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Abstract. Let Mn,m be the set of all n×m matrices with entries
in F, where F is the field of real or complex numbers. A real or
complex n×n matrix is generalized row stochastic (g-row stochastic)
if all of its row sums equal one. For X, Y ∈ Mn,m , we say that Y
is right gw-majorized by X and write X �rgw Y if Y=XR for some
g-row stochastic matrix R. Here, we characterize all strong linear
preservers of �rgw on Mn,m.

1. Introduction

A nonnegative real n × n matrix R is said to be row stochastic, if
Re = e, where e = (1, ..., 1)t ∈ Fn. The following generalization of
stochastic matrices were introduced in [5]. A complex (not necessarily
nonnegative) n × n matrix R is said to be g-row (g-doubly) stochastic,
if Re=e (Re = e and Rte = e). The notion of matrix majorization was
introduced by Dahl in [6]. According to that definition, a matrix A is
right matrix majorized (or right weak majorized) by B if there exists
an n × n row stochastic matrix R such that A=BR, and is denoted by
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B �r A. The concept of the left matrix majorization is defined similarly
and denoted by �l. The definitions of generalized majorizations (g-
majorization) are motivated by the matrix majorization as follows:

gs-majorization: A matrix A is said to be g-majorized by B strongly
if there exists an n× n g-doubly stochastic matrix D such that A=DB,
and is denoted by B �gs A.

gw-majorization: A matrix A is said to be right g-majorized by B
weakly if there exists an n × n g-row stochastic matrix R such that
A=BR, and is denoted by B �rgw A. The concept of left g-majorization
is defined similarly and is denoted by �lgw.

For a relation ∼ on Mn,m, we say that T preserves (or strongly pre-
serves) ∼ if T (x) ∼ T (y), whenever x ∼ y (or T (x) ∼ T (y) if and only
if x ∼ y).

In [1,2], the authors introduced the relations �gs and �lgw on Mn,m .
Also, they characterized all strong linear preservers of �gs and �lgw on
Mn,m and Mn respectively. In [7] , the authors characterized all linear
operator that strongly preserve the right matrix majorization. We prove
that one of the main theorems in [7] (Theorem 4.4) may be obtained
as a corollary of our Theorem 2.8. We refer the readers to [4] and [6]
for more information on the type of majorization and linear preserver of
majorization.

The following notations will be fixed throughout this paper:
Fn : the set of column vectors Mn,1 with standard basis {e1, ..., en}.
Fm: the set of row vectors M1,m with standard basis {ε1, ..., εm}.
Mn: the set of all n× n complex matrices.
GRn: the set of all n×n generalized row stochastic (g-row stochastic)

matrices.
Pn: the set of all n× n permutation matrices.
tr(x): the sum of all components of a vector x.
[x1/x2/.../xn]: an n×m matrix whose rows are x1, x2, ..., xn ∈ Fm.

2. Strong linear preserver

Here, we state the following statements to prove the main result of
the paper.

Lemma 2.1. Let T : Fn → Fn be a linear operator. Then, T preserves
the subspace {x ∈ Fn : tr(x) = 0} if and only if there exists a matrix
B ∈ span(GRn) such that T (x) = xB, for all x ∈ Fn.
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Proof. Let B = (bij) ∈ Mn be the matrix representation of T with re-
spect to the standard basis of Fn. If B ∈ span(GRn), then it is easy to
show that T preserves the subspace {x ∈ Fn : tr(x) = 0}. Conversely, let
T preserve the subspace {x ∈ Fn : tr(x) = 0}. Then, tr(T (εi − εj)) = 0,

for all 1 ≤ i, j ≤ n, so that tr((εi− εj)B) = 0, and thus
n∑

k=1

bik =
n∑

k=1

bjk.

Therefore, B ∈ span(GRn). �

Lemma 2.2. Let x be a nonzero vector in Fm. Then, x �rgw y, for
some y ∈ Fm if and only if tr(x) = tr(y).

Proof. If x �rgw y, then it is clear that tr(x) = tr(y). Conversely, let
x = (x1, ..., xm), y = (y1, ..., ym) ∈ Fm and tr(x) = tr(y). Without loss
of generality, assume that x1 6= 0. Put,

Ry :=

 r1 | r2 · · · rm

−−− | − −−−
0 | Im−1

 ,

where r1 = y1

x1
and ri = yi−xi

x1
, for every i (2 ≤ i ≤ m). It is clear that

y = xRy. Since tr(x) = tr(y), then it is easy to show that Ry ∈ GRm

and hence x �rgw y . �

Theorem 2.3. Let T : Fm → Fm be a linear operator. Then, T pre-
serves �rgw if and only if one of the followings holds:

(a) Tx = αxB, for some α ∈ F and some invertible B ∈ GRn.
(b) Tx = αxB, for some α ∈ F and some B ∈ GRn such that

{x : xB = 0} = {x : tr(x) = 0}.

