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BEYOND FIRST ORDER LOGIC: FROM NUMBER OF
STRUCTURES TO STRUCTURE OF NUMBERS: PART I

J. BALDWIN∗, T. HYTTINEN AND M. KESÄLÄ

Communicated by Samad Hedayat

Abstract. We study the history and recent developments in non-
elementary model theory focusing on the framework of abstract
elementary classes. We discuss the role of syntax and semantics
and the motivation to generalize first order model theory to non-
elementary frameworks and illuminate the study with concrete ex-
amples of classes of models.

This first part introduces the main conceps and philosophies and
discusses two research questions, namely categoricity transfer and
the stability classification.

1. Introduction

Model theory studies classes of structures. These classes are usually
a collection of structures satisfying an (often complete) set of sentences
of first order logic. Such sentences are created by closing a family of
basic relations under finite conjunction, negation and quantification over
individuals. Non-elementary logic enlarges the collection of sentences
by allowing longer conjunctions and some additional kinds of quantifica-
tion. Here, we first describe for the general mathematician the history,
key questions, and motivations for the study of non-elementary logic and
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distinguish it from first order model theory. We give more detailed exam-
ples accessible to model theorists of all sorts. We conclude with questions
about countable models which require only a basic background in logic.

For the past 50 years most research in model theory has focused on
first order logic. Motivated both by intrinsic interest and the ability to
better describe certain key mathematical structures (e.g., the complex
numbers with exponentiation), there has recently been a revival of ‘non-
elementary model theory’. We develop contrasts between first order and
non-elementary logic in a more detailed way than just noting ‘failure of
compactness’. We explain the sense in which we use the words syntax
and semantics in Section 1. Many of the results and concepts in this
paper will reflect a tension between these two viewpoints. In part II,
as we move from the study of classes that are defined syntactically to
those that are defined semantically, we will be searching for a replace-
ment for the fundamental notion of first order model theory, i.e., the
notion of a complete theory. Section 1 also defines the basic notions of
non-elementary model theory. Section 2 describes some of the research
streams in more detail and illuminates some of the distinctions between
elementary and non-elementary model theory. Subsection 3.1 describes
the founding result of modern first order model theory, Morley’s cate-
goricity theorem, and sketches Shelah’s generalization of it to Lω1,ω. In
part II, we study several generalizations of the result in Abstract Ele-
mentary Classes (AEC). The remainder of Section 3 studies the so-called
stability classification and provides specific mathematical examples that
illustrate some key model theoretic notions. We describe concrete ex-
amples explaining the concepts and problems in non-elementary model
theory showing a few connections with other parts of mathematics. Two
of these illustrate the phrase ‘to structure of numbers’ in the title. Exam-
ple 3.2.4, initiated by Zilber, uses infinitary methods to study complex
exponentiation and covers of Abelian varieties. An example in section 2.3
of Part II studies models of Peano Arithmetic and the notion of elemen-
tary end-extension. This is the first study of models of Peano arithmetic
as an AEC. Furthermore, part II contains new results and explores the
proper analogy to complete theory for AECs; it answers a question asked
by David Kueker and includes Kossak’s example of a class of models of
PA interesting from the standpoint of AEC.

Neither of the standard approaches, Lκ,ω-definable class or AECs,
has been successful in studying the countable models of an infinitary
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sentence. The first approach is too specific. It rapidly reduces to a com-
plete infinitary sentence which has only one countable model. Results
so far in studying general AECs give little information about countable
models. We seek to find additional conditions on an AEC that lead to
a fruitful study of the class of countable models. In particular, we in-
tend to to find tools for dealing with one famous and one not so famous
problem of model theory. The famous problem is Vaught’s conjecture.
Can a sentence of Lω1,ω have countable models strictly between ℵ0 and
2ℵ0? The second problem is more specific. What if we add the condition
that the class is ℵ1-categorical; can we provide sufficient conditions for
having less than 2ℵ0 countable models, to actual count the number of
countable models? In Part II, we describe two sets of concepts for ad-
dressing this issue; unfortunately, so far not very successfully. The first
is the notion of a simple finitary AEC and the second is an attempt to
define a notion of a ‘complete AEC’, which like a complete first order
theory imposes enough uniformity to allow for analysis of the models but
without trivializing the problem to one model.

One thesis of this paper is that the importance of non-elementary
model theory lies not only in widening the scope of applications of
model theory but also in shedding light on the essence of the tools,
concepts, methods and conventions developed and found useful in ele-
mentary model theory.

We thank Jouko Väänänen and Juliette Kennedy from the University
of Helsinki for discussions that lead to better understandings of the his-
tory of non-elementary model theory, the philosophical issues discussed
in Section 2, and for helpful references.

2. Non-elementary model theory

Here, we study the history of non-elementary model theory during
the second half of the twentieth century and compare that to the de-
velopment of more ‘mainstream’ first order model theory. We identify
two different trends in the development. In both the ‘elementary’ and
non-elementary cases the focus of research has moved from ‘syntactic’
considerations towards ‘semantic’ ones - we will explain what we mean
by this. We see some of the cyclic nature of science. Non-elementary
classes bloom in the 60’s and 70’s; the bloom fades for some decades,
overshadowed by the success and applications arising from the ‘elemen-
tary’ field. But around the turn of the 21st century, innovative examples
and further internal developments lead to a rebirth.
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We will focus on some ‘motivating questions’ that have driven both
the elementary and non-elementary approaches, such as the categoricity
transfer problem. While counting models seems a rather mundane prob-
lem, new innovations and machinery developed for the solution have led
to the recognition of systems of invariants that are new to mathemat-
ics and in the first order case to significant mathematical advances in
number theory [13] as an example. It is hoped that the deeper develop-
ments of infinitary logic will have similar interactions with the core of
mathematics. Boris Zilber’s webpage contains many beginnings.

