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EXACT SOLUTIONS FOR FLOW OF A SISKO FLUID

IN PIPE

N. MOALLEMI∗, I. SHAFIEENEJAD AND A. B. NOVINZADEH

Communicated by Mohammad Asadzadeh

Abstract. By means of He’s homotopy perturbation method
(HPM) an approximate solution of velocity field is derived for the
flow in straight pipes of non-Newtonian fluid obeying the Sisko
model. The nonlinear equations governing the flow in pipe are for-
mulated and analyzed, using homotopy perturbation method due
to He. Furthermore, the obtained solutions for velocity field is
graphically sketched and compared with Newtonian fluid to show
the accuracy of this work. Volume flux, average velocity and pres-
sure gradient are also calculated. Results reveal that the proposed
method is very effective and simple for solving nonlinear equations
like non-Newtonian fluids.

1. Introduction

Advances in technology have brought a wide range of rheologically
complex fluids that are characterized by diverse and often significant
deviations from simple Newtonian behavior. This has made Newto-
nian behavior often the exception rather than the rule in the process
of industries. These conditions are typical of many industrial applica-
tions including most multi-phase mixtures (e.g., emulsions, suspensions,
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foams/froths, and dispersions) [1].
The equations modeling non-Newtonian incompressible fluid flow give
rise to nonlinear differential equations. Usually, we encounter difficulties
in finding their exact analytical solutions.Very recently, some promising
approximate analytical solutions are proposed, such as homotopy per-
turbation method [2], and variation iteration method (VIM) [3]. A new
perturbation method called homotopy perturbation method (HPM), due
to HE, is, in fact, a coupling of the traditional method and homotopy in
topology. Most recently Siddiqui [4] discussed the thin film flows of the
Sisko and Olroyd 6 constant fluids on a moving belt. Siddiqui investi-
gated the thin film flow of a third grade fluid down an inclined plane.
Here, we investigate the behavior of Sisko fluid in pipe by using HPM.

2. Fundamentals of the homotopy perturbation method

To illustrate the homotopy perturbation method (HPM) for solving
non-linear differential equations, He considered the following non-linear
differential equation:

(2.1) A (U) = f (r) , r ∈ Ω,

subject to the boundary condition

(2.2) B

(
u,
∂u

∂n

)
= 0, r ∈ Γ,

where A is a general differential operator, B is a boundary operator,
f (r) is a known analytic function, Γ is the boundary of the domain Ω
and ∂

∂n denotes differentiation along the normal vector drawn outwards
from Ω. The operator A can generally be divided into two parts L and
N. Therefore, (2.1) can be rewritten as follows:

(2.3) M (u) +N (u) = f (r) , r ∈ Ω.

He constructed a homotopy v(r, p) : Ω× [0, 1]→ <, which satisfies

(2.4) H (v, p) = (1− p) [M (v)−M (u0)] + p [A (v)− f (r)] = 0,

and is equivalent to:

(2.5) H (v, p) = M (v)−M (u0) + pM (u0) + p [A (v)− f (r)] = 0,

where p ∈ [0, 1] is an embedding parameter, and u0 is the first approxi-
mation that satisfies the boundary condition. Obviously, we have

(2.6) H (v, 0) = M (v)−M (u0) = 0,
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(2.7) H (v, 1) = A (v)− f (r) = 0.

The changing process of p from zero to unity is just that of H (v, p) from
M (v)−M (u0) to A (v)− f (r). In topology, this is called deformation
and M (v)−M (u0) and A (v)−f (r) are called homotopic. According to
the homotopy perturbation method, the parameter p is used as a small
parameter, and the solution of (2.4) can be expressed as a series in p in
the form

(2.8) v = v0 + pv1 + p2v2 + p3v3 + . . . ,

as p → 1, (2.4) corresponds to the original one, (2.3) and (2.8) become
the approximate solution of (2.3), i.e.,

(2.9) u = lim
p→1

v = v0 + v1 + v2 + v3 + . . . .

The convergence of the series in (2.9) is discussed by He [2].

3. Governing equations

The physical problem contains a straight pipe having a non-Newtonian
fluid and the fluid moves in pipe with a constant rate of flow. A
schematic of the coordinate system on the physical model is shown in
Figure 1.

