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ABSTRACT. Let M, be the set of all n X m matrices with entries
in F, where F is the field of real or complex numbers. A real or
complex n X n matrix is generalized row stochastic (g-row stochastic)
if all of its row sums equal one. For X, Y € M,, ., , we say that Y
is right gw-majorized by X and write X >,g, Y if Y=XR for some
g-row stochastic matrix R. Here, we characterize all strong linear
preservers of >,g, on My, .

1. Introduction

A nonnegative real n x n matrix R is said to be row stochastic, if
Re = e, where e = (1,...,1)! € F*. The following generalization of
stochastic matrices were introduced in [5]. A complex (not necessarily
nonnegative) n X n matrix R is said to be g-row (g-doubly) stochastic,
if Re=e (Re = e and R'e = €). The notion of matriz majorization was
introduced by Dahl in [6]. According to that definition, a matrix A is
right matrix majorized (or right weak majorized) by B if there exists
an n X n row stochastic matrix R such that A=BR, and is denoted by
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B >, A. The concept of the left matriz majorization is defined similarly
and denoted by >;. The definitions of generalized majorizations (g-
majorization) are motivated by the matriz majorization as follows:

gs-majorization: A matrix A is said to be g-majorized by B strongly
if there exists an n x n g-doubly stochastic matrix D such that A=DB,
and is denoted by B 45 A.

gw-majorization: A matrix A is said to be right g-majorized by B
weakly if there exists an n X n g-row stochastic matrix R such that
A=BR, and is denoted by B >4, A. The concept of left g-majorization
is defined similarly and is denoted by >;4,.

For a relation ~ on M,, ;,,, we say that T preserves (or strongly pre-
serves) ~ if T'(x) ~ T'(y), whenever = ~ y (or T'(z) ~ T'(y) if and only
if z ~y).

In [1,2], the authors introduced the relations >4 and >4, on My, ;, -
Also, they characterized all strong linear preservers of >4, and >4, on
M,, , and M,, respectively. In [7] , the authors characterized all linear
operator that strongly preserve the right matriz majorization. We prove
that one of the main theorems in [7] (Theorem 4.4) may be obtained
as a corollary of our Theorem 2.8. We refer the readers to [4] and [6]
for more information on the type of majorization and linear preserver of
majorization.

The following notations will be fixed throughout this paper:

F™ : the set of column vectors M,, ; with standard basis {ej, ..., en }.

Fy,: the set of row vectors M ,, with standard basis {e1, ..., € }.

M,,: the set of all n x n complex matrices.

GR,;: the set of all n xn generalized row stochastic (g-row stochastic)
matrices.

P,,: the set of all n X n permutation matrices.

tr(z): the sum of all components of a vector z.

[x1/22/.../Typ]: an n X m matrix whose rows are x1,x2, ..., T, € Fyy,.

2. Strong linear preserver

Here, we state the following statements to prove the main result of
the paper.

Lemma 2.1. Let T : F,, — F,, be a linear operator. Then, T preserves
the subspace {x € F,, : tr(x) = 0} if and only if there exists a matriz
B € span(GR,,) such that T'(x) = xB, for all x € F,,.
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Proof. Let B = (b;;) € M,, be the matrix representation of 7" with re-
spect to the standard basis of F,,. If B € span(GR,,), then it is easy to
show that T preserves the subspace {x € F, : tr(x) = 0}. Conversely, let
T preserve the subspace {x € F,, : tr(x) = 0}. Then, tr(T(e; —¢€;)) =0,

n

for all 1 <14, 5 <n, so that tr((e; —¢;)B) = 0, and thus Zbik = ijk.
k=1 k=1
Therefore, B € span(GR.,,). O

Lemma 2.2. Let x be a nonzero vector in Fp,. Then, x =rgw Yy, for
some y € Fy, if and only if tr(x) = tr(y).

Proof. If x .4, y, then it is clear that tr(x)

= (21,0, Zm), Yy = (Y1, -, Ym) € Fpp, and tr(x)
of generality, assume that 1 # 0. Put,

tr(y). Conversely, let
= tr(y). Without loss

r1 | ro «ov Ty
T
0 ‘ Im—l
where | = % and r; = y"m—lxi, for every i (2 < i < m). It is clear that
y = xR,. Since tr(z) = tr(y), then it is easy to show that R, € GR,,
and hence & >4 ¥ . O

Theorem 2.3. Let T : F,, — F,, be a linear operator. Then, T pre-
serves =rqu if and only if one of the followings holds:
(a) Tx = axB, for some a € F and some invertible B € GR,,.
(b) Tx = axB, for some a € F and some B € GR,, such that
{z:2B =0} ={z: tr(z) = 0}.