2.1. Syntax and semantics. The distinction between syntax and se-
mantics has been present throughout the history of modern logic start-
ing from the late 19th century: completeness theorems build a bridge
between the two by asserting that a sentence is provable if and only if it
is true in all models. By syntax, we refer to the formalism of logic, ob-
jects of language as strings of symbols and deductions as manipulations
of these strings according to certain rules. Semantics, however, has to
do with interpretations, ‘meaning’ and ‘sense’ of the language. By the
semantics for a language we mean a ‘truth definition’ for the sentences
of the language, a description of the conditions when a structure is con-
sidered to be a model for that sentence. ‘Semantic properties’ have to
do with properties of such models.

In fact, these two notions can also be seen as methodologies or atti-
tudes toward logic. The extreme (formalist) view of the syntactic method
avoids reference to any ‘actual’ mathematical objects or meaning for the
statements of the language, considering these to be ‘metaphysical ob-
jects’. The semantic attitude is that logic arises from the tradition of
mathematics. The method invokes a trace of Platonism, a search for the
‘truth’ of statements with less regard for formal language. The semantic
method would endorse ‘proof in metamathematics or set theory’ while
the syntactic method seeks a ‘proof in some formal system’. Tradition-
ally, model theory is seen as the intersection of these two approaches.
Chang and Keisler[17] write: universal algebra + logic = model theory.
Juliette Kennedy[32] discusses ideas of ‘formalism freeness’, found in the
work of Kurt Gödel. Motivated by issues of incompleteness and faith-
fulness, and hence the ‘failure’ of first order logic to capture truth and
reasoning, Gödel asked if there is some (absolute) concept of proof (or
definability), ‘by all means imaginable’. One interpretation of this abso-
lute notion (almost certainly not Gödel’s) is a kind of semantic argument
described above. We will spell out this contrast in several places below.
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Model theory by definition works with the semantic aspect of logic,
but the dialectics between the syntactic and semantic attitudes is cen-
tral. This becomes even clearer when discussing questions arising from
non-elementary model theory. Non-elementary model theory studies for-
mal languages other than ‘elementary’ or first order logic; most of them
extend first order. We began by declaring that model theory studies
classes of models. Traditionally, each class is the collection of models
that satisfy some (set of) sentence(s) in a particular logic. Abstract El-
ementary Classes provide new ways of determining classes: a class of
structures in a fixed vocabulary is characterized by semantic properties.
The notion of AEC does not designate the models of a collection of
sentences in some formal language, although many examples arise from
such syntactic descriptions. In first order logic, the most fruitful topic is
classes of models of complete theories. A theory T is a set of sentences
in a given language. We say that T is complete, if for every sentence φ
in the language, either T implies φ, or T implies ¬φ. In Part II, we seek
an analogue to completeness for AEC.

Model-Theoretic Logics, edited by Barwise and Feferman [8], summa-
rizes the early study of non-elementary model theory. In this book,
‘abstract model theory’ is a study comparing different logics with regard
to such properties as interpolation, expansions, relativizations and pro-
jections, notions of compactness, Hanf and Löwenheim-Skolem numbers.

A vocabulary1 L consists of constant symbols, relation symbols and
function symbols, which have a prescribed number of arguments (arity).
An L-structure consists of a universe, which is a set, and interpretations
for the symbols in L. When L′ is a subset of a vocabulary L, and M
is an L-structure, we can talk about the reduct of M to L′, written as
M � L′. Then, M is the expansion of M � L′ to L. If M and N are
two L-structures, we say that M is an L-substructure of N if the domain
of M is contained in the domain of N and the interpretations of all the
symbols in L in M agree with the restriction of N to M .

A formal language or logic in the vocabulary L is a collection of formu-
las that are built by certain rules from the symbols of the vocabulary and

1Another convention specifies the vocabulary by a small Greek letter and the
L with decorations describes the particular logic. What we call a vocabulary is
sometimes called a language. We have written language or logic for the collections
of sentences; more precisely, this might be called the language and the logic would
include proof rules and even semantics.
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from some ‘logical symbols’. Here, we focus on countable vocabularies
but do not needlessly restrict definitions to this case.
L-terms are formed recursively from variables and the constant and

function symbols of the vocabulary by composing in the natural manner.
With a given interpretation for the constants and assignment of values
for the variables in a structure, each term designates an element in the
structure.

An atomic formula is an expression R(t1, . . . , tn), where R is an n-ary
relation symbol (including equality) of the vocabulary and each ti is a
term.

Definition 2.1.1 (The language Lλκ). Assume that L is a vocabulary.
The language Lλκ consists of formulas φ(x̄), where the free variables of
the formulas are contained in the finite sequence x̄ and where the formulas
are built with the following operations:

• Lλκ contains all atomic formulas in the vocabulary L.
• If φ(x̄), ψ(x̄) are in Lλκ, then the negation ¬φ(x̄) and implication

(φ(x̄)→ ψ(x̄)) are in Lλκ.
• If φi(x̄) is in Lλκ, for every i in the index set I, and |I| < λ,
then the conjunction

∧
i∈I φi(x̄) and disjunction

∨
i∈I φi(x̄) are

in Lλκ.
• If φ(yi, x̄) is in Lλκ, for each i in the well-ordered index set I,
and |I| < κ, then the quantified formula (Qiyi)i∈Iφ(x̄) is in Lλκ,
where each quantifier Qi is either ∀ (‘for all yi’) or ∃ (‘there
exists yi’).

First order logic is the language Lωω, i.e., only finite operations are al-
lowed. We define that L∞κ is the union of all Lλκ, for all cardinal
numbers λ.