Figure 1. Physical model

For simplicity, some major approximations and assumptions are made:

i. The flow is in steady state.
ii. The flow is laminar and uniform.

iii. The gravity is negligible.
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We choose a cylindrical-coordinate system. The only velocity component
is in the z -direction:

(3.1) V = V(0, 0, v(r)).

The valid conservation equations for this physical problem in the coor-
dinate system can be written as follows.
Mass conservation:

(3.2) ∇ · V = 0.

Conservation of momentum:

(3.3) k +
1

ρ
∇ · S =

∂V

∂t
+ ( V.∇) V,

where k is the body force and T = −P I+S is the stress tensor, P and I
are pressure and unit tensor, respectively. For the Sisko model studied
here, the shear stress (S) function for a time-independent fluid takes the
following form [5]:

(3.4) S =

m+ η

∣∣∣∣∣
√

1

2
trac(A2

1)

∣∣∣∣∣
n−1
A1,

where A1 is the rate of deformation tensor, m, η and n are constants de-
fined differently for different fluids. We can find the rate of deformation
tensors A1. The Rivlin-Ericksen tensor is given by

(3.5) A1 = 2d = L + LT,

in the cylindrical coordinates:

(3.6) A1 = 2d =

 2∂Vr∂r
∂Vθ
∂r + 1

r
∂Vr
∂θ −

Vθ
r

∂Vr
∂z + ∂Vz

∂r

+ 2(Vrr + 1
r
∂Vθ
∂θ ) ∂Vθ

∂z + 1
r
∂Vz
∂θ

+ + 2∂Vz∂z

 ,
where + denotes a symmetric entry.
By interring the velocity field and simplifying we have

(3.7)

∣∣∣∣∣
√

1

2
trac(A2

1)

∣∣∣∣∣
n−1

= (−∂v
∂r

)n−1 ⇒ Srz = m
∂v

∂r
− η(−∂v

∂r
)n,

(3.8) ∇.S =
1

r

∂

∂r
(rSrz),

(3.9) ∇.T = −∂P
∂z

+m
∂2v

∂r2
− η ∂

∂r
(
∂v

∂r
)n +

1

r
(m

∂v

∂r
+ η(

∂v

∂r
)n).
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The acceleration vector, written DV
Dt , is defined by

(3.10)
DV

Dt
=
∂V

∂t
+ (V.∇)V = 0.

Then, by using (3.2), (3.9) and (3.10) in momentum (3.3), without body
force, we can obtain the equation of the Sisko fluid for our problem as
follow.
r -momentum:

(3.11) − dP

dr
= 0,

θ-momentum:

(3.12) − dP

dθ
= 0,

z -momentum:

(3.13) m
d2v

dr2
+ ηn(−dv

dr
)n−1d

2v

dr2
+

1

r

[
m
dv

dr
− η(−dv

dr
)n
]
− dP

dz
= 0.

From (3.11) and (3.12), we deduce that p = p (z). The boundary condi-
tions will be

(3.14)

{
Srz = 0 at r = 0
v = 0 at r = R,

where Sr z, the shear stress in (3.14) for the flow problem under consid-
eration from (3.4), is given by (3.7). Substituting (3.7) in the second
boundary condition of (3.14), we get

(3.15)
dv

dr
= 0 at r = 0.

We obtain the same result in case of a Newtonian fluid. Thus, the flow
of a Sisko fluid in pipe is governed by the system

(3.16) m
d2v

dr2
+ ηn(−dv

dr
)n−1d

2v

dr2
+

1

r

[
m
dv

dr
− η(−dv

dr
)n
]
− dP

dz
= 0,

(3.17)

{
dv
dr = 0 at r = 0
v = 0 at r = R.

Let ū and R be the average velocity and radius of pipe, respectively:

(3.18) µ̄ = η(
ū

R
)n−1.
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The dimension of µ̄ is the same as the dimension of Newtonian fluid
viscosity. We introduce the following non-dimensional variables:

(3.19) r∗ =
r

R
v∗ =

v

ū
θ =

µ̄

m
z∗ =

z

R
.

