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COMPOSITE INTERPOLATION METHOD AND THE

CORRESPONDING DIFFERENTIATION MATRIX
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Communicated by Mohammad Asadzadeh

Abstract. Properties of the hybrid of block-pulse functions and
Lagrange polynomials based on the Legendre-Gauss-type points are
investigated and utilized to define the composite interpolation op-
erator as an extension of the well-known Legendre interpolation op-
erator. The uniqueness and interpolating properties are discussed
and the corresponding differentiation matrix is also introduced. The
applicability and effectiveness of the method are illustrated by two
numerical experiments.

1. Introduction and preliminaries

When solving partial differential equations via pseudospectral meth-
ods, the fundamental representation of a smooth function is in terms
of its values at the discrete Gauss-type points [5, 6]. Derivatives of
the function is approximated by analytic derivatives of the interpolat-
ing polynomials. For instance, Chebyshev and Legendre pseudospectral
methods are the commonly used methods in this respect. The problem of
finding an efficient algorithm for evaluating the entries of Chebyshev and
Legendre pseudospectral differentiation matrices has been the subject of
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some papers ([2] and references therein). Here, we present an extension
of the well-known Legendre interpolation method and its corresponding
differentiation matrix. We also introduce the preliminaries of the Gauss
pseudospectral method required for our subsequent development. The
reader is referred to [3, 4] for details.

Let x0, x1, . . . , xM be the Legendre-Gauss-type points, i.e., the zeros
of the Legendre polynomial of degree M + 1, and w0, w1, . . . , wM be
the corresponding quadrature weights. For a continuous function u,
let IM (u) denote the Lagrange interpolating polynomial of degree M ,
interpolating the function u at the points x0, x1, . . . , xM , i.e.,

(1.1) IM (u)(x) =
M∑

m=0

u(xm)Lm(x),

where, for m = 0, 1, . . . ,M , Lm(x) denotes the Lagrange polynomial of
degree M corresponding to the point xm, defined by

Lm(x) =
M∏

i=0, i 6=m

(
x− xi
xm − xi

)
.

For a fixed M , the Lagrange polynomials L0(x), L1(x), . . . , LM (x) are
mutually orthogonal with respect to the L2-inner product on the interval
[−1, 1] and, in fact, form an orthogonal basis for PM consisting of all
polynomials of degree at most M on the interval [−1, 1]. In [1], page 74,
it is showed that the interpolant IM (u) is the orthogonal projection of
u upon PM with respect to the discrete inner product

(1.2) < u, v >M=
M∑

m=0

u(xm) v(xm)wm,

defined for every u and v, which are continuous functions on the interval
[−1, 1].

To compute the derivative of IM (u) at the point xm, the Lagrange
interpolation formula (1.1) is differentiated, yielding

(1.3)
d

dx
IM (u)(xm) =

M∑
m′=0

dmm′ u(xm′),

where dmm′ = d
dxLm′(xm). Here, the matrix DM = [dmm′ ]

M
m,m′=0 is the

classical (M + 1)× (M + 1) Gauss pseudospectral differentiation matrix
[2].
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Remark 1.1. For the rest of our work, we transfer the interval [−1, 1]
to the interval [0, 1] and confine our attention to the functions on the
interval [0, 1].

The remainder of our work is organized as follows: In Section 2, we
introduce the composite interpolation formula by using the hybrid func-
tions and discuss the uniqueness and interpolating properties and the
approximation errors. In Section 3, we introduce the corresponding dif-
ferentiation matrix. In Section 4, we report our numerical experiments
and demonstrate the accuracy and efficiency of the method for approx-
imating two functions and their derivatives.

2. Composite interpolation

In this section, we first introduce the hybrid of block-pulse functions
and Lagrange polynomials based on the Legendre-Gauss-type points and
define the composite interpolation operator using the hybrid functions
and then discuss some approximation errors.