Proof. Let T : F,, — F,, preserve >,g,. If T'= 0, then put o = 0. So,
assume that T # 0. It is easy to show that T preserves the subspace
{z € Fy, : tr(xz) = 0}. Then, by Lemma 2.1 there exits a g-row stochas-
tic matrix B and a scalar « such that Tz = axzB, for all x € F,,. If
B is invertible, then (a) holds. If B is not invertible, then (b) holds by
Lemma 2.2. The converse is trivial . O

Corollary 2.4. Let T : F,, — F,, be a nonzero linear preserver of
—rgw - Then, rank(T) is equal to m or 1.
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Proof. By Theorem 2.3, ker(T) = {0} or ker(T) = {z : tr(z) = 0}.
Then, rank(T')=m or rank(T)=1. O

Corollary 2.5. Let T : F,, — F,, be a singular linear preserver of
—rqw- Then, there exists a vector y € Fp, such that Tx = tr(x)y for all
zelF,,.

Proof. Consider the basis {e’,e1; : 2 < j < m} for F,,, where €;; =
1 m

€1 — €j. Then, for every z € Fy,, = —tr(z)e +Za1j61j, for some
m
Jj=2
aj; € F. Since ker(T) = {z : tr(z) = 0} by Theorem 2.3, then
Tz = tr(z)y, where y = T(e') . O

Lemma 2.6. Let A € M,, and o be a nonzero scalar in F. Then,
A = ~I for some v € F if and only if we have,

(22) arA+y-rgw acxRA+yR Vo, y € Fpy, VR € GRy,.

Proof. If A = ~I, for some v € F, then it is clear that (2.2) holds.
Conversely, let (2.2) hold. For every x € [F,,,, put = and y in (2.2), where
y = —axA. Then, arRA — axAR = 0 for all x in F,,. So, RA = AR,
for all R € GR,,, and hence A = I, for some v € F . O

Remark 2.7. Every strong linear preserver of >4, is invertible.

Now, we state the main result of this paper. The following theorem
holds for n=1 obviously, and thus we assume that n > 2.

For every 4,5 (1 < 4,7 < n), consider the embedding E7 : F,;, — M, ,,,
and the projection E; : My, , — Fy,, where FEi(z) = ejz and E;(A) =
€;A. It is easy to show that for every linear operator T : M, ,,, — M, 1,

T(X)=Tlxy/ - Jan)= > T{x;/--- /> Tix;], where z; is the j th row
j=1 j=1

of X and T/ = E; o T o EY.
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Theorem 2.8. Let T : M, ,, — M, ,, be a linear operator. Then, T
strongly preserves =g if and only if T(X) = M XA, for some invertible
matrices M € M,, and A €¢ GR,,,.

Proof. First assume that T strongly preserves >,q,. It is clear that
for every i,j (1 <4,j <n), T/ : F,, — F,, preserves >,q,. Then, by
Theorem 2.3, there exist A} € GR,,, and o] € F such that

Tlag/ /2] = Y oa AL/ /> adaj AL,
j=1 j=1

Now, we consider some steps.
Step 1: Let there exist p and ¢ (1 < p,q < n) such that A} is

invertible and of # 0. We want to replace A% by A} with suitable

coefficient 35. For every z,y € Fy,, let X = [z1/ -+ /z,,] where 2, = x|
zj =y and x; = 0, for i # p,j. Since X >,4, XR , VR € GR,, , then
T(X) >rgw T(XR) and hence,

alzAl + o yA) =g oz RAL + a)yRA) . Va,y € Fy, VR € GR,, .

Therefore, by Lemma 2.6, Al = gAg, for some @J, eF.
Step 2: We show that there is no p, ¢ (1 < p, ¢ < n) such that A is sin-
gular and o # 0. Assume, if possible, that there exist p and ¢ such that

A} is singular and of # 0. So, by Lemma 2.6, A;f; is singular, for every j
(1 < j <mn), for which ozf, =% 0. Without loss of generality, assume that
p=1. So, by Theorem 2.3, k:er(A{) = {x : tr(z) = 0}, for every j (1 <
j <n), Therefore, by this and Step 1, for every i (2 <i < n), either we

can assume Al = ... = A" or we have ker(A}) = --- = ker(A?) = {z :
tr(z) = 0}. Since the vectors (ad, - ,al), -+, (%, ,am) are linearly
dependent in F,,_1, then there exist scalars (not all zero) t1,--- ,t, € F

n
such that th(a%,u' ,al)y=0 . For every j (1 < j < n). put
j=1
zj = (tj,—t;,0,---,0) € Fy,, and then X = [z1/---/a,] # 0 . It is
easy to check that TX=0, which contradicts the injectivity of 7. There-
fore, by Step 1,

Tlay/ - [zn] = > BlajAi) ) BlwjAn,
j=1

j=1
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for some invertible matrices A; € GR,, and some scalars ﬂg elF (1<
i,7 <n).

Step 3: Here, we show that A; = Aj, for every ¢ (1 < i < n). By
Step 2, T[x1/ - Jxy) = [ X A1/ -+ /b, X Ay), where b; = (B}, -+, B%),
for every i (1 < i < n). If {b1,---,b,} C span{b}, for some b € F,,
then there exists a nonzero vector a € F,, such that bja’ = 0, because
n > 2. Let X € M, ,, be such that the first column of X is a! and
the other columns of X are zero. Then, X # 0 and T X = 0, which
is a contradiction. Therefore, at least two elements of {b;,--- , by} are
linearly independent. Without loss of generality, assume that {b1,bs}
is linearly independent. For every X € M, ,, and every R € GR,,,
TX >pgw T(RX). Then,

(2.3) b XA; +bsXAs >rgw b1 XRA| 4+ b2 XRAs
vX eM, , VR e GR,,.

