

Hence from (3.5) and (3.8),

T (r, F (z, f)) = O(rρ−ε) + S(r, f)

and from (3.6) and (3.9),

T (r, fF (z, f)) = O(rρ−ε) + S(r, f).

Therefore

T (r, f(z)) = O(rρ−ε) + S(r, f),

which contradicts the assumption that f(z) is a transcendental function
of finite order ρ. Thus, we have completed the proof of Theorem 1.1.

If f is a meromorphic function, from (2.5) and Lemma 2.3, we know
that G(z) is not a constant. Similar to the above,

(n− s)T (r, f) ≤ T (r,G) + S(r, f)

≤ N(r,G) +N(r,
1

G
) +N(r,

1

G− α
) + S(r,G)

≤ 2T (r, f) +N(r,
1

f
) +N(r,

1

f(z + c)− f(z)
)

+N(r,
1

G− α
) + S(r, f)

≤ 5T (r, f) +N(r,
1

G− α
) + S(r, f).(3.10)

Since n ≥ s+6, then (3.10) implies that G−α has infinitely many zeros.
Thus, we have competed the proof of Theorem 1.2.
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4. Proof of Theorem 1.4

Let F = f(z)n[f(z+c)−f(z)]s

d andG = g(z)n[g(z+c)−g(z)]s
d . Since f(z)n[f(z+

c)− f(z)]s and g(z)n[g(z+ c)− g(z)]s share the value d CM, then F and
G share the value 1 CM. Hence, Lemma 2.2 and Lemma 2.5 (i) imply
that

T (r, F ) ≤ N2(r,
1

F
) +N2(r,

1

G
) + S(r, F ) + S(r,G)

≤ 2N(r,
1

f
) + 2N

(
r,

1

f(z + c)− f(z)

)
+2N

(
r,

1

g(z + c)− g(z)

)
+2N(r,

1

g
) + S(r, f) + S(r, g)

≤ 2N(r,
1

f
) + 2T (r, f(z + c)− f(z))+2T (r, g(z + c)− g(z))

+2N(r,
1

g
) + S(r, f) + S(r, g)

≤ 4T (r, f) + 4T (r, g) + S(r, f) + S(r, g).

Thus, from (2.6), we get

nT (r, f) ≤ 4T (r, f) + 4T (r, g) + S(r, f) + S(r, g).(4.1)

Similarly, we obtain

nT (r, g) ≤ 4T (r, f) + 4T (r, g) + S(r, f) + S(r, g).(4.2)

Thus, combining (4.1) with (4.2), we get that

n[T (r, f) + T (r, g)] ≤ 8[T (r, f) + T (r, g)] + S(r, f) + S(r, g),(4.3)

which is a contradiction with n ≥ 9. Thus, from Lemma 2.5, we get
F = G or F ·G = 1. If F ·G = 1, it follows that

f(z)n[f(z + c)− f(z)]s · g(z)n[g(z + c)− g(z)]s = d2.(4.4)

From (4.4) and the fact that g is an entire function, we know that finite
order entire functions f(z) and f(z + c) − f(z) has no zeros. Assume

that f(z) = eA(z), where A(z) is a nonconstant polynomial, then

eA(z+c) − eA(z) = eA(z)(eA(z+c)−A(z) − 1)

has no zeros, which implies that A(z + c) − A(z) must be a constant.
Thus, we obtain that

(4.5)
f(z + c)

f(z)
= a,
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where a is a nonzero constant. Thus, the solutions of the equation (4.5)

can be written in the form of f(z) = a
z
cΠ1(z), where Π1(z) is a periodic

function with period c. Similarly, g(z) = b
z
cΠ2(z), where g(z+c)

g(z) = b is

a nonzero constant and Π2(z) is also a periodic function with period c.
Hence, (4.4) changes into

f(z)n+sg(z)n+s =
d2

(a− 1)s(b− 1)s
.