2.1. Hybrid of block-pulse functions and Lagrange polynomials.
The hybrid of block-pulse functions and Lagrange polynomials φnm, n =
1, 2, . . . , N , m = 0, 1, . . . ,M , are defined on the interval [0, 1) as

φnm(x) =

{
Lm (2Nx− 2n+ 1) if n−1

N ≤ x < n
N ,

0 otherwise,

where n and m are the orders of the block-pulse function and the La-
grange polynomial, respectively.

For every integers N ≥ 1 and M ≥ 0, we use the following notation.

Notation. Let PN
M denote the set of all functions whose restriction to

each interval (n−1
N , n

N ), n = 1, 2, . . . , N , is a polynomial of degree at
most M .

It is easily verified that PN
M is a linear subspace of L2(0, 1), the space

of all square Lebesgue-integrable functions with the L2-norm.
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Proposition 2.1. (a) For a fixed integer N ≥ 1,
⋃∞

M=0 PN
M is dense

in L2(0, 1), (b) for fixed integers N ≥ 1 and M ≥ 0, {φnm : n =
1, 2, . . . , N,m = 0, 1, . . . ,M} is an orthogonal basis for PN

M .

Proof. Suppose N ≥ 1 is a fixed integer. Since the interval [0, 1] is
compact, by the classical Weierstrass approximation theorem, the set of
all polynomials P =

⋃∞
M=0 PM is dense in C[0, 1], the set of all continuous

functions, with respect to the L2-norm; on the other hand, C[0, 1] is
dense in L2(0, 1) (see [7], Theorem 3.14). Since P ⊆

⋃∞
M=0 PN

M , therefore⋃∞
M=0 PN

M is dense in L2(0, 1) and (a) holds. If δ denotes the Kronecker
delta function, for every n, n′ = 1, 2, . . . , N and m,m′ = 0, 1, . . . ,M ,
then we have∫ 1

0
φnm(x)φn′m′(x) dx = δnn′

∫ 1

0
φnm(x)φnm′(x) dx

=
1

2N
δnn′

∫ 1

−1
Lm(x)Lm′(x) dx

=
wm

2N
δnn′ δmm′ ,

where for the first equality, we use the property of disjointness of the
intervals and for the second and third equalities, we use the change of
variable rule and the Gaussian integration formula, respectively. There-
fore, the hybrid functions φnm, n = 1, 2, . . . , N , m = 0, 1, . . . ,M , are
mutually orthogonal. Since the dimension of the linear space PN

M , which
is N(M + 1), equals the cardinal number of the hybrid functions, (b)
holds.

In other words, Proposition 2.1 states that for a fixed integer N ≥ 1,⋃∞
M=0{φnm : n = 1, 2, . . . , N,m = 0, 1, . . . ,M} is a complete basis for

L2(0, 1); for the definition of a complete basis in Hilbert spaces, see [7],
Theorem 4.18 (b). �

2.2. Composite interpolation formula. In this section, for every in-
teger N ≥ 1, we let PC(N) denote the set of all functions, whose re-
striction to each interval (n−1

N , n
N ), n = 1, 2, . . . , N , has a continuous

extension to the interval [n−1
N , n

N ]. It is easily seen that PC(N) is a lin-

ear subspace of L2(0, 1) and also contains PN
M , for every integer M ≥ 0.
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Hereafter, N ≥ 1 and M ≥ 0 are fixed integers and also u and v are two
arbitrary functions in PC(N).

For n = 1, 2, . . . , N and m = 0, 1, . . . ,M , we set

xnm =
1

2N
(xm + 2n− 1),

i.e., the corresponding point of xm in the interval [n−1
N , n

N ] by means of
the natural linear transformation.

Analogous to (1.2), we define the bilinear form < ., . >N,M on PC(N)
by

< u, v >N,M=
1

2N

N∑
n=1

M∑
m=0

u(xnm) v(xnm)wm.

Then, the following proposition holds.

Proposition 2.2. We have
(a) < ., . >N,M is symmetric, i.e., < u, v >N,M=< v, u >N,M .
(b) < ., . >N,M is positive semi-definite, i.e., < u, u >≥ 0.