Since {b1, b2} is a linearly independent set in F,,, then for every z,y €
F,, there exists X,, € M, ,, such that 01X, , = = and by X,, = v.
Therefore, by (2.3) we have,

TA; + yAs =rgw TRA; + yRAp, V2, y € F\y), VR € GR,,.

So, by Lemma 2.6, Ay = aAy, for some a € F. For every j (2 < j <n),
if b; = 0, then we can replace A; by A;. If b; # 0, then {b1,b;} or
{b2,b;} is a linearly independent set. Similar to the above argument,
Aj = A or Aj = BAy, for some § € F. Put A = A;. Then, T(X) =
01 X Alba X (aA)/ -+ Jbn X (a, A)], for some o, -+, oy € F, and hence
T(X)=MXA, for all X € M,, ,,, where M = [by/aba/ - - /aunby]. The
other side of the theorem is easy to establish. O

The following lemma was proved in [3].

Lemma 2.9. Let R be a nonsingular row stochastic matriz. If R™! is
nonnegative, then R is a permutation matrix.

Proof. Let R = (r4;). Suppose that R has two nonzero entries in some
row. Without loss of generality, we may assume that the first row of R
has at least two nonzero entries. Since R™! is invertible, then the first
column of R~! has a nonzero entry, say in row i, and then the ith row
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of R~'R must have at least two nonzero entries. This is a contradic-
tion, since R~ R=I. Thus, every row of R has exactly one nonzero entry.
Since R is invertible, then therefore R is a permutation matrix . O

Corollary 2.10. ([7], Theorem 4.4) A linear operator T : M,, — M,,
strongly preserves right matriz majorization >, if and only if T(X) =
MXP, where P is a permutation and M € M, s invertible.

Proof. Assume that T strongly preserves right matrix majorization.
We show that T is a strong linear preserver of the right gw-majorization.
Let A >4, B. Then, there exists a g-row stochastic matrix R such that
B=AR. For the g-row stochastic matrix R, there exist scalars r1, ..., 7%

k k

and row stochastic matrices Ry, ..., R such that Z r; = 1land R:Z i R;.
i=1 i=1

For every i (1 < i < k), A =, R;A, and hence T(A) ~, T(R;A).

Thus, there exist row stochastic matrices S; (1 < i < k), such that

k
T(R;A) =T(A)S;. Put S= ZriSi. It is clear that S is a g-row sto-
i=1
chastic matrix and T'(B) = T(A)S. Therefore, T(A) >4 T(B). For
the other side, replace T by 7! and similarly conclude that A =rgw B
whenever T'(A) >rgp T(B). Then, T strongly preserves the right gw-
majorization. Therefore, by Theorem 2.8, there exist invertible matrices
A € GR,, and M € M,, such that T(X) = M XA for all X € M,,. For
every row stochastic matrix R, it is clear that I >, R. So, T'(I) =, T(R),
for every row stochastic matrix R. Then, MIA >, MRA, and hence
A71RA is a row stochastic matrix, for every row stochastic matrix R.
So, it is easy to show that A~! is a row stochastic matrix . Similarly, A
is a row stochastic matrix too, and hence A is a permutation matrix by
Lemma 2.9. To complete the proof, put P=A . O

Acknowledgments

The author thanks the referee for his or her comments which helped
improve the readability of the paper. This research has been supported
by Vali-e-Asr university of Rafsanjan, grant No. 2740.



76 Armandnejad

REFERENCES

[1] A. Armandnejad and A. Salemi, Strong linear preservers of gw-majorization on
M,,, Journal of Dynamical Systems and Geometric Theories 5(2) (2007) 168-165.

[2] A. Armandnejad and A. Salemi, The structure of linear preservers of gs-
majorization, Bull. Iranian Math. Soc. 32(2) (2006) 31-42.

[3] B. Beasley, S.G. Lee and Y.H. Lee, A characterization of strong preservers of
matrix majorization, Linear Algebra Appl. 367 (2003) 341-346.

[4] R. Bhatia, Matriz Analysis, Springer-Verlag, New York, 1997.

[5] H. Chiang and C.K. Li, Generalized doubly stochastic matrices and linear pre-
servers, Linear and Multilinear Algebra 53, Issue 1 (2005) 1-11.

[6] G. Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999) 53-73.

[7] A.M. Hasani and M. Radjabalipour, The structure of linear operators strongly
preserving majorizations of matrices, FElectronic Journal of Linear Algebra 15
(2006) 260-268.

A. Armandnejad

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7713936417,
Rafsanjan, Iran

Email: armandnejad@mail.vru.ac.ir