Proof. Let T : Fm → Fm preserve �rgw. If T = 0 , then put α = 0. So,
assume that T 6= 0. It is easy to show that T preserves the subspace
{x ∈ Fm : tr(x) = 0}. Then, by Lemma 2.1 there exits a g-row stochas-
tic matrix B and a scalar α such that Tx = αxB, for all x ∈ Fm. If
B is invertible, then (a) holds. If B is not invertible, then (b) holds by
Lemma 2.2. The converse is trivial . �

Corollary 2.4. Let T : Fm → Fm be a nonzero linear preserver of
�rgw . Then, rank(T ) is equal to m or 1.
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Proof. By Theorem 2.3, ker(T ) = {0} or ker(T ) = {x : tr(x) = 0}.
Then, rank(T )=m or rank(T )=1. �

Corollary 2.5. Let T : Fm → Fm be a singular linear preserver of
�rgw. Then, there exists a vector y ∈ Fm such that Tx = tr(x)y for all
x ∈ Fm.

Proof. Consider the basis {et, ε1j : 2 ≤ j ≤ m} for Fm, where ε1j =

ε1 − εj . Then, for every x ∈ Fm, x =
1
m

tr(x)et +
m∑

j=2

α1jε1j, for some

α1j ∈ F. Since ker(T ) = {x : tr(x) = 0} by Theorem 2.3, then
Tx = tr(x)y, where y = 1

mT (et) . �

Lemma 2.6. Let A ∈ Mm and α be a nonzero scalar in F. Then,
A = γI for some γ ∈ F if and only if we have,

αxA + y �rgw αxRA + yR,∀x, y ∈ Fm,∀R ∈ GRm.(2.2)

Proof. If A = γI, for some γ ∈ F, then it is clear that (2.2) holds.
Conversely, let (2.2) hold. For every x ∈ Fm, put x and y in (2.2), where
y = −αxA. Then, αxRA − αxAR = 0 for all x in Fm. So, RA = AR,
for all R ∈ GRm, and hence A = γI, for some γ ∈ F . �

Remark 2.7. Every strong linear preserver of �rgw is invertible.

Now, we state the main result of this paper. The following theorem
holds for n=1 obviously, and thus we assume that n ≥ 2.

For every i, j (1 ≤ i, j ≤ n), consider the embedding Ej : Fm → Mn,m

and the projection Ei : Mn,m → Fm, where Ej(x) = ejx and Ei(A) =
εiA. It is easy to show that for every linear operator T : Mn,m → Mn,m,

T (X) = T [x1/ · · · /xn]= [
n∑

j=1

T j
1 xj/ · · · /

n∑
j=1

T j
nxj ], where xj is the j th row

of X and T j
i = Ei ◦ T ◦ Ej .
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Theorem 2.8. Let T : Mn,m → Mn,m be a linear operator. Then, T
strongly preserves �rgw if and only if T (X) = MXA, for some invertible
matrices M ∈ Mn and A ∈ GRm.

Proof. First assume that T strongly preserves �rgw. It is clear that
for every i, j (1 ≤ i, j ≤ n), T j

i : Fm → Fm preserves �rgw. Then, by
Theorem 2.3, there exist Aj

i ∈ GRm and αj
i ∈ F such that

T [x1/ · · · /xn ] = [
n∑

j=1

αj
1 xjA

j
1/ · · · /

n∑
j=1

αj
nxjAj

n ].

Now, we consider some steps.
Step 1: Let there exist p and q (1 ≤ p, q ≤ n) such that Aq

p is
invertible and αq

p 6= 0. We want to replace Aj
p by Aq

p with suitable
coefficient βj

p. For every x, y ∈ Fm, let X = [x1/ · · · /xn] where xp = x ,
xj = y and xi = 0, for i 6= p, j. Since X �rgw XR , ∀R ∈ GRn , then
T (X) �rgw T (XR) and hence,

αq
pxA

q
p + αj

pyA
j
p �rgw αq

pxRAq
p + αj

pyRAj
p . ∀x, y ∈ Fm,∀R ∈ GRm .

Therefore, by Lemma 2.6, Aj
p = βj

pA
q
p, for some βj

p ∈ F.
Step 2: We show that there is no p, q (1 ≤ p, q ≤ n) such that Aq

p is sin-
gular and αq

p 6= 0. Assume, if possible, that there exist p and q such that
Aq

p is singular and αq
p 6= 0. So, by Lemma 2.6, Aj

p is singular, for every j

(1 ≤ j ≤ n), for which αj
p 6= 0. Without loss of generality, assume that

p=1. So, by Theorem 2.3, ker(Aj
1) = {x : tr(x) = 0}, for every j (1 ≤

j ≤ n), Therefore, by this and Step 1, for every i (2 ≤ i ≤ n), either we
can assume A1

i = · · · = An
i or we have ker(A1

i ) = · · · = ker(An
i ) = {x :

tr(x) = 0}. Since the vectors (α1
2, · · · , α1

n), · · · , (αn
2 , · · · , αn

n) are linearly
dependent in Fn−1, then there exist scalars (not all zero) t1, · · · , tn ∈ F

such that
n∑

j=1

tj(α
j
2, · · · , αj

n) = 0 . For every j (1 ≤ j ≤ n). put

xj = (tj ,−tj , 0, · · · , 0) ∈ Fm, and then X = [x1/ · · · /xn] 6= 0 . It is
easy to check that TX=0, which contradicts the injectivity of T . There-
fore, by Step 1,