(c) For u and v in PN
M ,∫ 1

0
u(x) v(x) dx =< u, v >N,M .

Proof. From the definition, it is readily verified that (a) and (b) hold.
For (c), using the change of variable rule and the Gaussian integration
formula, we have∫ 1

0
u(x) v(x) dx =

N∑
n=1

∫ n
N

n−1
N

u(x) v(x) dx

=
1

2N

N∑
n=1

M∑
m=0

u(xnm) v(xnm)wm

= < u, v >N,M .

Note that the (M + 1)-point Gaussian integration formula is exact for
the polynomials up to degree 2M + 1 (see [1], page 70).

According to Proposition 2.2, the symmetric positive semi-definite bi-
linear form < ., . >N,M coincides with the L2-inner product on PN

M . Fur-
thermore, the hybrid functions φnm, n = 1, 2, . . . , N , m = 0, 1, . . . ,M ,
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are mutually orthogonal also with respect to < ., . >N,M , by Proposi-
tion 2.1, (b). �

Definition 2.3. We define INM to be the operator which maps u to the
orthogonal projection of u on PN

M with respect to < ., . >N,M , i.e., for

every p in PN
M , < INM (u), p >N,M=< u, p >N,M .

The following theorem states the uniqueness and interpolating prop-
erties of the operator INM .

Theorem 2.4. The operator INM is uniquely determined on PC(N) by
the following properties:

(a) INM (u) ∈ PN
M .

(b) INM (u)(xnm) = u(xnm), n = 1, 2, . . . , N, m = 0, 1, . . . ,M .
Furthermore, analogous to (1.1),

(2.1) INM (u)(x) =
N∑

n=1

M∑
m=0

u(xnm)φnm(x).

Proof. By the definition, (a) holds. According to (a) and Proposition
2.1 (b),

INM (u)(x) =
N∑

n=1

M∑
m=0

cnm φnm(x).

For every n = 1, 2, . . . , N and m = 0, 1, . . . ,M , we have

0 =< INM (u)− u, φnm >N,M=
wm

2N

(
cnm − u(xnm)

)
,

and thus cnm = u(xnm). It is easily verified that the properties (a) and
(b) uniquely determine the operator INM . �

Theorem 2.4 suggests that we call the well-defined operator INM to be
“the composite interpolation operator”.

2.3. Approximation errors. In this section, we give some estimates
for the composite interpolation error u− INM (u) in terms of the Sobolev
norms.
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We recall that the Sobolev norm of integer order s ≥ 0 in the interval
(a, b) is given by

||u||Hs(a,b) =

(
s∑

k=0

∫ b

a
|u(k)(x)|2 dx

)1/2

=

(
s∑

k=0

||u(k)||2L2(a,b)

)1/2

,

where u(k) denotes the (distributional) derivative of u of order k.

Here, for our subsequent development, we state some results obtained
in [1] as the following theorem.

Theorem 2.5. ([1], Section 5.4.3, page 289) Suppose u ∈ Hs(−1, 1)
with s ≥ 1. Then

(2.2) ||u−
M∑

m=0

u(xm)Lm||L2(−1,1) ≤ CM−s |u|Hs;M (−1,1),

and for 1 ≤ r ≤ s,

(2.3) ||u−
M∑

m=0

u(xm)Lm||Hr(−1,1) ≤ CM2r− 1
2
−s |u|Hs;M (−1,1).

Here,

|u|Hs;M (−1,1) =
( s∑

k=min(s,M+1)

||u(k)||2L2(−1,1)

)1/2
,

and also C denotes a positive constant that depends upon the type of the
norm, but which is independent of the function u and the integer M .

We use the following notation.

Notation. For s ≥ 0, we let PHs(N) denote the set of all func-
tions whose restriction to each interval (n−1

N , n
N ), n = 1, 2, . . . , N , is

in Hs(n−1
N , n

N ).