The languages Lλω, allowing only finite strings of quantifiers, are much
better behaved. We will later introduce abstract elementary classes gen-
eralizing, among other things, classes of structures definable with a sen-
tence in Lλω. The definition of the truth of a formula in a structure is
crucial. For a formula φ(x̄), with the sequence x̄ containing all the free
variables of φ, we define what it means that the formula φ(x̄) is true in
an L-structure M with the variables x̄ interpreted in a particular way as
elements ā, written as M |= φ(ā). The definition is done by induction
on the complexity of the formula, following the inductive definition of
the formula in Definition 2.1.1.
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Definition 2.1.2 (The language L(Q)). The language L(Q) is formed
as the first order logic Lωω, allowing also formulas of the form Qyφ(y, x̄)
with the following truth definition: M |= Qyφ(y, ā) if there are uncount-
able many b ∈M such that M |= φ(b, ā).

Definition 2.1.3 (Elementary substructure with respect to a fragment).
A subset F ⊆ L is a fragment of some formal language L if it contains
all atomic formulas and is closed under subformulas, substitution of vari-
ables with L-terms, finite conjunction and disjunction, negation and the
quantifiers ∀ and ∃, applied finitely many times. For two L-structures M
and N , we say that M is an F-elementary substructure of N , written as
M 4F N, if M is an L-substructure of N and for all formulas φ(x̄) of F
and sequences ā of elements in M , M |= φ(ā) if and only if N |= φ(ā).

Definition 2.1.4 (Elementary class and PC-class). An elementary class
K of L-structures is the class of all models of a given theory in first order
logic. A pseudoelementary (PC) class K is the class of reducts M � L of
some elementary class in a larger vocabulary L′ ⊇ L.

We say that a formal language (logic) L is compact if whenever a set
of sentences is inconsistent, that is, has no model, then there is some
finite subset which already is inconsistent. This is a crucial property
that, along with the upwards Löwenheim-Skolem property, fails in most
non-elementary logics.

The Löwenheim-Skolem number and the Hanf number are defined for
a formal logic L (i.e., ‘the Löwenheim-Skolem or Hanf number of L’). In
the following definitions, K is a class definable with a sentence of L, 4K is
given as the F-elementary substructure relation in some given fragment
F of L, usually the smallest fragment containing the sentence defining
K, and the collection C is the collection of all classes definable with a
sentence L.

Definition 2.1.5 (Löwenheim-Skolem number). The Löwenheim-Skolem
number LS(K) for a class of structures K and a relation 4K between the
structures is the smallest cardinal number λ with the following property:
for any M ∈ K and a subset A ⊆M there is a structure N ∈ K contain-
ing A such that N 4K M and |N | ≤ max{λ, |A|}.

Definition 2.1.6 (Hanf number). The Hanf number H for a collection C
of classes of structures is the smallest cardinal number with the following
property: for any K ∈ C, if there is M ∈ K of size at least H, then K
contains arbitrarily large structures.
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Modern model theory began in the 1950’s. Major achievements in the
mid 60’s and early 70’s included Morley’s categoricity transfer theorem in
1965 [42] and Shelah’s development of stability theory [49]. These works
give results on counting the number of isomorphism types of structures
in a given cardinality and establishing invariants in order to classify the
isomorphism types. Such invariants arise naturally in many concrete
classes: the dimension of a vector space or the transcendence degree of
an algebraically closed field are prototypical examples. A crucial inno-
vation of model theory is to see how to describe structures by families of
dimensions. The general theory of dimension appears in (e.g., [49, 44]);
it is further developed and applied to valued fields in [22].

Non-elementary model theory thrived in the mid 60’s and early 70’s.
Results such as the Lindström theorem in 1969, Barwise’s compactness
theorem for admissible fragments of Lω1ω in 1969, Mostowski’s work on
generalized quantifiers in 1957 [43] and Keisler’s beautiful axiomatiza-
tion of L(Q) in [30] gave the impression of a treasury of new formal
languages with amenable properties, a possibility to extend the scope of
definability and possibly to get closer to the study of provability with ‘all
means imaginable’. However, the general study turned out to be very
difficult. For example, the study of the languages Lλκ got entangled
with the set-theoretical properties of the cardinals λ and κ. Since the
real numbers are definable as the unique model of a sentence in L2ω ,ω,
the continuum hypothesis would play a major role. But, perhaps the
study was focused too much on the syntax and tried to study the model
theory of languages? Why not study the properties of classes of struc-
tures, defined semantically. One might replace compactness with, say,
closure under unions of chains?

One can argue that a major achievement of non-elementary model
theory has been to isolate properties that are crucial for classifying struc-
tures, properties that might not be visible to a mathematician working
with only a specific application or even restricted to the first order case.
Excellence (see below) is a crucial example. Some examples of applica-
tions of non-elementary model theory to ‘general mathematics’ are pre-
sented in the chapter ‘Applications to algebra’ by Eklof in [8]. In many
of these applications, we can see that a class of structures is definable
in Lω1ω or in L∞ω and then use the model theory of these languages to,
for example, count the number of a certain kind of structures or classify
them in some other way. Barwise writes in Model-theoretic logics [8]:
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Most important in the long run, it seems, is where logic
contributes to mathematics by leading to the formation
of concepts that allow the right questions to be asked
and answered. A simple example of this sort stems from
‘back-and-forth arguments’ and leads to the concept of
partially isomorphic structures, which plays such an im-
portant role in extended model theory. For example,
there is a classical theorem by Erdos, Gillman and Hen-
riksen; two real-closed fields of order type η1 and cardi-
nality ℵ1 are isomorphic. However, this way of stating
the theorem makes it vacuous unless the continuum hy-
pothesis is true, since without this hypothesis there are
no fields which satisfy both hypotheses. But if one looks
at the proof, there is obviously something going on that is
quite independent of the size of the continuum, something
that needs a new concept to express. This concept has
emerged in the study of logic, first in the work of Ehren-
feucht and Fraïssé in first-order logic, and then coming
into its own with the study of infinitary logic. And so in
his chapter (in the book [8]), Dickmann shows that the
theorem can be reformulated using partial isomorphisms
as: Any two real-closed fields of order type η1, of any
cardinality whatsoever, are strongly partially isomorphic.
There are similar results on the theory of abelian torsion
groups which place Ulm’s theorem in its natural setting.
... Extended model theory provides a framework within
which to understand existing mathematics and push it
forward with new concepts and tools.