In this case, the pressure gradient can be written as

(3.20)
dP

dz
= −2mū

R2
Ps,

where Ps is the non-dimensional steady state pressure gradient, the di-
mensionless form of (3.16) subject to (3.17), without the *, is:

(3.21)
d2v

dr2
+ nθ(−dv

dr
)n−1d

2v

dr2
+

1

r

[
dv

dr
− θ(−dv

dr
)n
]

+ 2Ps = 0,

(3.22)

{
dv
dr = 0 at r = 0
v = 0 at r = 1.

We note that (3.21) is a second order nonlinear differential equation with
two boundary conditions. Next, we give the solution of (3.21) under the
boundary conditions (3.22) by HPM.

4. Analysis of the Sisko fluids problem using homotopy
perturbation method

To obtain the solution of (3.21), we use HPM. First, we consider
operators L and N as follows:

(4.1) L =
d2

dr
(.),

and
(4.2)

N = nθ

(
− d

dr
( )

)(n−1) d2

dr2
( ) +

1

r

[(
d

dr
( )

)
− θ

(
− d

dr
( )

)n]
+ 2Ps.

Then, we construct the homotopy v (r, p) : Ω× [0, 1]→ <, witch satisfies

(4.3) H (v, p) = (1− p) (L(v)− L (u0)) + p [L(v) +N (v)] = 0,

(4.4)
(

1− p
)(d2v

dr2
− d2u0

dr2

)
+ p
[d2v

dr2
+ nθ

(
−dv
dr

)(n−1

)
d2v

dr2
+

1

r

[(dv
dr

)
− θ
(
−dv
dr

)n]
+ 2Ps

]
= 0,



Exact solutions for flow of a Sisko fluid in pipe 55

where p ∈ [0, 1] is the embedding parameter and u0 is the initial guess.
Accordingly to HPM and with respect to boundary conditions (3.21),
we assume that (4.4) has a solution of the form

(4.5) v (r, p) = v0 (r) + pv1 (r) + p2v2 (r) + . . . .

By substituting (4.5) into (4.4) and (4.3), and equating the same pow-
ers of p and choosing powers of p from zero to two with respect to our
approximation scheme, we finally obtain the following systems of differ-
ential equations.

4.1. Zeroth-order. The differential equation of the zeroth-order with
the boundary conditions is obtained as follows:

(4.6) L (v)− L (u0) = 0,

(4.7)

{
dv0
dr = 0 at r = 0
v0 = 0 at r = 1.

We note that u0 is the initial guess and with respect to our problem, it
is considered to be a parabola,

(4.8) u0 =
Ps
2

(
1− r2

)
.

It should be noted that the initial guess satisfies the boundary condi-
tions. Since L is a linear operator, we conclude that

(4.9) v0 = u0 =
Ps
2

(
1− r2

)
.

4.2. First-order. The first order equation is:

(4.10)
d2v1

dr2
+
d2v0

dr2
+ nθ

(
−dv0

dr

)(n−1) d2v0

dr2

+
1

r

[(
dv0

dr

)
− θ

(
−dv0

dr

)n]
+ 2Ps = 0,

subject to the boundary conditions:

(4.11)

{
dv1
dr = 0 at r = 0
v1 = 0 at r = 1.
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For the first order solution, we substitute the zeroth-order solution v0

into Eq.(4.10) and with some simplification along with the boundary
conditions, we obtain the first order solution to be

(4.12) v1 = −P
n
s θ

n

(
1− r(n+1)

)
.

4.3. Second-order. The second order equation along with the bound-
ary conditions is:

d2v2

dr2
+ nθ (−1)(n−1)

[
(n− 1)

(
dv0

dr

)(n−2)(dv1

dr

)(
d2v0

dr2

)
(4.13)

+

(
dv0

dr

)(n−1)(d2v1

dr2

)]
+

1

r

[(dv1

dr

)
+ (−1)(n+1) (n− 1) θ

(
dv0

dr

)(n−1)(dv1

dr

)]
= 0,

(4.14)

{
dv2
dr = 0 at r = 0
v2 = 0 at r = 1.