According to the above notation, it is readily verified that PHs(N)
is a linear subspace of L2(0, 1) and also, in the case s ≥ 1, is contained
in PC(N).
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For convenience, we introduce the following semi-norm defined for
u ∈ PHs(N), 0 ≤ r ≤ s, M ≥ 0 and N ≥ 1, as:

|u|Hr;s;M ;N (0,1) =
( s∑

k=min(s,M+1)

N2r−2k
N∑

n=1

||u(k)
n ||2L2(n−1

N
, n
N

)

)1/2
,

where un, n = 1, 2, . . . , N , denote the restriction of u to the interval
(n−1

N , n
N ), n = 1, 2, . . . , N , respectively. Note that whenever M ≥ s− 1,

we have

(2.4) |u|Hr;s;M ;N (0,1) = N r−s
( N∑

n=1

||u(s)
n ||2L2(n−1

N
, n
N

)

)1/2
.

Remark 2.6. In the case N = 1, | . |Hr;s;M ;N coincides with | . |Hs;M , as
introduced and used in [1].

To state our main results, the following lemma will be required.

Lemma 2.7. For a fixed n, n = 1, 2, . . . , N , suppose un : (n−1
N , n

N )→ R
be a function in Hs(n−1

N , n
N ). Consider the function Fnun : (−1, 1)→ R

such that (Fnun)(x) = un( 1
2N (x + 2n − 1)), for all x ∈ (−1, 1). Then,

for 0 ≤ l ≤ s, we have

||(Fnun)(l)||L2(−1,1) = C N
1
2
−l ||u(l)

n ||L2(n−1
N

, n
N

),

where C is independent of the integer N .

Proof. For 0 ≤ l ≤ s, we have

||(Fnun)(l)||2L2(−1,1) =

∫ 1

−1
|(Fnun)(l)(x)|2 dx

=

∫ 1

−1
|u(l)

n (
1

2N
(x+ 2n− 1))|2 dx

=

∫ n
N

n−1
N

(2N)−2l |u(l)
n (t)|2 (2N) dt

= C N1−2l ||u(l)
n ||2L2(n−1

N
, n
N

)
,

where for the third equality, we used the change of variable rule by
setting t = 1

2N (x+ 2n− 1) and for the forth equality, we set 21−2l = C.
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For estimating the composite interpolation error u− INM (u), we have
the following result. �

Theorem 2.8. Suppose u ∈ PHs(N) with s ≥ 1. Then

(2.5) ||u− INM (u)||L2(0,1) ≤ CM−s |u|H0;s;M ;N (0,1),

and for 1 ≤ r ≤ s,

(2.6) ||u− INM (u)||Hr(0,1) ≤ CM2r− 1
2
−s |u|Hr;s;M ;N (0,1),

where,

||u− INM (u)||Hr(0,1) =

(
N∑

n=1

||un −
M∑

m=0

u(xnm)φnm||2Hr(n−1
N

, n
N

)

)1/2

.

As in Theorem 2.5, C denotes a positive constant that depends upon the
type of the norm, but which is independent of the function u and the
integers N and M .

Proof. For r ≥ 0, we have

||u− INM (u)||2Hr(0,1)

=
N∑

n=1

||un −
M∑

m=0

u(xnm)φnm||2Hr(n−1
N

, n
N

)

= C

N∑
n=1

r∑
p=0

N2p−1 ||(Fnun)(p) − (

M∑
m=0

(Fnun)(xm)Lm)(p)||2L2(−1,1),

where for the second equality, we used Lemma 2.7. From (2.5), by
setting r = 0, we get

||u− INM (u)||2L2(0,1)

= C

N∑
n=1

N−1 ||Fnun −
M∑

m=0

(Fnun)(xm)Lm||2L2(−1,1)

≤ CM−2sN−1
N∑

n=1

s∑
k=min(s,M+1)

||(Fnun)(k)||2L2(−1,1)

= CM−2sN−1
s∑

k=min(s,M+1)

N1−2k
N∑

n=1

||u(k)
n ||2L2(n−1

N
, n
N

)
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= CM−2s
s∑

k=min(s,M+1)

N−2k
N∑

n=1

||u(k)
n ||2L2(n−1

N
, n
N

)
.