One of the foundational discoveries of abstract model theory was Per
Lindström’s theorem that first order logic is the strongest logic which
has both the compactness property and a countable Löwenheim-Skolem
number. In order to study such concepts as ‘the strongest logic’, one
has to define the notion of an ‘abstract logic’. The book [8] presents the
syntax as a crucial part: an abstract logic is a class of sentences with
a satisfaction relation between the sentences and the structures, where
this relation satisfies certain properties. However, Barwise comments on
Lindström’s formulation of his theorem [37]:
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To get around the difficulties of saying just what a logic
is, they dealt entirely with classes of structures and clo-
sure conditions on these classes, thinking of the classes
definable in some logic. That is, they avoided the prob-
lem of formulating a notion of a logic in terms of syntax,
semantics, and satisfaction, and dealt purely with their
semantic side.

Lindström defined a logic to be a non-empty set of objects called sen-
tences, but the role of these is only to name a class of structures as
‘structures modeling one sentence’. Then, it is possible to define for
example compactness as the property that if a countable intersection
of such classes is empty, then already some finite intersection must be
empty.

Saharon Shelah built on these insights and introduced Abstract Ele-
mentary Classes in [51]. Semantic properties of a class of structures K
and a relation 4K are prescribed, which are sufficient to isolate interest-
ing classes of structures. But, more than just the class is described; the
relation 4 between the structures in K provides additional information
that, as examples in Subsection 3.2 illustrate, may be crucial.

Definition 2.1.7. For any vocabulary τ , a class of τ -structures (K,4K)
is an abstract elementary class (AEC) if

(1) Both K and the binary relation 4K are closed under isomorphism.
(2) If A 4K B, then A is a substructure of B.
(3) 4K is a partial order on K.
(4) If 〈Ai : i < δ〉 is an 4K-increasing chain:

(a)
⋃
i<δ Ai ∈ K;

(b) for each j < δ, Aj 4K
⋃
i<δ Ai;

(c) if each Ai 4KM∈ K, then
⋃
i<δ Ai 4KM.

(5) If A,B, C ∈ K, A 4K C, B 4K C and A ⊆ B, then A 4K B.
(6) There is a Löwenheim-Skolem number LS(K) such that if A ∈ K

and B ⊂ A a subset, there is A′ ∈ K such that B ⊂ A′ 4K A
and |A′| = |B|+ LS(K).

When A 4K B, we say that B is an K-extension of A and A is an
K-submodel of B. If A,B ∈ K and f : A → B is an embedding such that
f(A) 4K B, we say that f is a K-embedding. Category-theoretic versions
of the axioms are studied by Kirby [33], Liebermann [36] and Beke and
Rosick [11].
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A basic example of an AEC is the class of models defined by some
sentence φ ∈ L∞ω, where 4K is taken as the elementary substruc-
ture relation in the smallest fragment of L∞ω containing φ. Then, the
Löwenheim-Skolem number is the size of the fragment. An even simpler
example is that of an elementary class, where φ is a complete theory in
first order logic.

A class defined with a sentence in Lω1ω(Q) with the quantifier Qxφ(x)
standing for ‘there exists uncountably many x such that φ(x) holds’ can
be an AEC. The natural syntactic notion of elementary submodel is
inadequate but substitutes are available. Arbitrary psuedoelementary
classes are often not AEC. For example, if K is the class of all structures
A in a language L with a single unary predicate such that |A| ≤ 2|U(A)|,
then K fails to be an AEC with respect to L-elementary submodel as it
is not closed under unions of chains. (See chapter 5 and 4.29 of [4].)

In contemporary first order model theory, the most fundamental con-
cept is the class of models of a complete theory in first order logic.
This can be seen as a form of focusing ; instead of studying different
vocabularies, expansions and projections, one fixes one class: the class
of differentially closed fields of fixed characteristic (see [40]) or the class
of models of ‘true’ arithmetic. This focus on classes and of properties
determining ‘similar’ classes has become a crucial tool in applications
to algebra. The difference from the ‘Lindström-style’ study of classes of
structures is significant: we do not study many classes of structures each
corresponding to the ‘models of one sentence’, but focus on a fixed class,
‘models of a theory’. Abstract elementary classes, which will be one of
the main notions studied in this paper, takes the ‘semantic view’ to the
extreme by eliminating the syntactic definition.

3. Several research lines in non-elementary logic

3.1. Categoricity transfer in Lωω and Lω1ω.

Definition 3.1.1 (Categoricity). Let κ be a cardinal. We say that a
class of structures K is κ-categorical if there is exactly one model of size
κ in K, up to isomorphism. A theory T is κ-categorical, if Mod(T ), the
class of models of T , is κ-categorical.

The transition to the focus on classes of models begins with Morley’s
theorem.

Theorem 3.1.2 (Morley’s categoricity transfer theorem). Assume that
T is a complete theory in Lωω, where L is countable. If there exists



12 Baldwin, Hyttinen and Kesälä

an uncountable cardinal κ such that T is κ-categorical, then T is λ-
categorical for all uncountable cardinals λ.