T [x1/ · · · /xn] = [
n∑

j=1

βj
1xjA1/ · · · /

n∑
j=1

βj
nxjAn],
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for some invertible matrices Ai ∈ GRm and some scalars βj
i ∈ F (1 ≤

i, j ≤ n).
Step 3: Here, we show that Ai = A1, for every i (1 ≤ i ≤ n). By

Step 2, T [x1/ · · · /xn] = [b1XA1/ · · · /bnXAn], where bi = (β1
i , · · · , βn

i ),
for every i (1 ≤ i ≤ n). If {b1, · · · , bn} ⊆ span{b}, for some b ∈ Fn,
then there exists a nonzero vector a ∈ Fn such that b1a

t = 0, because
n ≥ 2. Let X ∈ Mn,m be such that the first column of X is at and
the other columns of X are zero. Then, X 6= 0 and TX = 0, which
is a contradiction. Therefore, at least two elements of {b1, · · · , bm} are
linearly independent. Without loss of generality, assume that {b1, b2}
is linearly independent. For every X ∈ Mn,m and every R ∈ GRm,
TX �rgw T (RX). Then,

b1XA1 + b2XA2 �rgw b1XRA1 + b2XRA2(2.3)
∀X ∈ Mn,m , ∀R ∈ GRm.

Since {b1, b2} is a linearly independent set in Fn, then for every x, y ∈
Fm there exists Xx,y ∈ Mn,m such that b1Xx,y = x and b2Xx,y = y.
Therefore, by (2.3) we have,

xA1 + yA2 �rgw xRA1 + yRA2 ,∀x , y ∈ Fm ,∀R ∈ GRm .

So, by Lemma 2.6, A2 = αA1, for some α ∈ F. For every j (2 ≤ j ≤ n),
if bj = 0, then we can replace Aj by A1. If bj 6= 0, then {b1, bj} or
{b2, bj} is a linearly independent set. Similar to the above argument,
Aj = βA1 or Aj = βA2, for some β ∈ F. Put A = A1. Then, T (X) =
[b1XA|b2X(α2A)/ · · · /bnX(αnA)], for some α2, · · · , αn ∈ F, and hence
T (X) = MXA, for all X ∈ Mn,m, where M = [b1/α2b2/ · · · /αnbn]. The
other side of the theorem is easy to establish. �

The following lemma was proved in [3].

Lemma 2.9. Let R be a nonsingular row stochastic matrix. If R−1 is
nonnegative, then R is a permutation matrix.

Proof. Let R = (rij). Suppose that R has two nonzero entries in some
row. Without loss of generality, we may assume that the first row of R
has at least two nonzero entries. Since R−1 is invertible, then the first
column of R−1 has a nonzero entry, say in row i, and then the ith row
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of R−1R must have at least two nonzero entries. This is a contradic-
tion, since R−1R=I. Thus, every row of R has exactly one nonzero entry.
Since R is invertible, then therefore R is a permutation matrix . �

Corollary 2.10. ([7], Theorem 4.4) A linear operator T : Mn → Mn

strongly preserves right matrix majorization �r if and only if T (X) =
MXP , where P is a permutation and M ∈ Mn is invertible.

Proof. Assume that T strongly preserves right matrix majorization.
We show that T is a strong linear preserver of the right gw-majorization.
Let A �rgw B. Then, there exists a g-row stochastic matrix R such that
B=AR. For the g-row stochastic matrix R, there exist scalars r1, ..., rk

and row stochastic matrices R1, ..., Rk such that
k∑

i=1

ri = 1 and R=
k∑

i=1

riRi.

For every i (1 ≤ i ≤ k), A �r RiA, and hence T (A) �r T (RiA).
Thus, there exist row stochastic matrices Si (1 ≤ i ≤ k), such that

T (RiA) = T (A)Si. Put S =
k∑

i=1

riSi. It is clear that S is a g-row sto-

chastic matrix and T (B) = T (A)S. Therefore, T (A) �rgw T (B). For
the other side, replace T by T−1 and similarly conclude that A �rgw B
whenever T (A) �rgw T (B). Then, T strongly preserves the right gw-
majorization. Therefore, by Theorem 2.8, there exist invertible matrices
A ∈ GRn and M ∈ Mn such that T (X) = MXA for all X ∈ Mn. For
every row stochastic matrix R, it is clear that I �r R. So, T (I) �r T (R),
for every row stochastic matrix R. Then, MIA �r MRA, and hence
A−1RA is a row stochastic matrix, for every row stochastic matrix R.
So, it is easy to show that A−1 is a row stochastic matrix . Similarly, A
is a row stochastic matrix too, and hence A is a permutation matrix by
Lemma 2.9. To complete the proof, put P=A . �
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