Here, we used (2.2) for the second step. Therefore (2.5) is established.
Also, for 1 ≤ r ≤ s, we have

||u− INM (u)||2Hr(0,1)

= C
N∑

n=1

r∑
p=0

N2p−1 ||(Fnun)(p) − (
M∑

m=0

(Fnun)(xm)Lm)(p)||2L2(−1,1)

≤ CM4r−1−2sN2r−1
N∑

n=1

s∑
k=min(s,M+1)

||(Fnun)(k)||2L2(−1,1)

= CM4r−1−2sN2r−1
s∑

k=min(s,M+1)

N1−2k
N∑

n=1

||u(k)
n ||2L2(n−1

N
, n
N

)

= CM4r−1−2s
s∑

k=min(s,M+1)

N2r−2k
N∑

n=1

||u(k)
n ||2L2(n−1

N
, n
N

)
,

where for the second step, we used (2.3). This yields (2.6).

Note that by setting M ≥ s− 1 in (2.5) and (2.6) and using (2.4), we
get

(2.7) ||u− INM (u)||L2(0,1) ≤ CM−sN−s
(

N∑
n=1

||u(s)
n ||2L2(n−1

N
, n
N

)

)1/2

,

and for r ≥ 1,

||u− INM (u)||Hr(0,1)(2.8)

≤ CM2r− 1
2
−sN r−s

(
N∑

n=1

||u(s)
n ||2L2(n−1

N
, n
N

)

)1/2

.

�

Remark 2.9. In the case that u is infinitely smooth, we can get(
N∑

n=1

||u(s)
n ||2L2(n−1

N
, n
N

)

)1/2

= ||u(s)||L2(0,1), s ≥ 0.
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Therefore, in this case, (2.7) and (2.8) show that the rate of convergence
of INM (u) to u is faster than 1

N to the power M + 1 − r and any power
1
M .

The error of approximating L2-inner product by the bilinear form
< ., . >N,M can be estimated as follows.

Corollary 2.10. For u ∈ PHs(N) with s ≥ 1 and p ∈ PN
M , by setting

M ≥ s− 1, we have∣∣∣∣∫ 1

0
u(x) p(x) dx− < u, p >N,M

∣∣∣∣(2.9)

≤ CM−sN−s
(

N∑
n=1

||u(s)
n ||2L2(n−1

N
, n
N

)

)1/2

||p||L2(0,1),

where C is as in Theorem 2.8.

Proof. Using Proposition 2.2 (c) and the Cauchy-Schwartz inequality,
we get ∣∣∣∣∫ 1

0
u(x) p(x) dx− < u, p >N,M

∣∣∣∣
=

∣∣∣∣∫ 1

0
u(x) p(x) dx−

∫ 1

0
INM (u)(x) p(x) dx

∣∣∣∣
≤
∫ 1

0

∣∣∣(u(x)− INM (u)(x)
)
p(x)

∣∣∣ dx
≤ ||u− INM (u)||L2(0,1) ||p||L2(0,1).

Therefore, (2.9) follows, using (2.7). �

3. The differentiation matrix

In order to approximate the derivative of INM (u) by the composite
interpolation operator, we need its values at the grid points xnm, n =
1, 2, . . . , N , m = 0, 1, . . . ,M . In this section, we compute the derivative
of INM (u) at these grid points.
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By differentiating the composite interpolation formula (2.1), for every
n = 1, 2, . . . , N and m = 0, 1, . . . ,M , we get

(3.1)
d

dx
INM (u)(xnm) =

M∑
m′=0

d̃mm′ u(xnm′),

where d̃mm′ = d
dxφnm′(xnm) = 2N d

dxLm′(xm) = 2Ndmm′ .