Categoricity transfer will be our first example of a motivating ques-
tion in the history of model theory. Its proof gave many new tools and
concepts that are nowadays contained in every basic course in model
theory. Furthermore, both the tools and the theorem itself have been
generalized to different frameworks. A categoricity transfer theorem for
elementary classes in an uncountable vocabulary was proved by Shelah
in [46] (announced in 1970): if the language has cardinality κ and a the-
ory is categorical in some uncountable cardinal greater than κ, then it
is categorical in all cardinalities greater than κ. This widening of scope
led to many tools, such as weakly minimal sets and a greater focus on
the properties of individual formulas, that proved fruitful for countable
vocabularies. We will look more closely at some of the many extensions
of categoricity results to non-elementary classes.

We consider a syntactical type in some logic L as a collection of L-
formulas in some finite sequence of variables x̄ with parameters from
a given subset A of a structure M such that an element b̄ in an L-
elementary extension N of M realizes (simultaneously satisfies) p. If no
such sequence exists in a model N , then we say that the type is omitted
in N . In elementary classes, the compactness theorem implies all finitely
consistent such collections p of formulas are really realized. If there is a
structure N and a finite sequence b̄ ∈ N such that M 4 N and

p = {φ(x̄, ā) : ā ∈ A ⊆M,N |= φ(b̄, ā)},

then p is called a complete type over A for two reasons, semantically: it
gives a complete description of the relation of b̄ and A, and Syntactically:
every formula φ(x̄, ā) over A or its negation is in p.

An essential concept in Morley’s argument is a saturated structure
M : M is saturated if all consistent types over parameter sets of size
strictly less than |M | are realized in M . Two saturated models of T
of size κ are always isomorphic. Morley shows that if T is categorical
in some uncountable power, then saturated models exist in each infinite
cardinality. Then, he concludes that if T is not categorical in some
uncountable power λ, there is a model of power λ which is not saturated
or even ℵ1-saturated; some type over a countable subset is omitted.
And then he shows that if some model of uncountable power λ omits
a type over a countable set, then in any other uncountable power κ
some model omits the type. Hence, T cannot be categorical in κ either.
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This method, saturation transfer, generalizes to many other frameworks.
While proving saturation transfer for elementary classes, he introduced a
number of new concepts such as a totally transcendental theory (ℵ0-stable
theory), prime models over sets and Morley sequences.

Keisler generalized many of the ideas from Morley’s proof to the logic
Lω1ω; see [31]. He studies a class of structures (K,4F ), where K is
definable with a sentence in Lω1ω and F is some countable fragment of
Lω1ω containing the sentence. He uses a concept of homogeneity, which
is closely related to saturation.

Definition 3.1.3. For L-structuresM and N and a fragment F of Lω1ω,
A ⊂M a subset and f : A→ N a function, write (M,A) ≡F (N, f(A)),
if for every formula φ(x̄) ∈ F and every ā ∈ A,

M |= φ(ā) if and only if N |= φ(f(ā)).

A model is (κ,F)-homogeneous, if for every set A ⊆ M of cardinality
strictly less than κ and every f : A→M , if (M,A) ≡F (M,f(A)), then
for all b ∈M there exists c ∈M such that

(M,A ∪ {b}) ≡F (M,f(A) ∪ {c}).

Keisler proved the following theorem (Theorem 35 of [31]).

Theorem 3.1.4. (Keisler, 1971, announced in 1969) Let F be a count-
able fragment of Lω1ω, T ⊆ F be a set of sentences and κ, λ > ω. Assume
that

(1) T is κ-categorical.
(2) For every countable model M of T , there are models N of T of

arbitrarily large power such that M 4F N .
(3) Every model M of power κ is (ω1,F)-homogeneous.

Then, T is λ-categorical. Moreover, every model of T of power λ is
(λ,F)-homogeneous.

One stage in the transition from strictly syntactic to semantic means
of defining classes is Shelah’s version of Theorem 3.1.4. To understand
it, we need the following fact, which stems from Chang, Scott and Lopez-
Escobar (see for example [16]); the current formulation is Theorem 6.1.8
in the book [4].

Theorem 3.1.5. (Chang-Scott-Lopez-Escobar) Let φ be a sentence in
Lω1ω in a countable vocabulary L. Then, there is a countable vocabulary
L′ extending L, a first-order L′ theory T and a countable collection Σ of
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L′-types such that reduct is a 1-1 map from the models of T which omit
Σ onto the models of φ.

A crucial point is that the infinitary aspects are translated to a first
order context, at the cost of expanding the vocabulary. If φ is a com-
plete sentence, then the pair (T,Σ) can be chosen so that the associated
class of models is the class of atomic models of T (every tuple real-
izes a principal type). Saharon Shelah generalized this idea to develop
a more general context, finite diagrams [45]. A finite diagram D is a
set of types over the empty set and the class of structures consists of
the models which only realize types from D. Shelah defined a struc-
ture M to be (D,λ)-homogeneous if it realizes only types from D and
is (|M |, Lωω)-homogenous (in the sense of Definition 3.1.3). He (inde-
pendently) generalized Theorem 3.1.4 to finite diagrams. His argument,
like Keisler’s, required the assumption of homogeneity. Thus, [45] is the
founding paper of homogeneous model theory, which was further devel-
oped in for example [15, 21, 29, 28]. The compact case (‘Kind II’ in [48])
was transformed into the study of continuous logics and abstract metric
spaces [12] and finally generalized to metric abstract elementary classes
[23]. These last developments have deep connections with the Banach
space theory.