The resulting differential equation subjected to the boundary condition,
v2, is obtained to be:

(4.15) v2 =
P

(2n−1)

s θ2
(
2n3 + n2 − 1

)
(2n− 1) (2n)

(
1− r(2n)

)
+
Pns θ

n2

(
1− r(n+1)

)
.

Final solution of (3.21) by using HPM up to the second order is:

(4.16) v (r) = lim
p→1

v (r, p) = v0 (r) + v1 (r) + v2 (r) + ...,

or

v (r) =
Ps
2

(
1− r2

)
+
P

(2n−1)

s θ2
(
2n3 + n2 − 1

)
(2n− 1) (2n)

(
1− r(2n)

)
(4.17)

+
Pns θ(1− n)

n2

(
1− r(n+1)

)
.

By back substitution of values of dimensionless parameters, we get the
solution (4.17) in dimensional form as:

v (r) =
−dP
dz

4m

(
R2 − r2

)
(4.18)
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+
(−dP

dz /2m)
(2n−1)

η2
(
2n3 + n2 − 1

)
(2n− 1) (2n)m2

(
R2n − r2n

)
+

(−dP
dz /2m)nη(1− n)

n2m

(
Rn+1 − rn+1

)
.

5. Flow rate and average pipe velocity

The flow rate Q per unit width is given by

(5.1) Q =

R∫
0

v(r)2πrdr.

By substituting (4.18) in (5.1), we obtain Q up to second order as:

Q =
−dP
dz πR

4

8m
+

(−dP
dz /2m)

(2n−1)
η2
(
2n3 + n2 − 1

)
πR2n+2

2 (2n− 1) (n+ 1)m2
(5.2)

+
(−dP

dz /2m)nη(1− n2)πRn+3

(n+ 3)n2m
.

The average pipe velocity V is then given by

(5.3) V =
Q

πR2
.

Therefore, the average velocity of a Sisko fluid is:

V =
−dP
dz R

2

8m
+

(−dP
dz /2m)

(2n−1)
η2
(
2n3 + n2 − 1

)
R2n

2 (2n− 1) (n+ 1)m2
(5.4)

+
(−dP

dz /2m)nη(1− n2)Rn+1

(n+ 3)n2m
.

From (5.4), it can be observed that if we access the pressure gradient
by ∆P/L, we obtain the pressure drop in pipe as the function of average
velocity:

8V

D
=

(D∆P/4L)

m
+

2η2
(
2n3 + n2 − 1

)
R2n(D∆P/4L)

(2n−1)

(2n− 1) (n+ 1)m2n+1
(5.5)

+
4(D∆P/4L)nη(1− n2)Rn+1

(n+ 3)n2mn+1
,

where D is the diameter and L is the pipe length.
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Figure 2. Dimensionless velocity profile in the pipe for
Sisko fluid with various value of non-Newtonian parame-
ter (θ) for a fixed value of Ps=1

6. Results and discussion

Figure 2 shows the fluid velocity changes in the pipe according to the
radius for different ratios of nonlinear to linear viscosities (θ) in different
fluids compared with the Newtonian fluid (θ=0) in the case that n=2.
We can observe that as θ is increased, the fluid velocity becomes larger.
Figure 2 also indicates that with increasing n with θ=0.2, the velocity
increases and turns away from the Newtonian case. This increase in
the fluid velocity is the result of increasing the shear stress. By keeping
aloof from the center of the pipe, the shear stress becomes larger for
the reason of increasing the velocity gradient and the growth of the pipe
on the wall to the maximum amount. The increasing of n and θ also
strengthen the nonlinear behavior of fluid and the shear stress.
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Figure 3. Dimensionless velocity profile in the pipe for
Sisko fluid with various value of non-Newtonian parame-
ter n for fixed value Ps=1

7. Conclusion

We considered the flow problem of non-Newtonian fluids, namely the
Sisko fluids in pipe. We applied the homotopy perturbation method
to obtain the velocity profile, the shear stress and pressure gradient.
Predicting the decrease in pressure of the pipe can help a lot in modeling
and analyzing the fluid problems, which were nearly impossible in the
past.
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