If we let

u =
(
u(x10), . . . , u(x1M ), . . . , u(xN0), . . . , u(xNM )

)T
and

d

dx
u =

( d
dx
INM (u)(x10), . . . ,

d

dx
INM (u)(x1M ),

. . . ,
d

dx
INM (u)(xN0), . . . ,

d

dx
INM (u)(xNM )

)T
,

then, analogous to (1.3), we can restate (3.1) as

d

dx
u = DN

M u,

where DN
M is the N(M + 1)×N(M + 1) block diagonal matrix

(3.2) DN
M = 2N


DM 0 · · · 0

0 DM · · · 0
...

...
. . .

...
0 0 · · · DM

 .

Remark 3.1. According to Remark 1.1, for the case N = 1, it is easily
seen that the differentiation matrix (3.2) coincides with the transformed
Gauss pseudospectral differentiation matrix (1.3).

4. Numerical experiments

In this section, in order to assess the accuracy and efficiency of the
composite interpolation method, we apply it to the following functions:

(i) u(x) = ex, −1 ≤ x ≤ 1, and
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Table 1. Numerical results for the function (i)

E0(N,M) E1(N,M)
N = 1 N = 2 N = 3 N = 4 N = 1 N = 2 N = 3 N = 4

M = 1 1.64e-1 4.74e-2 2.17e-2 1.23e-2 1.33e-0 7.44e-1 5.08e-1 3.84e-1

M = 2 2.70e-2 3.98e-3 1.22e-3 5.21e-4 3.60e-1 1.03e-1 4.76e-2 2.70e-2

M = 3 3.35e-3 2.49e-4 5.12e-5 1.64e-5 6.48e-2 9.52e-3 2.92e-3 1.24e-3

M = 4 3.33e-4 1.25e-5 1.71e-6 4.12e-7 8.69e-3 6.45e-4 1.32e-4 4.23e-5

M = 5 2.77e-5 5.22e-7 4.77e-8 8.61e-9 9.25e-4 3.46e-5 4.73e-6 1.13e-6

Table 2. Numerical results for the function (ii)

E0(N,M) E1(N,M)
N = 1 N = 2 N = 3 N = 4 N = 1 N = 2 N = 3 N = 4

M = 1 1.49e-1 7.45e-2 2.87e-2 1.86e-2 1.43e-0 1.15e-0 6.86e-1 5.77e-1

M = 2 1.12e-1 0 7.22e-3 0 1.23e-0 0 2.38e-1 0

M = 3 2.46e-2 0 1.57e-3 0 4.94e-1 0 9.51e-2 0

M = 4 1.95e-2 0 1.25e-3 0 3.18e-1 0 6.12e-2 0

M = 5 9.21e-3 0 5.91e-4 0 2.85e-1 0 5.49e-2 0

(ii) u(x) =

{
1− x2 for −1 ≤ x ≤ 0,
1 + x2 for 0 ≤ x ≤ 1.

For this purpose, we first transfer the two functions onto the inter-
val [0, 1] and then apply the method for approximating them and their
derivatives. In order to report our numerical results, it is convenient to
define

E0(N,M) = ||u− INM (u)||L2(0,1),

and

E1(N,M) = ||du
dx
− INM

( d
dx
INM (u)

)
||L2(0,1).

Table 1 and Table 2 show the numerical results of E0(N,M) and
E1(N,M) with different values of N and M for the functions introduced
as (i) and (ii), respectively. As seen from the results of Table 1, for the
function (i), which is infinitely smooth, the rate of convergence is faster
than any power of both 1

N and 1
M , as noted in Remark 2.9. Also, for

the function (ii), Table 2 shows that the approximation errors decays as
fast as the global smoothness of the underlying function in (ii) permits.
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5. Conclusion

Table 1 shows that for a fixed number of Lagrange polynomials, by
increasing the number of block-pulse functions, the accuracy increases.
Also, Table 2 suggests that choosing a suitable number of block-pulse
functions yields a very good accuracy. Therefore, it seems that the
composite interpolation method is an efficient method for approximat-
ing both smooth and nonsmooth functions and their derivatives. Fur-
thermore, the corresponding differentiation matrix is a block diagonal
matrix, making the method very attractive for solving differential equa-
tions.
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