Baldwin and Lachlan in 1971 [7] gave another method for first or-
der categoricity transfer. They developed some geometric tools to study
structures of a theory categorical in some uncountable cardinal: any
model of such a theory is prime over a strongly minimal set and the
isomorphism type is determined by a certain dimension of the strongly
minimal set. This gives a new proof for the Morley theorem for elemen-
tary classes, but also the Baldwin-Lachlan Theorem: if an elementary
class is categorical in some uncountable cardinal, then it has either just
one or ℵ0-many countable models. The geometric analysis of uncount-
ably categorical elementary classes was developed even further by Zilber
(see [57], earlier Russian version [56]), giving rise to geometric stability
theory. We discuss the number of countable models of an ℵ1-categorical
non-elementary class in Part II.

A further semantic notion closely tied to categoricity is Shelah’s ‘ex-
cellence’. Excellence is a kind of generalized amalgamation; (see details
in [4]). The rough idea is to posit a type of unique prime models over
certain independent diagrams of models. ‘Excellence’ was discovered
independently by Boris Zilber while studying the model theory of an
algebraically closed field with pseudoexponentiation, (a homomorphism
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from (F,+) to (F ∗, ·). He defined the notion of a quasiminimal excellent
(qme) class by ‘semantic conditions’; Kirby [34] proved they could be
axiomatized in Lω1ω(Q). Zilber showed any qme class was categorical
in all uncountable powers and found such a class of pseudo-exponential
fields. Natural algebraic characterizations of excellence were found in
context of algebraic groups by Bays [9], Bays and Zilber [10], and Zilber
[60] . Excellence implies that the class of structures has models in all
cardinalities, has the amalgamation property (see Part II), and admits
full categoricity transfer. Zilber’s notion of ‘excellence’ specializes She-
lah’s notion of excellence for sentences in Lω1ω, invented while proving
the following general theorem for transferring categoricity for sentences
in Lω1ω[50]

2. The theorem uses a minor assumption on cardinal arith-
metic.

Theorem 3.1.6. (Shelah, 1983) Assume that 2ℵn < 2ℵn+1 , for all n <
ω. Let φ ∈ Lω1ω be a sentence which has an uncountable model, but
strictly less than the maximal number of models in each cardinality ℵn,
for 0 < n < ω. Then, the sentence is excellent.
(ZFC) Assume that a sentence φ in Lω1ω is excellent and categorical in
some uncountable cardinality. Then, φ is categorical in every uncountable
cardinality.

The excellence property is defined only for complete sentences in Lω1ω,
more precisely for the associated classes of atomic models (each model
omits all non-isolated types) of a first order theory T in an extended
vocabulary. Excellent classes have been further studied in [20, 26, 35].
Theorem 3.1.6, expounded in [4], extends easily to incomplete sentences.

Corollary 3.1.7. Assume that 2ℵn < 2ℵn+1, for all n < ω. Let φ ∈ Lω1ω

be a sentence which is categorical in ℵn, for each n < ω. Then, φ is
categorical in every cardinality.

Shelah and Hart [47], made more precise in [6], showed the necessity of
considering categoricity up to ℵω; there are examples of Lω1ω-sentences
φn which are categorical in each ℵk, for k ≤ n, but have the maximal
number of models in ℵn+1. However, it is not known whether the as-
sumption on cardinal arithmetic can be removed from the theorem.

In the discussion above, we isolated properties such as homogeneity
and excellence, which enable one to prove categoricity transfer theorems.

2The important first order notion of the OTOP discussed in Subsection 3.2 was
derived from the earlier concept of excellence for Lω1,ω.
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More importantly, they support the required tools for classifying and
analyzing structures with model-theoretic methods; both generated sub-
fields: homogeneous model theory and model theory for excellent classes.
These properties have applications to ‘general mathematics’: L∞ω-free
algebras [41] for homogeneous model theory or Zilber’s pseudoexponen-
tiation and the work on covers of Abelian varieties [59] for excellence.
We argue that finding such fundamental properties for organizing math-
ematics is one of the crucial tasks of model theory.

The investigation of Lω1,ω surveyed in this section makes no assump-
tion that the studied class has large models; the existence of large models
is deduced from sufficient categoricity in small cardinals. Shelah pursues
a quite different line in [52]. He abandons the syntactic hypothesis of de-
finability in a specific logic. In attempting to prove eventual categoricity,
he chooses smaller AEC’s in successive cardinalities. Thus, he attempts
to construct a smaller class which is categorical in all powers. Crucially,
this work does not assume the existence of arbitarily large models.

We discuss more on categoricity transfer in AECs in Part II. There we
will concentrate on a certain type of AECs, namely the Jónsson classes,
where some categoricity transfer results are known and some stability
theory along with a natural notion of type can be constructed. These
classes are generalizations of homogeneous and excellent classes and they
have arbitrarily large models and for example the amalgamation property
by assumption.

3.2. The stability classification: First order vs. non-elementary.
One of the major themes of contemporary model theory is the notion of
classification theory. Classification is used in two senses. On the one
hand, models in a particular class can be classified by some assignment
of structural invariants. On the other hand, the classes of models3 are
split into different groups according to common properties, which may
be semantic or syntactic; several examples are given below. Shelah (e.g.,
[52]) has stressed the importance of certain properties of theories, those
which are dividing lines: both the property and its negation have strong
consequences. In the following, we discuss various important classes of
theories and emphasize those properties which are the dividing lines.

3The word class is vastly overloaded in this context. In first order logic, a complete
theory is a natural unit. In studying infinitary logic, the natural unit often becomes
an AEC (in the first order case, this would be the class of models of the theory).
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Saharon Shelah [49] originated stability theory for elementary classes
and produced much of the early work. Now, however, the field embraces
much of model theory and the tools are pervasive in modern applications
of model theory. Among the many texts are: [2, 14, 44].