Thus, f(z)g(z) = t, where t is a (n+ s)th root of d2

(a−1)s(b−1)s .

Remark: In a special case, if s = 1 in Theorem 1.4, then we know that

N2(r,
1

F
) ≤ 2N(r.

1

f
) +N(r,

1

f(z + c)− f(z)
).

Thus, when s = 1, from the above proof, we can assume that n ≥ 7 .

5. Proof of Theorem 1.5

Let F = f(z)n[f(z+c)−f(z)]s

d , G = g(z)n[g(z+c)−g(z)]s
d , and let H be de-

fined in Lemma 2.6. If H 6≡ 0, from (2.9), we get

n[T (r, f) + T (r, g)] ≤ 2N2(r,
1

F
) + 2N2(r,

1

G
) + 3N(r,

1

F
)

+3N(r,
1

G
) + S(r, f) + S(r, g)

≤ 7N(r,
1

f
) + 7Nr,

1

f(z + c)− f(z)
) + 7N(r,

1

g
)

+7N(r,
1

g(z + c)− g(z)
) + S(r, f) + S(r, g)

≤ 14[T (r, f) + T (r, g)] + S(r, f) + S(r, g),(5.1)

which is a contradiction with n ≥ 15. As above, we remark that if s = 1,
n ≥ 13 is sufficient.

Thus, we get H ≡ 0. The following proof is trivial, which can be seen
in many literatures. The original idea is due to Yang and Yi [22]. Here,
we give a complete proof. By integrating H twice, we obtain

(5.2) F =
(b+ 1)G+ (a− b− 1)

bG+ (a− b)
, G =

(a− b)F − (a− b− 1)

(b+ 1)− Fb
,

which implies T (r, F ) = T (r,G) + O(1). We will show that F = G or
F ·G = 1.
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Case 1. b 6= 0,−1. If a− b− 1 6= 0, then by (5.2), we get

(5.3) N(r,
1

F
) = N

(
r,

1

G− a−b−1
b+1

)
.

By the Nevanlinna second main theorem and Lemma 2.4 and (2.6), we
have

T (r,G) ≤ N(r,
1

G
) +N(r,G) +N

(
r,

1

G− a−b−1
b+1

)
+ S(r,G)

≤ N(r,
1

G
) +N(r,G) +N(r,

1

F
) + S(r,G)

≤ N(r,
1

g
) +N(r,

1

g(z + c)− g(z)
)

+N(r,
1

f
) +N(r,

1

f(z + c)− f(z)
) + S(r, g)

≤ 2T (r, f) + 2T (r, g) + S(r, g).(5.4)

Using the same method as above, we have

T (r, F ) ≤ 2T (r, f) + 2T (r, g) + S(r, f).(5.5)

Thus, from (5.4) and (5.5), we get

n[T (r, f) + T (r, g)] ≤ 4[T (r, f) + T (r, g)] + S(r, f) + S(r, g).(5.6)

which contradicts the assumption n ≥ 15. Thus, a − b − 1 = 0, and
hence

(5.7) F =
(b+ 1)G

bG+ 1
.

Using the same method as above,

T (r,G) ≤ N(r,
1

G
) +N(r,G) +N

(
r,

1

G+ 1
b

)
+ S(r,G)

≤ N(r,
1

G
) +N(r,G) +N(r, F ) + S(r,G)

≤ 2T (r, g) + S(r,G),(5.8)

which is also a contradiction.
Case 2. b = 0, a 6= 1. From (5.2), we have

(5.9) F =
G+ a− 1

a
.
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Similarly, we also can get a contradiction. Thus, a = 1 follows which
implies that F = G.

Case 3. b = −1, a 6= −1. From (5.2), we obtain

(5.10) F =
a

a+ 1−G
.

Similarly, we get a contradiction, and a = −1 follows. Therefore, we get
F ·G = 1.

Therefore, using the same method as Theorem 1.4, we can get the
proof of Theorem 1.5.
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