We can define stability in λ as the property that there are no more
than λ many distinct complete types over any subset of size λ. How-
ever, stability has several equivalent definitions in elementary classes.
A remarkable consequence of the analysis is that counting the number
of types is related to the geometry of the structures in the class. For
example, if the class of structures is stable in any cardinal at all, one
can define a notion of independence between arbitrary subsets of any
model, which is a useful tool to analyze the properties of the structures
in the class. The importance of such a notion of independence is well
established and such independence calculus has been generalized to some
unstable elementary classes such as classes given by simple [54] or NIP
theories [1]. Stability theory has evolved to such fields as geometric sta-
bility theory [44], which is the major source for applications of model
theory to ‘general mathematics’.

Stability theory divides classes into four basic categories. This division
is called the stability hierarchy :

(1) ℵ0-stable classes;
(2) superstable classes, that is, classes stable from some cardinal

onwards;
(3) stable classes, that is, stable in at least one cardinal;
(4) unstable classes.

In elementary classes, ℵ0-stable classes are stable, in all cardinalities
and hence we get a hierarchy of implications 1. ⇒ 2. ⇒ 3. Uncount-
ably categorical theories are always ℵ0-stable, whereas non-superstable
classes have the maximal number of models in each uncountable cardi-
nal. An ℵ0-stable or superstable class can also have the maximal number
of models; e.g., if it has one of the properties DOP or OTOP, discussed
in examples 3.2.2 and 3.2.3.

Developing stability theory for non-elementary classes is important
not only because it widens the scope of applications, but also because it
forces further analysis of the tools and concepts developed for elementary
classes. Which tools are there only because first order logic ‘happens’ to
be compact and which could be cultivated to extend to non-elementary
classes? Specially, can we distinguish some core properties enabling the
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process? What are the problems met in, say, categoricity transfer or de-
veloping independence calculus? Why does the number of types realized
in the structure seem to affect the geometric properties of structures and
can we analyze the possible geometries arising from different frameworks?
For example, Hrushovski [24] proved a famous theorem in geometric sta-
bility theory: under assumptions of a logical nature, the geometry given
by the notion of independence on the realizations of a regular type must
fall into one of three natural categories involving group actions. In the
available non-elementary versions of the same theorem ([27, 25]), we
cannot rule out a fourth possibility: existence of a so-called non-classical
group, a non-abelian group admitting an ω-homogeneous pre-geometry.
We can identify some quite peculiar properties of such groups. Even
their existence is open.

The established notion of type for abstract elementary classes is a so-
called Galois type, which we will define more carefully in Part II. Then,
κ-stability is defined with respect to these types: a class of structures
is stable in a cardinal κ if no structure in the class realizes more than
κ many Galois types over a 4K-elementary substructure of size ≤ κ.
For the remainder of this section, the reader can think of the following
descriptive notion on a Galois type: Let A 4K B and a, b be elements
in B. We say that a and b have the same Galois type over the structure
A if there is C such that B 4K C and an automorphism of C fixing A
pointwise and mapping a to b.

We present here some examples of AECs’, where the choice of the
relation 4K affects the placement of the class in the stability hierarchy.
How ‘coincidental’ is the division of elementary classes according to the
stability hierarchy? The placement of a class of structures in the hier-
archy has been shown to affect a huge number of properties that at first
sight do not seem to have much to do with the number of types. Which
of these connections are ‘deep’ or ‘semantic’, or specially, which extend
to non-elementary frameworks? Can an appropriate hierarchy be found?

The moral of these examples is that properties of the ‘same’ class of
structures might look different if definitions in logics with more expressive
power are allowed or a different notion of 4K for an abstract elementary
class is chosen.

Example 3.2.1 (Abelian groups). Let K be the class of all abelian
groups. (K,4K) is an ℵ0-stable AEC with the notion 4K as the sub-
structure relation.
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However, the same class of structures is strictly stable (stable but
not superstable) if we take as 4K the following notion: M 4K N
if and only if M is a subgroup and for each a ∈ M and n ∈ N \
{0}, n divides a in M if and only if n divides a in N.

The model theory of abelian groups is studied in Eklof and Fischer
[18], where the latter notion of 4K is in the focus of study. AECs induced
by tilting and co-tilting modules are studied in Baldwin, et al. [5] and
Trlifaj [53] provides a more semantic notion of 4K and the classes of
Abelian groups are strictly stable except in one degenerate case.

A number of properties in first order classification theory induce ‘bad
behavior’ for an elementary class of structures, signaled by the existence
of the maximal number of models in a given cardinality. The most ba-
sic of these are instability and unsuperstability. Others include OTOP,
‘the omitting types order property’ and DOP, ‘the dimensional order
property’, with a version ENI-DOP, which gives many countable mod-
els. Specially, these play a role in classifying countable complete first
order theories; their negations NOTOP, NDOP and ENI-NDOP have
‘good’ implications, from the viewpoint of classification theory; they aid
in the assigning of invariants.

One equivalent definition for unstability is that there is a formula
which in the models of a first order theory defines an infinite order-
ing. Then, by compactness, the elementary class must contain models
interpreting various different orderings, which (nontrivially) forces the
number of models to the maximum. Similarly, the properties DOP and
OTOP cause certain kinds of orderings to appear in the structures; but,
the orderings are not defined by a single first order formula. Just as
in Example 3.2.1, the unsuperstability of the class of abelian groups
is not visible to quantifier-free formulas, the only ones ‘seen’ by the
substructure-relation, OTOP and DOP, are forms of instabilities not
visible to first order formulas.

The following two examples illustrate the properties OTOP and DOP.
In each case, we ‘define’ an arbitrary graph (e.g., an ordering) on P ×P
by describing a column above each point of the plane. The two methods
of description, by a type or a single formula, distinguish OTOP and
DOP.
Example 3.2.2 (An example with OTOP). Let the vocabulary L consist
of two predicates P and Q and ternary relation Rn, for each n < ω.

By ternary predicates Rn(x, y, z) we define a decreasing chain of sets
Rn(a, b, z) of subsets of Q over each pair (a, b) in P × P . The sets
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R0(a, b, z) are disjoint as the pairs (a, b) vary. And there is exactly one
element ca,bn in Rn(a, b, z), but not in Rn+1(a, b, z). Thus, the types
pab(x) = {Rn(a, b, x), x 6= ca,bn :n < ω} can be independently omitted or
realized.

The resulting elementary class is ℵ0-stable, but it has the maximal
number of models in each infinite cardinality. Any directed graph (specially
any ordering) can be coded by a structure in the following way:

there exists an edge from x to y ⇔ ∃z
∧
n<ω

Rn(x, y, z).

We can study the same class K of structures but replace first order
elementary substructure by 4K, elementary submodel in a fragment of
Lω1ω containing all first order formulas and the formula

φ(x, y) = ∃z
∧
n<ω

Rn(x, y, z).

The relation 4K ‘sees’ the complexity caused by the formula, and the
class (K,4K) is unstable in the sense of the fragment. But, this means
it is also unstable as an abstract elementary class. Galois types always
refine syntactic types if the submodel notion has a syntactic definition.

This example also has ENI-DOP and thus DOP. From ENI-DOP, we
can define another notion 4K for that class so that the new AEC is
unstable but still has the Löwenheim-Skolem number ℵ0. Namely, let
M 4K N if M is an elementary substructure of N and whenever there
are only finitely many z such that M |=

∧
n<ω Rn(x, y, z). Then, the

number of such elements z is not increased in N .

Example 3.2.3 (An example with DOP). Let the vocabulary L consist
of predicates X1, X2 and P and two binary relation symbols π1 and π2.
We define a theory in first order logic, with definable projections from P
to each Xi and study the dimensions of pre-images of pairs in X1 ×X2.
We require that

• the universe of a structure consist of three disjoint infinite pred-
icates X1, X2 and P ,
• the relations πi determine surjective functions πi : P → Xi, for
i = 1, 2, and
• for each x ∈ X1 and y ∈ X2, there are infinitely many z ∈ P
such that π1(z) = x and π2(z) = y.
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Again, we get an ℵ0-stable elementary class, which is ℵ0-categorical,
but has the maximal number of models in each uncountable cardinal-
ity. Now, we can code an ordering (I,<) on the pairs (xi, yi)i∈I in
an uncountable model so that (xi, yi) < (xj , yj) if and only if {z ∈ P :
π1(z) = xi and π2(z) = yj} is uncountable.

Furthermore, we get an unstable abstract elementary class for the
same class of structures K as follows: strengthen 4K so that M 4K N
implies that, for all pairs (x, y) in the set X1 × X2 of the structure
M , if there are only countably many z in the set P of M such that
π1(z) = x and π2(z) = y, then no such z is added to the set P of the
structure N . Since automorphisms must preserve the cardinalities of sets
described on the right hand side of the above displayed equivalence, the
class is unstable for Galois types. This notion of 4K does not have finite
character (see Part II) and the new (K,4K) has the Löwenheim-Skolem
number ℵ1.

Similar phenomena appear in differentially closed fields of characteris-
tic zero, whose elementary theory is ℵ0-stable with ENI-DOP, and thus
DOP. They have the maximal number of models in each infinite cardi-
nality. See the survey articles by Marker [38] and [39].

The following examples exhibit the difference between a traditional
first order approach and a non-elementary approach.
Example 3.2.4 (Exponential maps of abelian varietes). Bays [9], Bays
and Zilber [10], and Gavrilovich [19] study ‘exponential maps’ or ‘uni-
versal group covers’ π : (Cg,+) → A(C), where (Cg,+) is the additive
group of the complex numbers to power g and A(C) is an abelian variety.
The kernel Λ of π is a free abelian subgroup of (Cg,+). Two approaches
appear in the work: the structures modeling the first order theory of such
a map and the structures modeling the Lω1ω-theory. The Lω1ω-sentence
describing the map is quasi-minimal excellent and so categorical in each
uncountable cardinality. All the models of the sentence share the same
Λ and are determined up to the transcendence degree of the field inter-
preted in A(C). However, the first order theory is also ‘classifiable’, it
is superstable with NDOP and NOTOP and is ‘shallow’, although not
categorical. Each model of the first-order theory is described by choosing
a lattice Λ and a transcendence degree for the field in A(C).

In this case, the non-elementary framework was understood first; the
elementary class gives a little more information. Both depend on rather
deep algebraic number theory. This topic is an offshoot of trying to un-
derstand the model theory of the complex exponentiation exp : (C,+,×)
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→ (C,+,×), which has a very ill-behaved theory in first order logic; see
[3, 58] for more discussions on the subject.

Example 3.2.5 (Valued fields). The recent book by Haskell et al. [22]
greatly develops the first order model theory of algebraically closed val-
ued fields. The elementary class is unstable and not even simple, and
hence the structure theory has involved developing new extensions of
the stability-theoretic machinery investigating the class of theories with-
out the independence property.

A valued field consists of a field K together with a homomorphism
from its multiplicative group to an ordered abelian group Γ, which sat-
isfies the ultrametric inequality. The problems in the elementary theory
of valued fields reduce to that of the value group Γ and the so-called
residue field.

However, we can study valued fields as an AEC fixing the value group
as (R,+, <) and taking all substructures as elementary substructures,
requiring also that the value group stays fixed. This class is stable and
contains those valued fields that are of most interest. The cases where
(Γ,+, <) is not embeddable to (R,+, <) are often called Krull valuations.
They are forced to be in the scope of study in the first order approach,
since first order logic cannot separate them from the usual ones. The non-
elementary class fixing the value group can be seen as ‘almost compact’;
see the work of Itaï Ben Yaacov [55].
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